JPS62144062A - Enzyme sensor - Google Patents

Enzyme sensor

Info

Publication number
JPS62144062A
JPS62144062A JP60285308A JP28530885A JPS62144062A JP S62144062 A JPS62144062 A JP S62144062A JP 60285308 A JP60285308 A JP 60285308A JP 28530885 A JP28530885 A JP 28530885A JP S62144062 A JPS62144062 A JP S62144062A
Authority
JP
Japan
Prior art keywords
ammonia
membrane
film
enzyme
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60285308A
Other languages
Japanese (ja)
Inventor
Masao Karube
征夫 軽部
Izumi Kubo
いづみ 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60285308A priority Critical patent/JPS62144062A/en
Publication of JPS62144062A publication Critical patent/JPS62144062A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the permeation of cation other than ammonia without use of a reference electrode, by providing an ammonia selectively permeating film between an si3N4 film covered with an ion sensitive FET and an enzyme immobilized membrane. CONSTITUTION:A hydrophobic Si3N4 protective film 8 is formed on an SiO2 film 7 covering a gate section 6 of an ion sensitive FET10. A sample aqueous solution immersed portion of the film 8 is provided with an ammonia selectively permeating film 20 comprising a polymer such as poly-gamma-trichloro ethyl glutamate and an non-actin having ammonia selective permeating property. An enzyme immmobilized membrane 30 is applied covering the film 20. With such an arrangement, H<+>, Na<+>, K<+> and the like in the sample aqueous solution is suppressed in the permeation with the membrane 20 and ammonia which was generated from an enzyme reaction with the membrane 30 premeates selectively to change the gate potential. This can eliminate any reference electrode thereby simplyfying the equipment.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分L′F】[Technical part L'F to which the invention pertains]

本発明は、イオン感受性電界効果型トランジスタ (以
下l5FETと略称する)を用いた酵素センサー、こと
に供試水溶液中の尿素の定量に使用される酵素センサー
に関する。
The present invention relates to an enzyme sensor using an ion-sensitive field effect transistor (hereinafter abbreviated as 15FET), and particularly to an enzyme sensor used for quantifying urea in a sample aqueous solution.

【従来技術とその問題点】[Prior art and its problems]

l5FETを信号変換部に利用したバイオセンサーとし
ては、1980年にJ 、Janata らによって発
表されたペニシリンを測定するためのペニシリンセンサ
ーをはじめとして、尿素センサー、グルコースセンサー
などが知られている。これらはいずれもl5FETの表
面に形成されとこ分子識別部である酵素固定化膜で有機
物が分解されることによって生じるp++変化を、信号
変換部である[5FETで電機信号に変換して測定する
方式のものであり、センサーを小形かつ高怒度化できる
利点が得られる。しかしながら、この種のセンサーにお
いては供試水溶液中に酵素反応以外の原因でH゛、Na
’ 、  K’等のカチオンなどのイオン/4度変化や
pl+の変化があると、測定に誤差を生ずるという問題
があり、この影口を排除するためにJSFET等からな
る参照電極を供試水溶液中に設けて酵素反応以外の原因
で生ずる電位変化を検知し、この参照電極の出力信号を
l5FETの出力信号から差し引くことにより上記誤差
要因を排除するなどの対策が必要であり、l5FETを
余分に必要とするばかりか両信号の差信号を求めるため
の信号処理回路を必要とするために、装置の複雑化なら
びに経済的不利益をもたらす欠点があった。
Biosensors using 15FET as a signal conversion section include a penicillin sensor for measuring penicillin published by J. Janata et al. in 1980, a urea sensor, a glucose sensor, and the like. All of these are formed on the surface of the 15FET, and the p++ change that occurs when organic matter is decomposed by the enzyme-immobilized membrane, which is the molecular identification part, is converted into an electrical signal by the signal conversion part [5FET]. This has the advantage that the sensor can be made smaller and have a higher intensity. However, in this type of sensor, H and Na are present in the sample aqueous solution due to causes other than enzyme reactions.
If there is a 4 degree change or a change in pl+ of cations such as ', K', etc., there is a problem in that measurement errors will occur.In order to eliminate this shadow, a reference electrode made of a JSFET etc. It is necessary to take measures such as eliminating the above error factors by installing a reference electrode inside the reference electrode to detect potential changes caused by causes other than the enzyme reaction and subtracting the output signal of this reference electrode from the output signal of the l5FET. This method requires a signal processing circuit for determining the difference signal between the two signals, which has the disadvantage of complicating the device and causing economic disadvantage.

