JPS62144510A - Gas insulated electric equipment - Google Patents

Gas insulated electric equipment

Info

Publication number
JPS62144510A
JPS62144510A JP60286199A JP28619985A JPS62144510A JP S62144510 A JPS62144510 A JP S62144510A JP 60286199 A JP60286199 A JP 60286199A JP 28619985 A JP28619985 A JP 28619985A JP S62144510 A JPS62144510 A JP S62144510A
Authority
JP
Japan
Prior art keywords
conductor
side wall
cylindrical insulator
gas
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60286199A
Other languages
Japanese (ja)
Other versions
JPH0458249B2 (en
Inventor
谷垣 修造
雅史 徳重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60286199A priority Critical patent/JPS62144510A/en
Priority to US06/832,376 priority patent/US4730231A/en
Priority to KR1019860001458A priority patent/KR860007056A/en
Priority to IN158/CAL/86A priority patent/IN165223B/en
Priority to CN86101374A priority patent/CN1008959B/en
Priority to EP86301510A priority patent/EP0200309B1/en
Priority to DE8686301510T priority patent/DE3675572D1/en
Publication of JPS62144510A publication Critical patent/JPS62144510A/en
Priority to MYPI87002142A priority patent/MY101109A/en
Priority to SG768/91A priority patent/SG76891G/en
Publication of JPH0458249B2 publication Critical patent/JPH0458249B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明はガス絶縁電気機器に係り、特に絶縁ガスを封入
した箱体の側壁を貫通する導体を具えたガス絶縁電気機
器に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to gas insulated electrical equipment, and more particularly to a gas insulated electrical equipment provided with a conductor penetrating the side wall of a box filled with insulating gas.

B0発明の概要 ガス絶縁電気機器において、箱体側壁の少くとも一側に
内部にガスが充填された筒状絶縁物を設け、且つ箱体側
壁に設ける導体挿通孔と導体との間のギャップ寸法g、
筒状絶縁物の内壁の長さく導体と対向した軸方向の長さ
)寸法をQ、導体挿通孔の内径寸法をφ1.絶縁物の内
径寸法をφ2とし1こときに、これらの各寸法を最適の
関係にすることにより、筒状絶縁物の小形化、ひいては
ガス絶縁電気機器の小形化を、絶縁耐電圧を低下させる
ことなく図ったものである。
B0 Summary of the Invention In a gas-insulated electric device, a cylindrical insulator filled with gas is provided on at least one side of a side wall of a box body, and gap dimensions between a conductor insertion hole provided in the side wall of the box body and the conductor. g,
The length of the inner wall of the cylindrical insulator (the length in the axial direction facing the conductor) is Q, and the inner diameter of the conductor insertion hole is φ1. By setting the inner diameter of the insulator to φ2 and optimizing the relationship between these dimensions, it is possible to downsize the cylindrical insulator and, by extension, downsize gas-insulated electrical equipment, while reducing the dielectric strength voltage. This was planned without any fuss.

C1従来の技術 ガス絶縁電気機器の一例としてガス開閉装置は、しゃ断
器、新路器等の主回路機器や、これに接続される母線等
を金属性の箱体に収納し、この箱体を接地する構成が採
られている。この場合、箱体内に収納される機器の小形
化を図り、且つ絶縁を確保するため箱体内にSF8ガス
、SF6ガスと空気との混合ガス等の絶縁ガスを充填す
ることが行なわれている。
C1 Conventional technology A gas switchgear is an example of gas-insulated electrical equipment, in which main circuit equipment such as circuit breakers and new line switches, and busbars connected to these are housed in a metal box. A grounded configuration is adopted. In this case, in order to downsize the equipment housed within the box and to ensure insulation, the box is filled with an insulating gas such as SF8 gas or a mixed gas of SF6 gas and air.

上記のガス絶縁形の開閉装置において、箱体内に収納し
た機器と外部機器とを接続するためには箱体側壁を貫通
する導体が必要となり、且つ導体と側壁とを絶縁離隔す
ると共に支持することを必要とする。この箱体側壁を貫
通する導体の絶縁支持には従来種々のものがあるが、ガ
スの絶縁特性に基づいて最適な構成すなわち、ガス絶縁
化の特長である小形化の効果を十分に引き出せるような
構成を見出すことが強く要望される。
In the gas-insulated switchgear mentioned above, in order to connect the equipment housed in the box with external equipment, a conductor is required to penetrate the side wall of the box, and the conductor and the side wall must be insulated and separated as well as supported. Requires. There are various types of insulating support for the conductor that penetrates the side wall of the box, but the optimal configuration is based on the insulation characteristics of the gas, that is, the one that fully brings out the effect of miniaturization, which is a feature of gas insulation. It is strongly desired to find a structure.

今、従来のガス絶縁電気機器を第25図に示す概略図を
参照して説明すると、図中1は電気機器箱体の一例とし
ての開閉装置、2は箱体側壁でしゃ断器室10と母線室
15とを区分する。11は箱体側壁2を貫通して箱体側
壁2に固定された筒状絶縁物(ブッシング)で、その軸
心部を貫通して内部固定導体31が設けである。母線室
15内にはSP、ガスなどの絶縁ガスが大気圧又は大気
圧より高い圧力(0,10〜0.2MPa)に充填され
ている。18は引出形のしゃ断器で、内部固定導体31
の突出先端31aと接離する外部導体19を有し、該接
離部が断路部9として形成される。そこで、引出形しゃ
断器18をしゃ断器室IO内に搬入すると、その外部導
体19と内部固定導体31の突出先端31aとが接続し
て電気的導通がなされるのである。
Now, conventional gas insulated electrical equipment will be explained with reference to the schematic diagram shown in FIG. It is divided into chamber 15. Reference numeral 11 denotes a cylindrical insulator (bushing) that penetrates the box side wall 2 and is fixed to the box side wall 2, and an internal fixed conductor 31 is provided passing through the axial center of the bushing. The bus bar chamber 15 is filled with an insulating gas such as SP or gas at atmospheric pressure or a pressure higher than atmospheric pressure (0.10 to 0.2 MPa). 18 is a drawer-type breaker, and an internal fixed conductor 31
It has an external conductor 19 that comes into contact with and separates from the protruding tip 31a of the external conductor 19, and the contact and separation part is formed as a disconnection part 9. Therefore, when the drawer-type breaker 18 is carried into the breaker chamber IO, its outer conductor 19 and the protruding tip 31a of the internal fixed conductor 31 are connected to establish electrical continuity.

そこで、筒状絶縁物(ブッシング)11の部分を第24
図に基づいて説明する。すなわち、第24図において、
絶縁ガスを封入した電気機器lの箱体側壁2に透孔4を
穿設して、その透孔4の外方側に筒状絶縁物llを突設
する。筒状絶縁物11はフランジ部11aとボス部11
bを有し、そのフランジ部Llaに0リングなどのシー
ル材23を介在してボルト20で8体側壁2に気密結合
されている。一方、この筒状絶縁物11には内部固定導
体31がOリングなどのシール材22を介在して設けら
れると共に気密に貫通している。
Therefore, the 24th part of the cylindrical insulator (bushing) 11 was
This will be explained based on the diagram. That is, in FIG. 24,
A through hole 4 is bored in a side wall 2 of a box body of an electrical device l filled with an insulating gas, and a cylindrical insulator 11 is provided protruding from the outside of the through hole 4. The cylindrical insulator 11 has a flange portion 11a and a boss portion 11.
b, and is hermetically coupled to the eight-body side wall 2 with bolts 20 with a sealing material 23 such as an O-ring interposed at the flange portion Lla. On the other hand, an internal fixed conductor 31 is provided in this cylindrical insulator 11 with a sealing material 22 such as an O-ring interposed therebetween, and passes through the cylindrical insulator 11 in an airtight manner.

第24図に示す筒状絶縁物11をモデル化して示すのが
第23図である。そして、この第23図に示すモデル化
された筒状絶縁物11によってその絶縁電圧特性を調べ
た。その結果をグラフで示すのが第22図である。以下
それを説明するが、第23図、第24図において用いる
記号の意味は下表の通りである。
FIG. 23 shows a model of the cylindrical insulator 11 shown in FIG. 24. Then, the insulation voltage characteristics of the modeled cylindrical insulator 11 shown in FIG. 23 were investigated. FIG. 22 shows the results in a graph. This will be explained below, and the meanings of the symbols used in FIGS. 23 and 24 are as shown in the table below.

L 二組体側壁から外側に突出している筒状絶縁物の外
壁の長さくIIII) φ、:導体挿通孔の内径(mm) φ、:筒状絶縁物の内径(+nn+) φ3:筒状絶縁物の外径(mm) a:導体挿通孔の内周と筒状絶縁物との間のギャップ寸
法(mm) なお、第24図に示すフランジ部11aと内部固定導体
31を支持している筒状絶縁物11のボス部11bは、
筒状絶縁物11の沿面耐電特性には効果ら悪影響らなく
、第23図と第24図の構成において、φ1゜φ3.φ
3. aおよびLが各々同じであれば、両者の耐電圧特
性が同じであることを種々の形状寸法のものにおいて確
認しており、その結果はここでは省略する。
L Length of the outer wall of the cylindrical insulator projecting outward from the side wall of the two-piece assembly φ,: Inner diameter of the conductor insertion hole (mm) φ,: Inner diameter of the cylindrical insulator (+nn+) φ3: Cylindrical insulation Outer diameter of the object (mm) a: Gap dimension (mm) between the inner periphery of the conductor insertion hole and the cylindrical insulator. The boss portion 11b of the shaped insulator 11 is
There is no adverse effect on the creeping electric strength characteristics of the cylindrical insulator 11, and in the configurations shown in FIGS. 23 and 24, φ1° to φ3. φ
3. It has been confirmed in various shapes and sizes that if a and L are the same, both have the same withstand voltage characteristics, and the results will be omitted here.

第22図に示す実験結果は、第23図に示す筒状絶縁物
11において、 φ+=105mn+ φ2=  90mm φ3= 100mm a = 2.5mm(なお、フランジ部11aの厚みは
10mm導体3の外径(アルミの丸棒)は30mm)の
寸法によって、かつ、大気圧(約0.1MPa)と同程
度の圧力の純SF、ガス中においてLを変化させて行っ
た。
The experimental results shown in FIG. 22 are as follows for the cylindrical insulator 11 shown in FIG. The measurement was carried out by varying L (aluminum round rod: 30 mm) and in pure SF gas at a pressure similar to atmospheric pressure (approximately 0.1 MPa).

その結果は第22図に示すとおりで、図から分るように
L寸法が約38mm近傍において正、負各極性の閃絡電
圧特性が逆となりこれよりもLを大きくすることによっ
て正極性の耐電圧特性は大きくなるが、負極性の耐電圧
特性はかえって低下することを示している。この原因は
筒状絶縁物11が箱体側壁2を貫通していることが原因
がと考えられる。
The results are shown in Figure 22.As can be seen from the figure, the flash fault voltage characteristics of positive and negative polarities are reversed when the L dimension is around 38 mm, and by increasing L beyond this, the positive polarity resistance can be improved. This shows that although the voltage characteristics increase, the negative polarity withstand voltage characteristics actually decrease. The reason for this is thought to be that the cylindrical insulator 11 penetrates the box side wall 2.

さらには、内部導体31と導体挿通孔4との間の微小ギ
ャップaも原因となっていることが考えられる。
Furthermore, it is conceivable that the minute gap a between the internal conductor 31 and the conductor insertion hole 4 is also a cause.

D1発明が解決しようとする問題点 結局、筒状絶縁物11が箱体側壁2を貫通している限り
、Lを大きくして内部固定導体31と箱体側壁2との間
の沿面距離を大きくとり、耐電圧特性の問題をクリヤし
ようとしても、耐電圧特性は向上しないことが判った。
D1 Problem to be solved by the invention In the end, as long as the cylindrical insulator 11 penetrates the box side wall 2, L can be increased to increase the creepage distance between the internal fixed conductor 31 and the box side wall 2. It was found that even if we tried to solve the problem of withstand voltage characteristics, the withstand voltage characteristics did not improve.

すなわち、Lを大きくして沿面と増せば、正耐圧特性は
向上するも、逆に負耐圧特性は低下する。
That is, if L is increased to increase the creepage, the positive withstand voltage characteristics will improve, but the negative withstand voltage characteristics will conversely deteriorate.

Lを更に大きくすれば沿面耐電圧特性は向上するが、実
用的には電気機器収納体が大きくなる。
If L is further increased, the creeping withstand voltage characteristics will be improved, but in practical terms, the electrical equipment housing will become larger.

また、沿面耐電圧特性の向上のためにLを大きくして行
くと新たな問題を引起すことになる。つまり、箱体側壁
2の導体挿通孔4の内径部と内部固定導体31との間で
筒状絶縁物11を貫通する絶縁破壊を起すことになる。
Further, if L is increased in order to improve the creepage withstand voltage characteristics, new problems will arise. In other words, dielectric breakdown occurs between the inner diameter part of the conductor insertion hole 4 of the box side wall 2 and the internal fixed conductor 31, penetrating the cylindrical insulator 11.

電気機器は安全のために低い値の耐電圧特性を使用可能
な電圧条件として採用するものであるから、従来のよう
に壁を貫通する絶縁物(ブッシング)では、大形化して
もほとんど耐電圧特性の向上は期待できなかった。しか
も寸法りを大とすることによって重量は重くなり、また
、ブッシングの取付作業に手間がかかるなどの問題もあ
る。
Electrical equipment adopts a low value of withstand voltage characteristics as a usable voltage condition for safety reasons, so conventional insulators (bushings) that penetrate walls have almost no withstand voltage even if they are large. No improvement in characteristics could be expected. Moreover, increasing the size increases the weight, and there are also problems such as the installation work of the bushing being time-consuming.

本発明は、種々実験研究した結果にもとづいて小形、軽
量であるにも拘わらず絶縁耐電圧が低下しない導体貫通
部構造を具備したガス絶縁電気機器を提供することを目
的とする。
An object of the present invention, based on the results of various experimental studies, is to provide a gas-insulated electric device having a conductor penetration structure that does not reduce dielectric strength voltage despite being small and lightweight.

E 問題点を解決するだめの手段 第1の発明に係るガス絶縁電気機器は、箱体内に電気機
器及び導体などを収納するとともに絶縁性のガスを封入
し、箱体の側壁を貫通して導体が設けられ、且つこの導
体を囲繞すると共に、側壁に気密に固定された筒状絶縁
物を設けてなるガス絶縁電気機器において、前記筒状絶
縁物を、箱体側壁の少くとも一方の側に設けると共に内
部に絶縁ガスが存在するように構成し、且つ、箱体側壁
に設けた前記導体挿通孔の内周と前記導体との間のギャ
ップ寸法をg、前記筒状絶縁物の内壁の長さ寸法をl、
導体挿通孔の内径寸法をφ1、絶縁物の内径寸法をφ2
としたときに、Q≧g/4で、且っL[」二≧2 mm
の関係に設けたことを特徴とする。
E. Means for Solving the Problem The gas-insulated electrical equipment according to the first invention stores electrical equipment and conductors in a box body, and also seals insulating gas, and inserts the conductor through the side wall of the box body. In a gas-insulated electric device, the cylindrical insulator is provided on at least one side of the side wall of the box body, and the cylindrical insulator is provided on at least one side of the side wall of the box body. The gap dimension between the inner periphery of the conductor insertion hole provided in the side wall of the box body and the conductor is g, and the length of the inner wall of the cylindrical insulator is The size is l,
The inner diameter of the conductor insertion hole is φ1, and the inner diameter of the insulator is φ2.
When Q≧g/4, and L[''2≧2 mm
It is characterized by being set in the relationship of

第2の発明は筒状絶縁物を箱体側壁の外側に突出させる
と共に、その内側凹状部に絶縁ガスを充填して設け、箱
体内に設けた内部固定導体の端部を箱体側壁の導体挿通
孔を遊貫通させて、前記筒状絶縁物内に遊嵌して挿入せ
しめ、該内部固定導体に、筒状絶縁物を気密且つ軸方向
移動自在に設けた接続導体を接離自在として断路部を形
成し、当該構成において核部の寸法g、 Q、φ1.φ
2を第関係とし、さらに筒状絶縁物への内部固定導体の
挿入寸法Bを、B≧−の関係としたことを特徴とする。
In the second invention, a cylindrical insulator is provided to protrude outside the side wall of the box body, and its inner recessed part is filled with insulating gas, and the end of the internal fixed conductor provided inside the box body is connected to the conductor of the side wall of the box body. The insertion hole is loosely inserted into the cylindrical insulator, and the connecting conductor, which is provided with the cylindrical insulator airtightly and movably in the axial direction, is attached to the internal fixed conductor and can be freely connected and disconnected. In this configuration, the dimensions of the core part are g, Q, φ1. φ
2 is the second relationship, and the insertion dimension B of the internally fixed conductor into the cylindrical insulator is set to the relationship B≧−.

F、実験の結果 5F6yスの場合 本発明者は、ガス絶縁電気機器における箱体側壁の導体
貫通部の絶縁構造について種々実験を行った。以下それ
を説明するが、第11図、第13図。
F. Results of Experiments 5F6yS The present inventor conducted various experiments regarding the insulation structure of the conductor penetration portion of the side wall of the box in gas-insulated electrical equipment. This will be explained below with reference to FIGS. 11 and 13.

第17図1第20図における記号の色味は下表の通りで
ある。
The colors of the symbols in FIG. 17 and FIG. 20 are as shown in the table below.

Q ・ 箱体側壁から外側に突出している筒状絶縁物の
外壁の長さくmm) φ1: 導体挿通孔の内径(mm) φ、二 筒状絶縁物の内径(mm) φ3: 筒状絶縁物の外径(mm) g : 導体挿通孔の内周と導体の間のギャップ寸法(
+n+n) まず最初、大気圧(約0.10MPa)のSF8を充填
した密封箱体内において、第11図のように箱体側壁に
相当する平板21(厚さ1.2mm)に導体挿通孔4を
形成し、その中心部に直径30mmの導体3(アルミ丸
棒)を配置し、高電圧を印加して導体貫通部の閃絡特性
について実験を行った。箱体内は予め真空引きし、その
後SF8ガスを大気圧(約0. lOMPa)に充填し
た。そして、導体3に電圧を印加し、平板21を接地し
て、閃絡電圧特性を求めた。第12図は、その結果で、
導体3の径を一定としたときの平板21に設ける孔径φ
1と導体3と導体挿通孔4のギャップ寸法gを横軸にと
った正負極性のインパルス閃絡電圧特性(50%F、0
.V、、 kV)を示す。図から判るように孔径φ1が
大きくなるに従って正負極性共に耐電圧特性は比例して
高くなることが判った。
Q - Length of the outer wall of the cylindrical insulator protruding outward from the side wall of the box (mm) φ1: Inner diameter of the conductor insertion hole (mm) φ,2 Inner diameter of the cylindrical insulator (mm) φ3: Cylindrical insulator Outer diameter (mm) g: Gap dimension between the inner circumference of the conductor insertion hole and the conductor (
+n+n) First, in a sealed box filled with SF8 at atmospheric pressure (approximately 0.10 MPa), a conductor insertion hole 4 is made in a flat plate 21 (thickness 1.2 mm) corresponding to the side wall of the box, as shown in Fig. 11. A conductor 3 (aluminum round bar) with a diameter of 30 mm was placed in the center of the conductor 3, and a high voltage was applied to conduct an experiment on the flash characteristics of the conductor penetration part. The inside of the box was evacuated in advance, and then filled with SF8 gas to atmospheric pressure (approximately 0.1 OMPa). Then, a voltage was applied to the conductor 3, the flat plate 21 was grounded, and flash voltage characteristics were determined. Figure 12 shows the results.
Hole diameter φ provided in the flat plate 21 when the diameter of the conductor 3 is constant
Impulse flash voltage characteristics of positive and negative polarity (50% F, 0
.. V,, kV). As can be seen from the figure, as the hole diameter φ1 increases, the withstand voltage characteristics for both positive and negative polarities increase proportionally.