【発明の目的】[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、参照電極
を用いることなくアンモニア以外のカナオンの影響を排
除することができ、したがって供試水溶液中の尿素の測
定精度が高く、簡素化されて安価な酵素センサーを提供
しようとするものである。
The present invention was made in view of the above-mentioned situation, and it is possible to eliminate the influence of canon other than ammonia without using a reference electrode, and therefore, the measurement accuracy of urea in a sample aqueous solution is high, and it is simplified. The aim is to provide an inexpensive enzyme sensor.

【発明の要点】 本発明は、ゲート部を含むFETの表面を酸化硅素(S
iO□)絶縁膜および窒化硅素(SiJa)保護膜で被
覆して耐水性を保持したl5FETの表面を、膜を形成
するポリマーとアンモニア選択透過能を有する抗生物質
ノナクチンからなるアンモニア選択透過性膜、ならびに
このアンモニア選択通過性膜の外側に形成された酵素反
応の基質または生成物にアンモニアが関与する性質を存
する酵素を固定化した酵素固定化膜で二重に被覆するよ
う構成した。アンモニア選択透過性膜中のノナクチンは
、生体中では生体膜に結合して1価カチオンの透過を選
択的に行なうイオノフオアであり、カチオンに対する親
和性はN11a’ > K ” >>Na”で特にアン
モニアをよく透過させる。したがって〜供試水溶液中の
H’ 、 Na” 、  K”などのカチオンはアンモ
ニア選択透過性膜によりその透過が阻止され、これらの
カチオンに基づ<l5FETのゲート電位の変化を阻止
できるとともに、酵素反応により生じたアンモニアを選
択的に透過することにより、供試水イ容液中のアンモニ
ア基NHa ’によるゲート電位の変化をドレーン電流
の変化として感度よく測定することができる。
Summary of the Invention The present invention is characterized in that the surface of the FET, including the gate portion, is made of silicon oxide (S).
iO In addition, the ammonia-selective membrane was double coated with an enzyme-immobilized membrane on which an enzyme having a property of involving ammonia in the substrate or product of the enzymatic reaction formed on the outside of the ammonia-selective membrane was immobilized. Nonactin in the ammonia selectively permeable membrane is an ionophore that binds to biological membranes in living organisms and selectively permeates monovalent cations, and its affinity for cations is N11a'> K ''>> Na, especially for ammonia. Transmits well. Therefore, the permeation of cations such as H', Na'', K'' in the test aqueous solution is blocked by the ammonia permselective membrane, and changes in the gate potential of <15FET based on these cations can be prevented, and the enzyme By selectively permeating ammonia produced by the reaction, changes in gate potential due to ammonia groups NHa' in the sample water solution can be measured with high sensitivity as changes in drain current.

【発明の実施例】[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 第1図は本発明の実施例を示す酵素センサーの側断面図
である。図において、IOはイオン感受性電界効果型ト
ランジスタ (ISFET)であり、lはP−9i基)
反、2はソース電極、3はドレイン電極、4はn拡散領
域、5はPチャネルス)7バー、6は金属電極が排除さ
れたゲート部、7はゲート部6を含むFET表面を覆う
よう形成されたSiJ絶!!膜、8は5iOz絶縁膜の
外側に形成された窒化硅素(Si3N、)保護膜であり
、供試水溶液中に浸漬される部分を窒化硅素保護膜8で
覆うことにより、l5FETの耐水′4fA8!性を保
持することができる。 20はアンモニア選択i3過性膜であり、膜を形成する
ポリマーと、アンモニア選択i! 1IAtaを有する
抗生物質ノナクチンからなる。ノナクチンは放線菌が多
く生産しており、同国から公知の方決で抽出精製して用
いることもできるが、ストレプトマイセス・グリセウス
社製の市販品を用いてもよい。 アンモニア選択通過性膜を形成するポリマーとしては、
該ポリマーから形成される膜がプロトンをi3過させず
、力)つノナクチンの良ン容媒であるテトラヒドロフラ
ン (THF)に易溶である必要がある。このような条
件を満たすポリマーとしてポリメチルグルクメート誘導
体1ポリ塩化ビニリデン。 アセチルセルローズ及びそのg 11体などがある。 これらのポリマーとノナクチンを有機溶媒に溶解させて
ポリマードープを得、このポリマードープから薄膜を形
成させる。l5FETの表面に薄膜を形成するには、デ
ィップコーティング法による。 l5FETはポリマーとの接着性を良くするため適当な
表面処理を施して用いてもよい。処理のを無にかかわら
ず、l5FETを適当な濃度のポリマードープに浸漬し
、引き上げた後適当な方法で乾燥させて薄膜を形成させ
る。この際、l5FETのゲート部分だけでなく、使用
時に供試水溶液に挿入される部分が完全に?1Nされる
ようにアンモニア選択透過性If!20を形成させる。 30は、アンモニア選択透過性膜20の上に形成された
酵素固定化膜であり、固定化する酵素は、酵素反応の基
質または生成物にアンモニアが関与するものであればセ
ンサーとしてを効である。このような酵素としては、例
えばウレアーゼ、クレアチニンディミナーゼ、グルタミ
ン酸オキシダーゼなどがある。酵素の固定化は公知の方
法でかつ薄膜を形成できる方法であればどのような方法
でもよい。例えば、ポリビニルアルコールやに一カウギ
ーナン、アガロースゲルなどによる包括固定化法、アル
ブミン、キトサンなどを担体とする担体架橋法、または
これらの複合法により、酵素を固定化できる。酵素固定
化膜30でl5FETIOのゲート部6を含む先端部を
部分的または全体的に被覆することによって、酵素セン
サーが得られる。 実施例l CVD法により窒化珪素保護膜8が形成されたl5FE
TIOの表面を、T−アミノプロピルトリエトキシラン
 Cr−APTES)を80℃、0.5mH[+の条件
下で2時間蒸着し、100℃2分間加熱処理する表面処
理を行なった後、ポリーγ−メチルーL−グルタメート
の誘導体であるポリーγ−トリクロロエチルグルタメー
トをポリマーとするアンモニア選択透過性膜20を形成
した。ポリ−T −トリクロロエチルグルタメートは、
ポリーγ−メチル−し一グルタメートのメチル基をββ
β−トリクロルエタノールでエステル交換し、交換率7
0%となったものを用いた。該ポリマーtoomg及び
ストレプトマイセス・グリセウス社製のノナクチン2m
gをテトラヒドロフラン (THF)1−にン容解して
ポリマードープを得た。上記の方法でT −APTES
処理したl5FETをこのポリマードープに浸漬した後
、ゆっくりと引き上げてディップし、10mHgの圧力
下、室温で乾燥し、アンモニア選択透過性膜20を調製
した。また酵素固定化膜30としては、牛血清アルブミ
ン15mg及びウレアーゼ10mgをO,OIM、 p
H7,0のリン酸緩衝液1 mlに溶解させ、グルタル
アルデヒド (GA)を1%になるように添加して攪拌
した後、ただちにアンモニア選択透過性膜20が形成さ
れたl5FETをこの液にディップコーティングし、デ
シケータ−中。 5℃で乾燥させるという方法で形成され、さらに0、O
IM、Tris−HCI、 pH7,0の緩衝液中で十
分洗浄することにより、第1図に示すような尿素測定用
の酵素センサーを得た。 第2図は前述の実施例になる酵素センサーの尿素に対す
る応答特性線図であり、図中横軸は尿素(Co(Nl!
2)りを含む試料液を30℃に保たれた酵素センサー容
器に注入する前後の時間を、縦軸はl5FETのドレー
ン電流の変化をゲート部6のゲート電位に換算して示し
たものである。図において、試料液注入時点(1=0)
以前における電位Eoはl5FETIOの窒化硅素保護
膜8とアンモニア選択透過性膜20との界面における電
気二重層に基づく界面電位であり、尿素を含む試f4液
力冑主人され、酵素固定化膜30による酵素反応によっ
て尿素が分解されてアンモニア1ficNHa’ )が
発生する。発生したアンモニア店はアンモニア選択透過
性■り20を透過して窒化硅素保護膜8の界面に到達し
、界面電位E0を変化させることにより、第2図に示す
ようにゲート電位は立上がり、約2分後には試料液中の
尿素セ・二度に相応した定常状態に到達する。したがっ
て尿素濃度の異なる試料液を用いてゲート電位あるいは
ドレーン電流との相関性をあらかじめ校正しておけば、
試料液中の尿素)農度を定量的に測定することができる
。 また試料液中にH’、Na・、に′等のカチオンが存在
した場合、これらのカチオンはアンモニア選択透過性膜
20によりl5FETIOの窒化硅素保護膜8の界面に
近づくことが阻止され之ので、ゲート電位に変化を与え
ることはなく、したがって参照電橋を用いることなくア
ンモニア以外のカチオンの影響を排除できる尿素測定用
酵素センサーを得ることができる。 実施例2 γ−APTESによる表面処理を施したl5FETの表
面に前述の実施例と同様な組成のポリマードープを用い
て2回のディップコーティングを行なってアンモニア選
択透過性膜を形成し、これにエチレンジアミン0.1 
、Jを80℃で蒸着し、さらにグルタルアルデヒド (
GA)0.1−を80℃で蒸着した。次に、ウレアーゼ
20mg、牛血清アルブミン20mgを1−のpH7、
0、0,01Mリン酸緩衝液にン容解した後、GAを0
.5%になるように添加し攪拌した。この液に上記の処
理を施したl5FETをディンプし、5℃で一日乾燥し
て酵素固定化膜を形成し、これをさらにO,OIMTr
is−Hcl、pt17.0の緩;Si液で8時間洗浄
して、尿素測定用の酵素センサーを得た。このセンサー
を用いて尿素の定量を行なったところ、lO〜200m
g/ /jの範囲で尿素を定量することができた。
The present invention will be explained below based on examples. FIG. 1 is a side sectional view of an enzyme sensor showing an embodiment of the present invention. In the figure, IO is an ion-sensitive field effect transistor (ISFET), and l is a P-9i group)