つぎに、第13図に示すように、φ1くφ2で且つ内壁
の長さQ寸法を有するベーク材を用いたボス部11bの
有る筒状(カップ状)の絶縁物11を箱体側壁2の一側
(外側)面に気密に固着するとともに、導体3に対して
も気密に固着し箱体内及び絶縁物11にSF、ガスを大
気圧(約0.10MPa)に充填して導体貫通部の閃絡
電圧特性について実験を行った。
Next, as shown in FIG. 13, a cylindrical (cup-shaped) insulator 11 with a boss portion 11b made of baked material having diameters of 1 to 2 and an inner wall length Q is attached to the side wall 2 of the box body. It is airtightly fixed to one side (outside) surface and also to the conductor 3, and the inside of the box and the insulator 11 are filled with SF and gas to atmospheric pressure (approximately 0.10 MPa), and the conductor penetration part is Experiments were conducted on flashover voltage characteristics.

すなわち、箱体側壁2の孔径φ1、筒状絶縁物11の内
径φ2、導体3と箱体側壁2の孔とのギャップ寸法g、
において下表のように各寸法を変えて導体3に電圧を加
えた。なお、導体3の外径は30mmである。
That is, the hole diameter φ1 of the box side wall 2, the inner diameter φ2 of the cylindrical insulator 11, the gap dimension g between the conductor 3 and the hole of the box side wall 2,
A voltage was applied to the conductor 3 while changing each dimension as shown in the table below. Note that the outer diameter of the conductor 3 is 30 mm.

第14図は前表のとおり、それぞれの寸法を変えた場合
の閃絡電圧特性を示している。
As shown in the previous table, FIG. 14 shows the flash fault voltage characteristics when the respective dimensions are changed.

第14図から分るように、Q=Oのときの閃絡値は、正
極性の方が負極性の値より低くなっている。
As can be seen from FIG. 14, the flashover value when Q=O is lower for positive polarity than for negative polarity.

そして、筒状絶縁物11の内壁長さQを次第に大きくし
ていくと、正極性では大幅に、負極性では徐々に閃絡電
圧値は高くなり、一定の長さQのところで極性依存性が
反転し、ついには向上しなくなることか判る。これはア
ース電位金属部材である平板2■が存在していて、これ
によって耐電圧特性か依存してくることによるものであ
る。
Then, as the inner wall length Q of the cylindrical insulator 11 is gradually increased, the flash voltage value increases significantly for positive polarity and gradually increases for negative polarity, and at a certain length Q, the polarity dependence increases. It turns out that things will turn around and eventually stop improving. This is because the flat plate 2, which is a metal member with an earth potential, is present, and the withstand voltage characteristics depend on this.

第14図の結果と第12図との比較の一例を示すと、こ
の比較から判るように、第13図の場合が第11図の場
合よりわずかではあるが耐電圧特性が向上していること
が判る。
An example of a comparison between the results in Figure 14 and Figure 12 shows that as can be seen from this comparison, the withstand voltage characteristics are slightly improved in the case of Figure 13 than in the case of Figure 11. I understand.

次に金属部材である平板21の存在による耐電圧特性に
ついて調べた。実験は、 導体の外径  30mm φ、=Q=15mm g= 22.5mm とし、その他の条件は第14図の場合と同じにし、筒状
絶縁物11の内径寸法φ2を変化させて凋べ1こところ
、第15図に示すような結果を得た。
Next, the withstand voltage characteristics due to the presence of the flat plate 21, which is a metal member, were investigated. In the experiment, the outer diameter of the conductor was 30 mm φ, = Q = 15 mm, g = 22.5 mm, other conditions were the same as in the case of Fig. 14, and the inner diameter dimension φ2 of the cylindrical insulator 11 was changed. In fact, the results shown in FIG. 15 were obtained.

すなわち、第15図の横軸は、φ2の変化を、れば閃絡
電圧特性はほとんど変化しないもののそれ以下になると
急激に特性が悪くなることが判る。
That is, the horizontal axis in FIG. 15 shows that as the value of φ2 changes, the flashover voltage characteristics hardly change, but as the value falls below that, the characteristics suddenly deteriorate.

以上の実験(第11図〜第15図)の結果から次のこと
が分った。
From the results of the above experiments (FIGS. 11 to 15), the following was found.

正極性と負極性の閃絡特性が同じ値をとるのは(第14
図参照)、 g= 22.5の場合はaキ5mmSg=37.5の場
合はQキ1.Ommである。これから、 Q:g= 5 :22.5   (1年g/4Q:g=
 lo:37.5   (l孝g/4の関係と成ること
が判り、筒状絶縁物11の内壁の長さQは少くともQ≧
g/4とするのが絶縁耐圧の向上にとって有効であるこ
とが判った。
The reason why the positive polarity and negative polarity flash characteristics take the same value is (14th
(See figure), when g = 22.5, a x 5 mm, when Sg = 37.5, Q x 1. It is Omm. From now on, Q:g= 5:22.5 (1 year g/4Q:g=
lo: 37.5 (It is found that the relationship is 1g/4, and the length Q of the inner wall of the cylindrical insulator 11 is at least Q≧
It has been found that setting it to g/4 is effective for improving the dielectric strength voltage.

また、第14図の結果から筒状絶縁物11の内壁の長さ
ρを無制限に長くしても効果がないことも判った。すな
わち、 φ、=75.φ、=80. g=22.5においては、
Qキ75以上では正極性、負極性とも閃絡特性は殆んど
変化しない。また、 φ、=105.φt= 110. g= 37.5にお
いてはff4105以上では殆んど正極性及び負極性と
も耐圧特性は変化しない。つまり、gの数値に関係なく
、筒状絶縁物11の内壁の長さgがほぼ孔径φ、と同じ
長さであればそれより長くなっても耐電圧特性はほとん
ど向上しないことが判った。
Furthermore, from the results shown in FIG. 14, it has been found that there is no effect even if the length ρ of the inner wall of the cylindrical insulator 11 is increased indefinitely. That is, φ,=75. φ,=80. At g=22.5,
At a Q of 75 or more, the flash characteristics hardly change for either positive polarity or negative polarity. Also, φ,=105. φt=110. When g=37.5, the withstand voltage characteristics hardly change for both positive and negative polarity at ff4105 or more. In other words, it has been found that regardless of the numerical value of g, as long as the length g of the inner wall of the cylindrical insulator 11 is approximately the same as the hole diameter φ, the withstand voltage characteristics will hardly improve even if it becomes longer.

従って、筒状絶縁物11の内壁の長さ寸法Qは、少くと
らQ≧g/4とするのが良く、好ましくはρミφ1とす
るのが良いということが判った。勿論、Q〉φ1として
も差し支えなく、その場合とは耐電圧特性以外の事項の
要求、例えば、筒状絶縁物11の外部側に変流器(CT
)を直接取付けるという場合である。
Therefore, it has been found that the length Q of the inner wall of the cylindrical insulator 11 is preferably set to a minimum of Q≧g/4, preferably ρ minus φ1. Of course, there is no problem if Q>φ1, and in that case, there are requirements other than the withstand voltage characteristics, for example, a current transformer (CT
) is installed directly.

また、同時に筒状絶縁物11の内径φ2と、導体通孔4
を小径に)とすれば良いことが判った。
At the same time, the inner diameter φ2 of the cylindrical insulator 11 and the conductor through hole 4 are
It turned out that it would be better to make the diameter smaller).

SF6と空気の混合がスの場合 上記実験は、低圧(大気圧的0.10MPa)の純SF
eガスを満した箱体における側壁貫通導体の閃絡特性を
調べたものであるが、SFsガスと空気との混合ガスは
、ある割合になると純SFeガスより耐電圧が高くなる
ことが知られている。
In the case where the mixture of SF6 and air is
This study investigated the flash fault characteristics of the sidewall penetrating conductor in a box filled with e-gas, and it is known that a mixture of SFs gas and air has a higher withstand voltage than pure SFe gas at a certain ratio. ing.

そこで本発明者は上記のことから、前述の第11図に示
すような構成(外径30II1mの導体を平板に設けた
φ、=105の孔に挿通)にして、SFsと空気との混
合ガスにおいて両者の割合を変えて閃絡電圧特性を調べ
た。導体にはインパルス電圧(1,2X 50μs)を
印加した。また混合ガス割合は、純5Fllガス100
%から純空気100%までの間において、SF、ガスと
、空気との混合比を変えて実験を行った。
Therefore, based on the above, the present inventor created a configuration as shown in FIG. The flash fault voltage characteristics were investigated by changing the ratio of both. An impulse voltage (1,2×50 μs) was applied to the conductor. The mixed gas ratio is 100% pure 5Fll gas.
Experiments were conducted by changing the mixing ratio of SF, gas, and air between 100% and 100% pure air.

実験の結果は第16図に示すとおりで、SF、ガスの混
合比が増すにつれて耐電圧が上昇し、90%SF6付近
で最大値をらつことが判り、且つSF、ガスが40%以
上であればlOO%SF、と同等の耐電圧特性を持つこ
とも判った。
The results of the experiment are shown in Figure 16, and it was found that as the mixing ratio of SF and gas increases, the withstand voltage increases and reaches its maximum value around 90% SF6. It was also found that it has voltage resistance characteristics equivalent to 1OO%SF.