On the other hand, 2 is a source electrode, 3 is a drain electrode, 4 is an n diffusion region, 5 is a p channel) 7 bar, 6 is a gate part from which the metal electrode is removed, and 7 is a metal electrode so as to cover the FET surface including the gate part 6. Formed SiJ Zetsu! ! The film 8 is a silicon nitride (Si3N) protective film formed on the outside of the 5iOz insulating film, and by covering the part that will be immersed in the test aqueous solution with the silicon nitride protective film 8, the water resistance of the 15FET'4fA8! It is possible to maintain one's sexuality. 20 is an ammonia selective i3 permeable membrane, and the polymer forming the membrane and the ammonia selective i! It consists of the antibiotic nonactin with 1IAta. Nonactin is produced in large quantities by actinomycetes, and can be extracted and purified using known methods from the same country, but a commercially available product manufactured by Streptomyces griseus may also be used. The polymers that form the ammonia selective membrane are:
It is necessary that the membrane formed from the polymer does not allow protons to pass through and is easily soluble in tetrahydrofuran (THF), which is a good medium for nonactin. Polymethyl glucmate derivative 1 polyvinylidene chloride is an example of a polymer that satisfies these conditions. Examples include acetylcellulose and its g-11 form. These polymers and nonactin are dissolved in an organic solvent to obtain a polymer dope, and a thin film is formed from this polymer dope. A dip coating method is used to form a thin film on the surface of the 15FET. 15FET may be used after being subjected to appropriate surface treatment to improve adhesion to the polymer. Regardless of the treatment, the 15FET is immersed in a polymer dope of an appropriate concentration, pulled up, and dried by an appropriate method to form a thin film. At this time, ensure that not only the gate part of the 15FET but also the part that is inserted into the test aqueous solution during use is completely removed. Ammonia permselectivity If! to be 1N! Form 20. 30 is an enzyme immobilization membrane formed on the ammonia permselective membrane 20, and the enzyme to be immobilized is effective as a sensor if ammonia is involved in the substrate or product of the enzyme reaction. . Examples of such enzymes include urease, creatinine diminase, and glutamate oxidase. The enzyme may be immobilized by any known method as long as it can form a thin film. For example, the enzyme can be immobilized by an entrapping immobilization method using polyvinyl alcohol, di-cauginan, agarose gel, etc., a carrier cross-linking method using albumin, chitosan, etc. as a carrier, or a combination method thereof. An enzyme sensor can be obtained by partially or completely covering the tip portion of the 15FETIO including the gate portion 6 with the enzyme-immobilized membrane 30. Example 1 15FE with silicon nitride protective film 8 formed by CVD method
The surface of TIO was subjected to surface treatment by vapor depositing T-aminopropyltriethoxylane (Cr-APTES) at 80°C and 0.5mH[+] for 2 hours, followed by heat treatment at 100°C for 2 minutes. - An ammonia permselective membrane 20 was formed using poly-γ-trichloroethylglutamate, which is a derivative of methyl-L-glutamate, as a polymer. Poly-T-trichloroethylglutamate is
Polyγ-methyl- and monoglutamate methyl group ββ
Transesterification with β-trichloroethanol, exchange rate 7
0% was used. The polymer toomg and nonactin 2m manufactured by Streptomyces griseus
A polymer dope was obtained by dissolving 1-g of the polymer in tetrahydrofuran (THF). T-APTES using the above method
The treated 15FET was immersed in this polymer dope, then slowly pulled up and dipped, and dried at room temperature under a pressure of 10 mHg to prepare an ammonia permselective membrane 20. Further, as the enzyme-immobilized membrane 30, 15 mg of bovine serum albumin and 10 mg of urease were mixed with O, OIM, p
Dissolve in 1 ml of H7.0 phosphate buffer, add glutaraldehyde (GA) to a concentration of 1%, stir, and immediately dip the 15FET on which the ammonia permselective membrane 20 has been formed into this solution. Coat and place in desiccator. It is formed by drying at 5°C, and further contains 0, O
By washing thoroughly in IM, Tris-HCI, pH 7.0 buffer, an enzyme sensor for urea measurement as shown in FIG. 1 was obtained. FIG. 2 is a response characteristic diagram for urea of the enzyme sensor according to the above-mentioned example, and the horizontal axis in the figure is urea (Co(Nl!)).
2) The vertical axis shows the time before and after injecting the sample solution containing 2 into the enzyme sensor container kept at 30°C. The vertical axis shows the change in drain current of 15FET converted to gate potential of gate section 6. . In the figure, the time of sample liquid injection (1=0)
The potential Eo in the previous example is an interfacial potential based on the electric double layer at the interface between the silicon nitride protective film 8 and the ammonia permselective film 20 of 15FETIO, and is the interfacial potential based on the electric double layer at the interface between the silicon nitride protective film 8 and the ammonia permselective film 20. Urea is decomposed by an enzymatic reaction and ammonia (1ficNHa') is generated. The generated ammonia stores pass through the ammonia permselective filter 20 and reach the interface of the silicon nitride protective film 8, and by changing the interface potential E0, the gate potential rises to about 2 After a few minutes, a steady state corresponding to the concentration of urea in the sample solution is reached. Therefore, if the correlation with gate potential or drain current is calibrated in advance using sample solutions with different urea concentrations,
The urea content in the sample solution can be quantitatively measured. Furthermore, if cations such as H', Na., Ni', etc. are present in the sample solution, these cations are prevented from approaching the interface of the silicon nitride protective film 8 of the 15FETIO by the ammonia permselective membrane 20. It is possible to obtain an enzyme sensor for measuring urea that does not change the gate potential and can therefore eliminate the influence of cations other than ammonia without using a reference bridge. Example 2 An ammonia selectively permeable membrane was formed by dip coating the surface of an 15FET that had been surface-treated with γ-APTES twice using a polymer dope having the same composition as in the previous example, and coated with ethylenediamine. 0.1
, J were vapor-deposited at 80°C, and glutaraldehyde (
GA) 0.1- was deposited at 80°C. Next, 20 mg of urease and 20 mg of bovine serum albumin were added at a pH of 1-7.
After dissolving in 0,0,01M phosphate buffer, GA was
.. It was added to a concentration of 5% and stirred. The above-treated 15FET was dipped in this solution and dried at 5°C for one day to form an enzyme-immobilized film, which was then further coated with O, OIMTr.
The enzyme sensor for urea measurement was obtained by washing for 8 hours with is-Hcl, pt 17.0 mild Si solution. When urea was quantified using this sensor, it was found that 1O~200m
It was possible to quantify urea in the range of g//j.