したがって、SF、と空気との混合ガス(SF6が40
%以上、好ましくは90%付近)を用いれば導体貫通部
における耐電圧特性の向上に一層有利であることが判っ
た。
Therefore, a mixed gas of SF and air (SF6 is 40
% or more, preferably around 90%), it has been found that it is more advantageous to improve the withstand voltage characteristics in the conductor penetration portion.

このように、SF、と空気の混合ガスの場合においては
、混合割合によっては、純SF、より高い耐電圧特性が
得られたところから、発明者らはこの混合ガスによって
実験を進めて、更に耐電圧特性を調べた。
In this way, in the case of a mixed gas of SF and air, higher voltage resistance characteristics were obtained than pure SF depending on the mixing ratio, so the inventors conducted experiments with this mixed gas and further improved. The withstand voltage characteristics were investigated.

すなわち、導体3と導体挿通孔4とのギャップ寸法gに
よる閃絡電圧特性と、導体挿通孔4の端部形状による閃
絡電圧特性とについて調べた。
That is, the flashover voltage characteristics depending on the gap size g between the conductor 3 and the conductor insertion hole 4 and the flashover voltage characteristics depending on the end shape of the conductor insertion hole 4 were investigated.

そこで、第17図(A)及び第17図(B)の構造にて
、最も耐電圧特性が良好であった。90%5Fe−10
%空気の混合ガスを箱体及び筒状絶縁物[1内に大気圧
と同程度の圧力(約0.lOMPa)で充填し、筒状絶
練物11の内壁の長さ寸法ρを変化させて、4寸法の依
存性を調へながら、導体3と導体挿通孔4とのギャップ
寸法gに基づく耐電圧特性を調べた。
Therefore, the structures shown in FIG. 17(A) and FIG. 17(B) had the best withstanding voltage characteristics. 90%5Fe-10
% air mixture was filled into the box and the cylindrical insulator [1] at a pressure similar to atmospheric pressure (approximately 0.1 OMPa), and the length dimension ρ of the inner wall of the cylindrical insulator 11 was varied. , the withstand voltage characteristics based on the gap dimension g between the conductor 3 and the conductor insertion hole 4 were investigated while examining the dependence of the four dimensions.

なお、第17図(A)、(B)において、箱体側壁2の
厚みは1.2mm、導体3の外径は30mmである。ま
た、筒状絶縁物11の存在が十分無視できるように、第
15図の実験結果から筒状絶縁物11の内径寸法φ。
In addition, in FIGS. 17(A) and 17(B), the thickness of the box side wall 2 is 1.2 mm, and the outer diameter of the conductor 3 is 30 mm. In addition, the inner diameter dimension φ of the cylindrical insulator 11 was determined based on the experimental results shown in FIG. 15 so that the presence of the cylindrical insulator 11 could be sufficiently ignored.

を、導体挿通孔4の内径寸法φ、の大きさより10mm
大きくしている(φ2=φ++10mm)。また、第1
7図(A)における導体挿通孔4は、板に孔を穿設した
ままの状態(パリは除去している)であり、一方、第1
7図(B)の導体挿通孔4は、半径10mmの曲率で曲
げて、電界緩和を図った形状にしている。
is 10 mm from the inner diameter dimension φ of the conductor insertion hole 4.
It is made larger (φ2=φ++10mm). Also, the first
The conductor insertion hole 4 in FIG.
The conductor insertion hole 4 shown in FIG. 7(B) is bent with a radius of 10 mm to reduce the electric field.

実験は、負極性のインパルス電圧(1,2X50μs)
を印加して行なった;(これは、正極性よ、り負極性の
場合っ\耐電圧特性は悪いので、負極性で調べれば特性
の傾向は十分判ることに基づくものである。)実験の結
果は、第18図(A)、第18図(B)に示すようにな
った。第18図において横軸は導体3と導体挿通孔4と
のギャップ寸法gmmを、縦軸は、負極性のインパルス
閃絡電圧特性(50%、P、O,V、、kV)を示す。
The experiment was conducted using a negative polarity impulse voltage (1,2 x 50 μs)
(This is based on the fact that the withstand voltage characteristics are worse with negative polarity than with positive polarity, so if you examine it with negative polarity, you can clearly see the tendency of the characteristics.) The results were as shown in FIG. 18(A) and FIG. 18(B). In FIG. 18, the horizontal axis shows the gap size gmm between the conductor 3 and the conductor insertion hole 4, and the vertical axis shows the negative polarity impulse flash voltage characteristics (50%, P, O, V, , kV).

図から次のことが判った。The following was found from the figure.

(1)  第18図(A)、(B)の結果から、第17
図(A)。
(1) From the results in Figures 18 (A) and (B),
Figure (A).

(B)の構造の両者共に、純SF、の場合(第12図)
に比較して、耐電圧特性は向上していることが確認され
た。
When both structures in (B) are pure SF (Figure 12)
It was confirmed that the withstand voltage characteristics were improved compared to .

(2)第18図(A)の結果から、第17図(A)の構
造においては、ギャップ寸法gが20+nm以上であれ
ば、内壁の長さ寸法Qが220−1O0ffIの範囲で
はほぼ同等の耐電圧特性を示し、Q寸法がある程度以上
あれば、Q寸法が耐電圧特性に影響されないことが確認
された。
(2) From the results shown in Figure 18 (A), in the structure shown in Figure 17 (A), if the gap dimension g is 20 + nm or more, the inner wall length dimension Q is approximately the same in the range of 220-1O0ffI. It was confirmed that the Q dimension is not affected by the withstand voltage characteristics as long as the Q dimension is above a certain level.

(3)第18図(B)の結果から、第17図(B)の構
造においては、Qが0〜10mmでは低いものの、Qが
40〜LOOmmの範囲ではほぼ同等の耐電圧特性を示
し、ρ寸法がある程度以上あれば、Q寸法が耐電圧特性
に影響しないことが確認された。
(3) From the results shown in FIG. 18 (B), the structure shown in FIG. 17 (B) shows almost the same withstand voltage characteristics when Q is in the range of 40 to LOOmm, although it is low when Q is in the range of 0 to 10 mm. It was confirmed that the Q dimension does not affect withstand voltage characteristics as long as the ρ dimension is above a certain level.

(4)更に、第18図(A)と(B)とを比較すると、
第18図(B)の場合、すなわち、第17図(B)のよ
うに導体挿通孔4の内周側を曲げて電界緩和を図った構
造の場合の方が耐電圧特性が若干(5kV程度)向上し
ているものの両者はとんど差のないものであることか判
った。
(4) Furthermore, when comparing Fig. 18 (A) and (B),
In the case of Fig. 18 (B), that is, in the case of the structure in which the inner peripheral side of the conductor insertion hole 4 is bent to alleviate the electric field as shown in Fig. 17 (B), the withstand voltage characteristics are slightly higher (approximately 5 kV). ) It turns out that although there has been an improvement, there is almost no difference between the two.

以上の結果を踏まえて、発明者らは更に詳細に調べた。Based on the above results, the inventors conducted a more detailed investigation.

すなわち、筒状絶縁物11はできるだけ短いのが小形軽
量化の点で良いことから、4寸法に依存する耐電圧特性
について詳しく調べた。実験の条件は、前記第17図(
A)、(B)、第18図(A)。
That is, since it is good for the cylindrical insulator 11 to be as short as possible in terms of size and weight reduction, the withstand voltage characteristics depending on the four dimensions were investigated in detail. The experimental conditions are shown in Figure 17 (
A), (B), Figure 18 (A).

(B)の場合と同じ条件で、且っ2寸法を22.5mm
と37.5mmとの2つについて(下表参照)、4寸法
を種々変えて耐電圧特性を調べた。
Under the same conditions as in case (B), and with the second dimension set to 22.5 mm.
and 37.5 mm (see the table below), the withstand voltage characteristics were investigated by varying the four dimensions.

その結果、第19図に示す結果が得られた。比較のため
に、前述の第14図の結果(負極性インパルス)を点線
で合せて各々記載する。
As a result, the results shown in FIG. 19 were obtained. For comparison, the results shown in FIG. 14 (negative polarity impulse) are shown together with dotted lines.

第19図の結果から次のことが判った。The following was found from the results shown in FIG.

(1)  純5F6(第14図の結果)に比較して、耐
電圧特性が向上することが確認できた。
(1) It was confirmed that the withstand voltage characteristics were improved compared to pure 5F6 (results shown in FIG. 14).

(2)第17図(B)の構成の場合が、第17図(A)
の構成のものより耐電圧特性は良好であるが、両者はと
んど差のないものであることが判った。
(2) In the case of the configuration shown in FIG. 17(B), the configuration shown in FIG. 17(A)
It was found that although the withstand voltage characteristics were better than those with the configuration, there was almost no difference between the two.

以上の結果(第17図〜第19図)から、箱体側壁2に
設ける導体挿通孔4の内周側の形状は、耐電圧特性にほ
とんど影響を与えるものではなく、金属部材を用いた平
板に孔を穿設しパリを除去する程度(第17図(A)参
照)で十分であって、イっざわざ第17図(B)のよう
に曲面加工(またはリングの取付)して電界緩和手段を
取る必要のないことが判った。
From the above results (Figures 17 to 19), it is clear that the shape of the inner circumferential side of the conductor insertion hole 4 provided in the side wall 2 of the box body has almost no effect on the withstand voltage characteristics, and that It is sufficient to drill holes in the hole and remove the holes (see Figure 17 (A)), but it is necessary to curve the surface (or attach a ring) as shown in Figure 17 (B) to alleviate the electric field. It turned out that there was no need to take any action.

以上の実験のまとめ 以上のことをまとめると次のことが云える。Summary of the above experiments To summarize the above, the following can be said.

(1)導体挿通孔の内周と導体との間のギャップ寸法g
と、筒状絶縁物の内壁の長さ寸法Qとの関係をe≧g/
4とすること。
(1) Gap dimension g between the inner circumference of the conductor insertion hole and the conductor
and the length dimension Q of the inner wall of the cylindrical insulator is expressed as e≧g/
4.

(2)Q寸法は導体挿通孔の内径寸法φ8と同等(Q′
=φI)にするのが好ましいこと。
(2) Q dimension is equivalent to the inner diameter dimension φ8 of the conductor insertion hole (Q'
=φI).

(3)導体挿通孔の内径寸法φ、と、絶縁物の内径寸法
φ2との関係を、 L[]−≧2□、にすること。
(3) The relationship between the inner diameter dimension φ of the conductor insertion hole and the inner diameter dimension φ2 of the insulator should be L[]-≧2□.

(4)純SF、ガスよりも、SF、と空気との混合ガス
にし、SF、を40%以上、好ましくは90%付近にす
るのが耐電圧特性が良いこと。
(4) Rather than using pure SF gas, a mixed gas of SF and air with SF of 40% or more, preferably around 90%, has better voltage resistance characteristics.

(5)導体挿通孔の内周部形状は、はとんど耐電圧特性
に影響しないことが判り、煩雑な電界緩和用の加工をす
ることなく、穿設した孔の周辺のパリを除去する程度で
十分であること。
(5) It has been found that the shape of the inner periphery of the conductor insertion hole has little effect on withstand voltage characteristics, and it is possible to remove pars around the drilled hole without performing complicated processing to alleviate the electric field. It should be sufficient.

新たな実験 以上の実験によって得られた結果にもとづき本発明者は
次のような実験を更に行った。すなわち、筒状絶縁物1
1内で断路部を形成するための実験である。
New Experiments Based on the results obtained from the above experiments, the inventor further conducted the following experiments. That is, the cylindrical insulator 1
This is an experiment to form a disconnection section within 1.

つまり、前に説明した実験は箱体側壁2を十分な長さで
導体3が貫通しているのに対し、後に第1O図で説明す
るように筒状絶縁物11内に断路部を形成して小形化が
図れないか。そのために箱体側壁2をわずかに貫通させ
た導体3の端部が筒状絶縁物11内に位置する場合と前
記実験結果とで差があるか否か、差があるのはどんな条
件になったときかを確認するためである。実験は第20
図に示す構成で行った。第20図において、 導体挿通孔の内径φ、=75mm 筒状絶縁物の内径φ2=85mm 導体挿通孔の内周と導体との間のギャップ寸法g = 
22.5mm 導体径= 30mm なお、筒状絶縁物11の内壁は十分に長い乙の(内壁1
5mm)を使用し、また箱体内及び筒状絶縁物11の内
側凹状部に充1眞されるガスは、 ■ 90%5F8−10%空気(第21図・−・)■ 
5Flll(第21図○−○) の2種類で行ない、ガス圧力は、大気圧(約0.10λ
1Pa)とした。
In other words, in the experiment described above, the conductor 3 penetrated the box side wall 2 to a sufficient length, whereas as will be explained later in FIG. Is it possible to make it smaller? Therefore, whether there is a difference between the case where the end of the conductor 3 that slightly penetrates the box side wall 2 is located inside the cylindrical insulator 11 and the above experimental results, and under what conditions there is a difference. This is to check whether the The experiment is the 20th
The experiment was carried out using the configuration shown in the figure. In Fig. 20, the inner diameter of the conductor insertion hole, φ, = 75 mm, the inner diameter of the cylindrical insulator, φ2 = 85 mm, the gap dimension between the inner circumference of the conductor insertion hole and the conductor, g =
22.5 mm Conductor diameter = 30 mm The inner wall of the cylindrical insulator 11 is sufficiently long (inner wall 1
5mm), and the gas filled in the box and the inner recessed part of the cylindrical insulator 11 is: ■90%5F8-10% air (Fig. 21...)■
The gas pressure was atmospheric pressure (approximately 0.10λ).
1 Pa).

第21図にその結果を示す(但し、負極性インパルスに
ついてのみ)。すなわち、導体3の筒状絶縁物11への
挿入寸法Bが約5mm以上であれば安定した耐電圧特性
が得られろことが判った。換言すれば、 成ることか判った。
The results are shown in FIG. 21 (only for negative polarity impulses). That is, it has been found that stable voltage resistance characteristics can be obtained if the insertion dimension B of the conductor 3 into the cylindrical insulator 11 is approximately 5 mm or more. In other words, I knew it would work.

体側壁2の導体挿通孔4をこえて筒状絶縁物11内に入
っておれば前記第14図、第15図、第19図の結果と
同様な結果が得られ、筒状絶縁物11内において断路部
を形成できることが確認された。
If the conductor passes through the through hole 4 of the body side wall 2 and enters the cylindrical insulator 11, results similar to those shown in FIGS. It was confirmed that it was possible to form a disconnection section.

G、実施例 上記の各種実験に裏付けされた結果にもとづく本発明に
係る筒状絶縁物の6つの実施例を第1図〜第8図に示す
ので以下これについて説明する。
G. Examples Six examples of the cylindrical insulator according to the present invention based on the results supported by the various experiments described above are shown in FIGS. 1 to 8, and will be described below.

第1実施例 第1図に示す第1実施例において、5は電気機器を収納
すると共に純SF6ガスまたは5Fllと空気との混合
ガスなどの絶縁ガスを封入した開閉装置のごとき箱体で
あり、図において箱体側壁2の右側か箱体内側であり、
ガスが充填されている。そして筒状絶縁物11はフラン
ジ部11aとボス部11bを有し、該フランジ部11a
を箱体側壁2の外側にシール材23を介してポルト20
で固着されている。まfこ、筒状絶縁物11のボス部1
1bを長尺の導体3かシール材22を介して気密に貫通
している。そして、筒状絶縁物11の内側凹状部24内
には、箱体5内と同じ絶縁ガスが充填されている。
First Embodiment In the first embodiment shown in FIG. 1, 5 is a box body such as a switchgear that houses electrical equipment and is filled with an insulating gas such as pure SF6 gas or a mixed gas of 5Fll and air; In the figure, it is on the right side of the box side wall 2 or inside the box,
Filled with gas. The cylindrical insulator 11 has a flange portion 11a and a boss portion 11b.
The port 20 is attached to the outside of the box side wall 2 via a sealing material 23.
It is fixed in place. Boss part 1 of cylindrical insulator 11
1b through a long conductor 3 or a sealing material 22 in an airtight manner. The inside concave portion 24 of the cylindrical insulator 11 is filled with the same insulating gas as the inside of the box 5.

また、第1図における具体的な寸法を述べると、導体径
  −30mm g   = 30mm φ、   =90mm φ2   =95mm Q      = 30mm としている。
Further, the specific dimensions in FIG. 1 are as follows: conductor diameter -30 mm g = 30 mm φ, = 90 mm φ2 = 95 mm Q = 30 mm.

前記第1実施例において、筒状絶縁物11の内壁の長さ
夕と、箱体側壁2に設ける導体挿通孔4と導体3とのギ
ャップ寸法gを、前述の実験結果にもとづいてQ=gと
しである。さらに、第1実例にいる。つまり、筒状絶縁
物11の内壁寸法が導体挿通孔4より大きくしてあり、
導体挿通孔4の内壁が約2.5mm内側(導体3側)に
突出している。なお、導体挿通孔4の内壁が約2.5m
m内側に突出していることは、以下に説明する第2実施
例〜第6実施例においてら同様である。また、導体挿通
孔4は周壁のハリ取りをしている。
In the first embodiment, the length of the inner wall of the cylindrical insulator 11 and the gap dimension g between the conductor insertion hole 4 provided in the box side wall 2 and the conductor 3 are determined as Q=g based on the above-mentioned experimental results. It's Toshide. Furthermore, we are in the first example. In other words, the inner wall dimension of the cylindrical insulator 11 is larger than the conductor insertion hole 4,
The inner wall of the conductor insertion hole 4 protrudes inward (towards the conductor 3) by about 2.5 mm. Note that the inner wall of the conductor insertion hole 4 is approximately 2.5 m long.
The fact that it protrudes inward is the same as in the second to sixth embodiments described below. Further, the conductor insertion hole 4 has a peripheral wall that is smoothed.

これにより筒状絶縁物11の長さを不必要に太きくしな
くてずみ、ガス絶縁の特徴である小形化を一層図れるも
のである。しかし、重量も小さく、かつ小形となって取
扱い作業が楽である。
This eliminates the need to increase the length of the cylindrical insulator 11 unnecessarily, and further reduces the size, which is a characteristic of gas insulation. However, it is light in weight and small in size, making it easy to handle.

第2実施例 第2図、第3図に示す第2実施例において、5゜5は電
気機器を収納すると共に純SF6ガスまたはSP、ガス
と空気との混合ガスなどの絶縁ガスを封入した開閉装置
のごとき2つの箱体である。それぞれの箱体側壁2,2
の間は一定の間隔を隔てて配設してあり、その間を筒状
絶縁物11で結合している。筒状絶縁物11の両側フラ
ンツ部11aはシール材6を介在させて箱体側壁2に当
てかったうえ、ボルト、ナツトで気密に固着している。
Second Embodiment In the second embodiment shown in Figures 2 and 3, 5゜5 is an opening/closing unit that houses electrical equipment and is filled with an insulating gas such as pure SF6 gas, SP, or a mixture of gas and air. They are two boxes that look like devices. Each box side wall 2, 2
They are arranged at regular intervals, and are connected by a cylindrical insulator 11. Both side flanges 11a of the cylindrical insulator 11 are abutted against the box side wall 2 with a sealing material 6 interposed therebetween, and are hermetically fixed with bolts and nuts.