【発明の効果】【Effect of the invention】

本発明は前述のように、窒化硅素保8i膜が形成された
+5FETのゲート部を含む表面にアンモニア選択透過
性膜および酵素固定化膜を重層被着して尿素測定用の酵
素センサーを構成した。その結果、従来技術で問題とな
ったアンモニア以外のイオンによってゲート電位が変化
することにより測定精度が低下するという問題点がアン
モニア選択透過性膜によって排除され、試料液中の尿素
を精度よく定量できる尿素測定用の酵素センサーを提供
することができる。また、アンモニア選択透過性膜によ
りアンモニア以外のイオンの影響が排除されたことによ
り、従来技術において上記イオンの影響を打消すために
用いられていた参照電極を省略することが可能となり、
かつ参照電極の出力信号をl5FETの出力信号から差
し引くための信号処理回路が不必要となることにより、
尿素測定装置を簡素化することができ、測定操作や校正
作業が簡単で、尿素の測定精度の高い尿素測定装置を経
済的に有利に提供できる利点が得られる。
As described above, the present invention constitutes an enzyme sensor for measuring urea by depositing an ammonia selective perms membrane and an enzyme immobilization membrane on the surface including the gate part of a +5FET on which a silicon nitride retention 8i membrane is formed. . As a result, the ammonia permselective membrane eliminates the problem with conventional technology, where ions other than ammonia change the gate potential, reducing measurement accuracy, making it possible to accurately quantify urea in the sample solution. An enzyme sensor for measuring urea can be provided. In addition, since the influence of ions other than ammonia is eliminated by the ammonia selective permselective membrane, it becomes possible to omit the reference electrode that was used in the conventional technology to cancel the influence of the ions.
In addition, a signal processing circuit for subtracting the output signal of the reference electrode from the output signal of the 15FET becomes unnecessary, so that
The advantage is that the urea measuring device can be simplified, the measurement operation and calibration work are easy, and the urea measuring device with high urea measurement accuracy can be economically advantageously provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す酵素センサーの側断面図
、第2図は実施例におけるセンサーの尿素に対する応答
特性線図である。 lO:イオン惑受性電界効果型トランジスタ (ISF
ET)、6:ゲート部、7はSiO□絶縁膜、8:窒化
硅素保護膜、20:アンモニア選択透過性膜、30:酵
素固定化膜。 ・1.T9・)
FIG. 1 is a side sectional view of an enzyme sensor showing an embodiment of the present invention, and FIG. 2 is a response characteristic diagram for urea of the sensor in the embodiment. lO: Ion-interceptive field-effect transistor (ISF)
ET), 6: gate section, 7: SiO□ insulating film, 8: silicon nitride protective film, 20: ammonia permselective film, 30: enzyme immobilization film.・1. T9・)

Claims (1)

【特許請求の範囲