導体3は、筒状絶縁物11の中心部を挿通して一方の箱
体5から他方の箱体5に導かれており、各箱体5,5の
内壁に取付けた支持碍子7により支持されている。
The conductor 3 is guided from one box 5 to the other box 5 by passing through the center of the cylindrical insulator 11, and is supported by a support insulator 7 attached to the inner wall of each box 5, 5. ing.

前記第2実施例においては導体3が一相の場合を示し、
筒状絶縁物11は円形断面に構成されている。この第2
実施例においても、筒状絶縁物11の内壁の長さQと、
箱体側壁2に設ける導体挿通孔4と導体3とのギャップ
寸法gを、前述の実験の結果にもとづいてσ〉g/4と
しである。また、第2実施例においてもφ2〉φ1で且
つ”  ” 42.5mmとしている。
In the second embodiment, the conductor 3 is of one phase,
The cylindrical insulator 11 has a circular cross section. This second
Also in the embodiment, the length Q of the inner wall of the cylindrical insulator 11,
The gap dimension g between the conductor insertion hole 4 provided in the box side wall 2 and the conductor 3 is set to σ>g/4 based on the results of the experiment described above. Also in the second embodiment, φ2>φ1 and 42.5 mm.

第3実施例 第4図は第3実施例を示し、第2実施例が1相であった
のに対し、この第3実施例では3相の例を示し、それに
伴って筒状絶縁物11の断面形状が第3図と相異してい
て、3相の各導体3,3.3を一括して挿通できる断面
構造としている。この場合、筒状絶縁物11の内壁の長
さaとギャップ寸法gとの寸法条件はQ>g/4に設け
ている。
Third Embodiment FIG. 4 shows a third embodiment, and while the second embodiment had one phase, this third embodiment shows a three-phase example, and accordingly, the cylindrical insulator 11 The cross-sectional shape is different from that in FIG. 3, and the cross-sectional structure allows the three-phase conductors 3, 3.3 to be inserted all at once. In this case, the dimensional conditions of the length a of the inner wall of the cylindrical insulator 11 and the gap dimension g are set to satisfy Q>g/4.

第4実施例 第5図。第6図は第4実施例を示し、3相の場合におけ
る筒状絶縁物11の断面形状を第4図の場合と異なり円
形断面とした例を示す。この場合ら筒状絶縁物11の寸
法aとgとの寸法条件は、12>g/4に設けている。
FIG. 5 of the fourth embodiment. FIG. 6 shows a fourth embodiment, in which the cross-sectional shape of the cylindrical insulator 11 in the three-phase case is circular, unlike the case in FIG. 4. In this case, the dimensions a and g of the cylindrical insulator 11 are set to 12>g/4.

第5実施例 第7図は第5実施例を示す。この第5実施例において、
筒状絶縁物11は筒状部の一端を箱体側壁5の外側にシ
ール材6を介してボルト、ナツトにより気密に固着して
あり、かつ筒状絶縁物11の筒状部の他端は、導体3に
気密に固着してあり、かつ密着部外周に大気中における
沿面距離をのばすためのひだ8を設けである。この第5
実施例においても、筒状絶縁物11の筒状部の内壁の長
さQ、箱体側壁2の導体挿通孔4の孔径φ1、導体挿通
孔4と導体3とのギャップ寸法gは、ρ>g/4(σキ
g/4含む)の関係にして構成するものである。
Fifth Embodiment FIG. 7 shows a fifth embodiment. In this fifth embodiment,
One end of the cylindrical part of the cylindrical insulator 11 is hermetically fixed to the outside of the box side wall 5 via a sealing material 6 with bolts and nuts, and the other end of the cylindrical part of the cylindrical insulator 11 is , and is airtightly fixed to the conductor 3, and is provided with folds 8 on the outer periphery of the adhesion part to extend the creepage distance in the atmosphere. This fifth
In the embodiment as well, the length Q of the inner wall of the cylindrical part of the cylindrical insulator 11, the hole diameter φ1 of the conductor insertion hole 4 in the box side wall 2, and the gap dimension g between the conductor insertion hole 4 and the conductor 3 are ρ> It is configured in a relationship of g/4 (including σ x g/4).

なお、必要に応じて上記条件のもとで、第7図に2点鎖
線で示すように箱体側壁2の内側にも筒状絶縁物11を
設け、その一端側を箱体側壁2に、他端側を導体3に固
着して設けても差し支えなく、これによって導体支持を
確実にできる。また、筒状絶縁物ll内には箱体内と同
じ絶縁ガスを入れ(この場合は箱体側壁を開孔して連通
させる)、又は筒状絶縁物11内を密封して加圧ガスを
入れてもよい。
If necessary, under the above conditions, a cylindrical insulator 11 is also provided inside the box side wall 2 as shown by the two-dot chain line in FIG. There is no problem even if the other end side is fixed to the conductor 3, and thereby the conductor can be supported reliably. The inside of the cylindrical insulator 11 can be filled with the same insulating gas as inside the box (in this case, a hole is opened in the side wall of the box to allow communication), or the inside of the cylindrical insulator 11 can be sealed and pressurized gas can be put in there. It's okay.

第6実施例 第8図は第6実施例として筒状絶縁物11の内側凹状部
24に内部固定導体31の端部が位置しており、該凹状
部に断路部9が形成された例を示す。即ち、第8図(断
路状態を示す)において、32は接続導体であって、筒
状絶縁物11のボス部11bをシール材22を介して気
密かつ軸方向(図中左右方向)移動可能に貫通している
。14は接続導体32が外方に抜は出せないように該導
体に設けた正リングである。
Sixth Embodiment FIG. 8 shows a sixth embodiment in which the end of the internal fixed conductor 31 is located in the inner recess 24 of the cylindrical insulator 11, and the disconnection part 9 is formed in the recess. show. That is, in FIG. 8 (showing the disconnected state), 32 is a connecting conductor, which allows the boss portion 11b of the cylindrical insulator 11 to be airtightly moved in the axial direction (left and right directions in the figure) via the sealing material 22. Penetrating. Reference numeral 14 denotes a positive ring provided on the connecting conductor 32 so that the connecting conductor 32 cannot be pulled out.

この接続導体32の外周は絶縁物で被覆してもよい。The outer periphery of this connection conductor 32 may be covered with an insulating material.

また、箱体内に位置する内部固定導体31の先端内部に
はマルチコンタクト13が設けてあり、接続導体32が
第8図の右方へ移動することによってマルチコンタクト
13に嵌合し、内部固定導体31と接続される。また、
内部固定導体31の先端は、3寸法(215以上)だけ
筒状絶縁物11の開口部から凹状部24に入り込んでい
る。なお、筒状絶縁物11が電気機器を収納した箱体側
壁2に取付けられる点は第1実施例と同様であるので、
同一部分には同一符号を付して説明を省略する。
Moreover, a multi-contact 13 is provided inside the tip of the internal fixed conductor 31 located inside the box, and when the connecting conductor 32 moves to the right in FIG. 8, it fits into the multi-contact 13 and the internal fixed conductor 31. Also,
The tip of the internal fixed conductor 31 enters the concave portion 24 from the opening of the cylindrical insulator 11 by three dimensions (215 or more). Note that the cylindrical insulator 11 is attached to the side wall 2 of the box housing the electrical equipment in the same manner as in the first embodiment.
Identical parts are given the same reference numerals and explanations will be omitted.

第8図において、 内部固定導体径= 30mm 断路間隙寸法G = 45mm g   =30+nm φ+ =90mm φz=95mm B   =18mm σ = 110mm のg、φ1.φ2.の寸法関係は第1実施例と同じであ
る。
In FIG. 8, internal fixed conductor diameter = 30 mm Disconnection gap dimension G = 45 mm g = 30 + nm φ+ = 90 mm φz = 95 mm B = 18 mm σ = 110 mm g, φ1. φ2. The dimensional relationship is the same as in the first embodiment.

1(具体的適用例 第1適用例 第9図は第1図の第1実施例に係る筒状絶縁物11を適
用した開閉装置1を示す。同図において、絶縁ガスを封
入した開閉装置1の母線室15側としゃ断器室IO側を
仕切る箱体側壁2の外側(つまりしゃ断器室側)に筒状
絶縁物11を設けてあり、母線室15内において電源母
線と負荷側ケーブルに接続する内部固定導体31は、そ
れぞれ筒状絶縁物11のボス部11bを気密に貫通して
しゃ断器室10側に突出している。そして、同図は引出
形しゃ断器18がしゃ断器室10に搬入されていて、外
部導体19と内部固定導体31とが接続した接続状態を
示している。その他の構成は第25図に示す従来例と同
じである。
1 (Specific Application Example First Application Example FIG. 9 shows a switchgear 1 to which the cylindrical insulator 11 according to the first embodiment of FIG. 1 is applied. In the figure, a switchgear 1 filled with an insulating gas A cylindrical insulator 11 is provided on the outside of the box side wall 2 (that is, on the breaker room side) that partitions the bus room 15 side and the breaker room IO side, and is connected to the power bus and the load side cable in the bus room 15. The internal fixed conductors 31 hermetically penetrate the boss portions 11b of the cylindrical insulators 11 and protrude toward the breaker chamber 10.The figure also shows that the drawer-type breaker 18 is being carried into the breaker chamber 10. This shows a connected state in which the external conductor 19 and the internal fixed conductor 31 are connected.Other configurations are the same as the conventional example shown in FIG.

第2適用例 第10図は第8図の第6実施例に係る筒状絶縁物(ブッ
シング)11を適用した絶縁ガス封入の開閉装置lを示
す。同図において、箱体側壁2の外側(つまり、しゃ断
器室側)に筒状絶縁物11を設ける点は第1適用例と同
一である。そして、筒状絶縁物11のボス部11bを気
密且っ摺動自在に接続導体32が貫通していると共に、
母線室15内において、電源側母線と負荷側ケーブルに
接続する内部固定導体31の先端は、筒状絶縁物11の
開口縁から内側に所定寸法(すなわち、第8図に示す8
寸法)入っている。
Second Application Example FIG. 10 shows an insulating gas-filled opening/closing device l to which the cylindrical insulator (bushing) 11 according to the sixth embodiment of FIG. 8 is applied. In the figure, the point that a cylindrical insulator 11 is provided outside the box side wall 2 (that is, on the breaker chamber side) is the same as in the first application example. The connecting conductor 32 passes through the boss portion 11b of the cylindrical insulator 11 in an airtight and slidable manner.
In the busbar chamber 15, the tip of the internal fixed conductor 31 connected to the power supply side busbar and the load side cable is moved inward from the opening edge of the cylindrical insulator 11 by a predetermined dimension (i.e., 8 as shown in FIG. 8).
Dimensions) are included.

また、同図は、引出形しゃ断器18をしゃ断器室10に
搬入して、且つ接続直前の状態を示し、この位置で、接
続導体32はしゃ断器室側に移動1て内部固定導体31
と離間しており、かつ接続導体32の外端は引出形しゃ
断器18の外部導体19と接触している。この状態から
さらに引出形しゃ断器18を押込むことにより、接続導
体32は内方に移動し、内部固定導体31と接触して接
続状態となる。その他の構成は第1適用例と同じである
The same figure also shows a state in which the draw-out breaker 18 has been carried into the breaker chamber 10 and immediately before connection.
The outer end of the connecting conductor 32 is in contact with the outer conductor 19 of the draw-out breaker 18. By further pushing the pull-out breaker 18 from this state, the connecting conductor 32 moves inward and comes into contact with the internal fixed conductor 31 to be in a connected state. The other configurations are the same as the first application example.

なお、第2適用例にあっては、筒状絶縁物11の絶縁ガ
スが充填されている凹状部24において断路部9か形成
されている(つまり、接続導体32と内部固定導体31
とか接離するようにもうけている)ことにより、引出形
しゃ断器18と開閉装置1の内部固定導体31との断路
は絶縁ガス中で行なわれるから、第9図に示すように大
気中(つまりしゃ断器室10)で断路する場合上りら絶
縁耐圧が向上し、この点において絶縁空間を縮小できて
開閉装置の縮小化が一層図れる。
In addition, in the second application example, the disconnection part 9 is formed in the recessed part 24 filled with the insulating gas of the cylindrical insulator 11 (that is, the connection conductor 32 and the internal fixed conductor 31
Since the draw-out breaker 18 and the internal fixed conductor 31 of the switchgear 1 are disconnected in an insulating gas, as shown in When the circuit is disconnected in the breaker chamber 10), the dielectric strength is improved from the beginning, and in this respect, the insulation space can be reduced, and the switchgear can be further downsized.

■ 発明の効果 本発明(こ係るガス絶縁電気機器によると、側壁を貫通
する導体を囲繞しており、且つ内側に箱体内と同じ絶縁
ガスが充填されている筒状絶縁物を箱体側壁の一側に取
付け、かつ筒状絶縁物の内壁の長さQと、箱体側壁に設
ける導体挿通孔と導体とのギャップ寸法gを、ρ≧g/
4とし、且つ箱体側壁の通孔φ1と筒状絶縁物の内径φ
2との関係をφ2−φ。
■ Effects of the Invention According to the present invention (this gas-insulated electrical equipment), a cylindrical insulator surrounding a conductor penetrating the side wall and whose inside is filled with the same insulating gas as the inside of the box body is attached to the side wall of the box body. The length Q of the inner wall of the cylindrical insulator attached to one side and the gap dimension g between the conductor insertion hole and the conductor provided in the side wall of the box are ρ≧g/
4, and the through hole φ1 in the side wall of the box body and the inner diameter φ of the cylindrical insulator
The relationship with 2 is φ2−φ.

2  ≧2mmとしたことにより、従来の箱体側壁を内
外に貫通して設ける筒状絶縁物よりも小さい寸法で、し
かも、それにより何ら絶縁特性が低下することがなく、
よって開閉装置の縮小化が図れる。
2 ≧2mm, the size is smaller than that of a conventional cylindrical insulator that is provided by penetrating the side wall of the box inside and out, and the insulation properties are not deteriorated in any way.
Therefore, the size of the opening/closing device can be reduced.

さらに、特に第2発明にあっては、絶縁ガスが充填され
た筒状絶縁物の凹状部に断路部を設けており、しかも箱
体側壁の導体挿通孔を越えて該凹状部内に内部固定導体
の端部が位置し、内部固定導体の筒状絶縁物への挿入寸
法Bを、B≧1とし、他の条件を第1発明と同一条件と
することによって、当該第1発明と同様耐電圧特性は良
好に安定し、絶縁特性を低下させることな〈従来よりも
より小さい寸法で断路部を形成することができ、開閉装
置の小形化が一層図れる。
Furthermore, particularly in the second invention, the disconnecting portion is provided in the recessed portion of the cylindrical insulator filled with insulating gas, and the internally fixed conductor is inserted into the recessed portion beyond the conductor insertion hole in the side wall of the box body. By setting the insertion dimension B of the internally fixed conductor into the cylindrical insulator as B≧1 and keeping the other conditions the same as in the first invention, the withstand voltage can be increased as in the first invention. The characteristics are well stabilized, and the disconnecting portion can be formed with smaller dimensions than before without deteriorating the insulation characteristics, allowing the switchgear to be further miniaturized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第8図は本発明の第1実施例〜第6実施例を示
し、第1図はガス絶縁電気機器における導体が箱体側壁
を貫通する部分の第1実施例の断面図、第2図は第2実
施例の断面図、第3図は第2図の断面図、第4図は第3
実施例の断面図、第5図は第4実施例の断面図、第6図
は第5図の断面図、第7図は第5実施例の断面図、第8
図は第6実施例の断面図、第9図は第1適用例として示
す開閉装置の概略図、第1O図は第2適用例として示す
開閉装置の概略図、第11図は絶縁ガス内において接地
平板の孔中に導体を通した導体貫通部の実験モデル断面
図、第12図は第11図における閃絡電圧特性図、第1
3図は接地箱体の側壁と側壁の孔に挿通する導体に密着
した筒状絶縁物を用いた導体貫通部の実験モデル断面図
、第14図は第13図の閃絡電圧特性図、第15図は第
13図の実験モデルにおいて、筒状絶縁物の内径を大き
くした場合の閃絡電圧特性図、第16図はSFeガスと
空気との混合ガスにおける閃絡電圧特性図、第17図(
A)、(B)は第13図のものと寸法又は構造を異にし
た接地箱体の側壁と側壁の孔に挿通ずる導体に密着した
筒状絶縁物を用いた導体貫通部の他の2つの実験モデル
断面図、第18図(A)、(B)は第17図(、A)、
(B)の閃絡電圧特性図、第19図は第17図(A)、
(B)において筒状絶縁物の内壁の長さとの関係におけ
る閃絡特性図、第20図は有端の導体の端部が筒状絶縁
物内に遊嵌されてなる実験モデル断面図、第21図は第
20図の各寸法関係における閃絡特性図、第22図は第
23図における寸法りの変化による閃絡特性図、第23
図は第24図の従来の壁貫通ブッシングをモデル化して
示す断面図、第24図は従来の壁貫通ブッシングの断面
図、第25図は前記壁貫通ブッシングが適用された開閉
装置の概略図である。 2 ・箱体側壁、3・・・導体、31・・内部固定導体
、32・・・接続導体、4・・・導体挿通孔、5・・・
箱体、9・・・断路部、11・・・筒状絶縁物、Q・・
・筒状絶縁物の内端の長さ、φ1・・導体挿通孔の孔径
、g・・・導体と導体挿通孔との間隙の長さ、B・・内
部固定導体の筒状絶縁物への挿入寸法。 11−−一葡杖絶a− へり一入寸ま 第1図 第15図 φ2−φ1 第16図 5F6− tL3#−合ガス&’l l’Q 、E 5
tf(・p*  ゾサ)、%o50    too 5
F6(’/、)50      0 Aげ(%) 第1S図(A) Q(mm) 第1S図(B) 9(mm) 第21図 B  mm 第22図 SFeガス中の門悸&−党五特小先(六J(圧→冷動J
L L (mm) 第23図 61 3  S 昭和  fl   月゛11
1 to 8 show the first to sixth embodiments of the present invention, and FIG. 1 is a cross-sectional view of the first embodiment of the portion where the conductor penetrates the side wall of the box body in gas-insulated electrical equipment; Fig. 2 is a sectional view of the second embodiment, Fig. 3 is a sectional view of Fig. 2, and Fig. 4 is a sectional view of the third embodiment.
5 is a sectional view of the fourth embodiment; FIG. 6 is a sectional view of FIG. 5; FIG. 7 is a sectional view of the fifth embodiment;
The figure is a sectional view of the sixth embodiment, FIG. 9 is a schematic diagram of a switchgear shown as a first application example, FIG. 10 is a schematic diagram of a switchgear shown as a second application example, and FIG. A sectional view of an experimental model of a conductor penetration part in which a conductor is passed through a hole in a grounding plate. Figure 12 is a flash fault voltage characteristic diagram in Figure 11.
Figure 3 is a cross-sectional view of an experimental model of a conductor penetration using a cylindrical insulator that is in close contact with the side wall of the grounding box and the conductor inserted through the hole in the side wall. Figure 14 is the flash fault voltage characteristic diagram of Figure 13. Fig. 15 is a flash fault voltage characteristic diagram when the inner diameter of the cylindrical insulator is increased in the experimental model of Fig. 13, Fig. 16 is a flash fault voltage characteristic diagram in a mixed gas of SFe gas and air, and Fig. 17 (
A) and (B) are the other two conductor penetration parts using a cylindrical insulator that is in close contact with the side wall of the grounding box body and the conductor that is inserted into the hole in the side wall, which is different in size or structure from the one in Figure 13. Cross-sectional views of two experimental models, Fig. 18 (A), (B), Fig. 17 (,A),
(B) flash fault voltage characteristic diagram, Figure 19 is Figure 17 (A),
(B) is a flashover characteristic diagram in relation to the length of the inner wall of the cylindrical insulator, FIG. Figure 21 is a flashover characteristic diagram for each dimensional relationship in Figure 20, Figure 22 is a flashover characteristic diagram for changes in dimensions in Figure 23, and Figure 23 is a flashover characteristic diagram for each dimension relationship in Figure 20.
The figure is a sectional view modeling and showing the conventional wall-penetrating bushing shown in Fig. 24, Fig. 24 is a sectional view of the conventional wall-penetrating bushing, and Fig. 25 is a schematic diagram of a switchgear to which the wall-penetrating bushing is applied. be. 2 - Box side wall, 3... Conductor, 31... Internal fixed conductor, 32... Connection conductor, 4... Conductor insertion hole, 5...
Box body, 9... Disconnection section, 11... Cylindrical insulator, Q...
- Length of the inner end of the cylindrical insulator, φ1... Hole diameter of the conductor insertion hole, g... Length of the gap between the conductor and the conductor insertion hole, B... The length of the internally fixed conductor to the cylindrical insulator Insertion dimensions. 11--One cane zetsu a- Hem 1 inch Fig. 1 Fig. 15 φ2-φ1 Fig. 16 5F6-tL3#-Gas&'l l'Q, E 5
tf (・p* Zosa), %o50 too 5
F6 ('/,) 50 0 Age (%) Fig. 1S (A) Q (mm) Fig. 1S (B) 9 (mm) Fig. 21 B mm Fig. 22 S Five special small tips (six J (pressure → cold J)
L L (mm) Fig. 23 61 3 S Showa fl Month 11

Claims (2)

【特許請求の範囲】[Claims] (1)箱体内に電気機器及び導体などを収納するととも
に絶縁性のガスを封入し、箱体側壁を貫通して導体が設
けられ、且つこの導体を囲繞すると共に、側壁に気密に
固定された筒状絶縁物を設けてなるガス絶縁電気機器に
おいて、前記筒状絶縁物を箱体側壁の少くとも一方の側
に設けると共に内部にガスが存在するように構成し、且
つ、箱体側壁に設けた導体挿通孔の内周と前記導体との
間のギャップ寸法をg、前記筒状絶縁物の内壁の長さ寸
法をl、導体挿通孔の内径寸法をφ_1、絶縁物の内径
寸法をφ_2としたときにl≧g/で、且つ(φ_2−
φ_1)/2≧2mmの関係としたことを特徴とするガ
ガス絶縁電気機器。
(1) Electrical equipment, conductors, etc. are housed inside the box, and an insulating gas is filled in, the conductor is provided through the side wall of the box, and the conductor is surrounded and hermetically fixed to the side wall. In a gas-insulated electric device provided with a cylindrical insulator, the cylindrical insulator is provided on at least one side of a side wall of a box body, and is configured such that gas is present inside, and the insulator is provided on a side wall of a box body. The gap between the inner periphery of the conductor insertion hole and the conductor is g, the length of the inner wall of the cylindrical insulator is l, the inner diameter of the conductor insertion hole is φ_1, and the inner diameter of the insulator is φ_2. When l≧g/ and (φ_2−
A gas insulated electrical device characterized by having a relationship of φ_1)/2≧2mm.
(2)箱体内に電気機器及び内部固定導体を収納すると
共に絶縁ガスを封入し、箱体側壁を貫通して導体が設け
られ、且つこの導体を囲繞すると共に側壁に気密に固定
された筒状絶縁物を設けてなるガス絶縁電気機器におい
て、前記筒状絶縁物を箱体側壁の外側に突出させると共
に、その内側凹状部に絶縁ガスを充填て設け、前記内部
固定導体の端部が筒状絶縁物の内部に位する如く箱体側
壁の導体挿通孔を遊貫通して設け、内部固定導体に接離
自在で且つ筒状絶縁物を気密に貫通すると共に軸方向移
動自在な接続導体を設けて接続導体と内部固定導体との
断路部を筒状絶縁物内に形成し、箱体側壁に設けた挿通
孔の内周と内部固定導体との間のギャップ寸法をg、前
記筒状絶縁物の内壁の長さ寸法をl、導体挿通孔の内径
寸法をφ_1、筒状絶縁物の内径寸法をφ_2、内部固
定導体の筒状絶縁物への挿入寸法をBとしたときに、l
≧g/4、(φ_2−φ_1)/2≧2mmで、且つB
≧g/2の関係としたことを特徴とするガス絶縁電気機
器。
(2) A cylindrical structure that houses electrical equipment and an internally fixed conductor inside the box, fills it with insulating gas, has a conductor penetrating the side wall of the box, and surrounds the conductor and is airtightly fixed to the side wall. In the gas-insulated electrical equipment provided with an insulating material, the cylindrical insulating material protrudes to the outside of the side wall of the box body, and an inner concave portion thereof is filled with an insulating gas, and an end of the internal fixed conductor has a cylindrical shape. A conductor insertion hole in the side wall of the box body is provided so as to be located inside the insulator, and a connecting conductor is provided so as to freely pass through the conductor insertion hole in the side wall of the box, and to be able to freely approach and separate from the internal fixed conductor, to penetrate the cylindrical insulator in an airtight manner, and to be movable in the axial direction. A disconnection section between the connecting conductor and the internally fixed conductor is formed in the cylindrical insulator, and the gap dimension between the inner periphery of the insertion hole provided in the side wall of the box and the internally fixed conductor is g, and the cylindrical insulator is When the length of the inner wall of is l, the inner diameter of the conductor insertion hole is φ_1, the inner diameter of the cylindrical insulator is φ_2, and the insertion dimension of the internally fixed conductor into the cylindrical insulator is B, then l
≧g/4, (φ_2-φ_1)/2≧2mm, and B
A gas-insulated electrical device characterized by having a relationship of ≧g/2.
JP60286199A 1985-03-04 1985-12-19 Gas insulated electric equipment Granted JPS62144510A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP60286199A JPS62144510A (en) 1985-12-19 1985-12-19 Gas insulated electric equipment
US06/832,376 US4730231A (en) 1985-03-04 1986-02-24 Gas insulated metal-clad high voltage equipment with insulating bushing
KR1019860001458A KR860007056A (en) 1985-03-04 1986-03-03 Gas Insulated Metal Clad Power Unit
IN158/CAL/86A IN165223B (en) 1985-03-04 1986-03-03
CN86101374A CN1008959B (en) 1985-03-04 1986-03-03 Gas isolated metal armouring power equipment
EP86301510A EP0200309B1 (en) 1985-03-04 1986-03-04 Gas insulation metal-clad power equipment
DE8686301510T DE3675572D1 (en) 1985-03-04 1986-03-04 METAL-ENCLOSED GAS-INSULATED POWER SYSTEM.
MYPI87002142A MY101109A (en) 1985-03-04 1987-09-29 Gas insulation metal-clad high voltage equipment with insulating bushing.
SG768/91A SG76891G (en) 1985-03-04 1991-09-17 Gas insulation metal-clad power equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286199A JPS62144510A (en) 1985-12-19 1985-12-19 Gas insulated electric equipment

Publications (2)

Publication Number Publication Date
JPS62144510A true JPS62144510A (en) 1987-06-27
JPH0458249B2 JPH0458249B2 (en) 1992-09-17

Family

ID=17701243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286199A Granted JPS62144510A (en) 1985-03-04 1985-12-19 Gas insulated electric equipment

Country Status (1)

Country Link
JP (1) JPS62144510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105467221A (en) * 2016-01-18 2016-04-06 中国工程物理研究院流体物理研究所 On-line measurable adjustable water resistor suitable for Blumlein pulse forming line, and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105467221A (en) * 2016-01-18 2016-04-06 中国工程物理研究院流体物理研究所 On-line measurable adjustable water resistor suitable for Blumlein pulse forming line, and method
CN105467221B (en) * 2016-01-18 2018-02-23 中国工程物理研究院流体物理研究所 It is a kind of to survey adjustable water resistance and method suitable for the online of Blumlein pulse-forming lines

Also Published As

Publication number Publication date
JPH0458249B2 (en) 1992-09-17

Similar Documents

Publication Publication Date Title
KR20020039244A (en) Gas-Insulated Switching Apparatus
GB1120107A (en) High voltage substation
JP2001222935A (en) Vacuum breaker
CN115280617A (en) Gas-insulated switchgear
JPS62193024A (en) High voltage metal-cladded electric equipment
EP0200309B1 (en) Gas insulation metal-clad power equipment
US3624450A (en) Metal enclosed gas insulated lightning arrester
JPH0158725B2 (en)
JPS62144510A (en) Gas insulated electric equipment
JP3623333B2 (en) Substation equipment
CN100428596C (en) Disconnecting switch assembly
JPH11164429A (en) Disconnector with grounding device
US4135130A (en) Method of testing gas insulated systems for the presence of conducting particles utilizing a gas mixture of nitrogen and sulfur hexafluoride
JP3585517B2 (en) Gas insulated bushing
JPS6130487B2 (en)
JPH0537611Y2 (en)
RU208425U1 (en) Connecting sleeve for conductor
JPH09162041A (en) Gas-insulated transformer
US3927246A (en) Three-phase cable termination for metal enclosed compressed gas-insulated substation
CA1067593A (en) Interface for high voltage oil-filled and gas-filled apparatus
JPH0314893Y2 (en)
JPH0314892Y2 (en)
JPS6041616Y2 (en) Insulation device for bushing penetrations in high voltage electrical equipment
JP2004356109A (en) Vacuum switching device
JP2001145219A (en) Gas insulation switch

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees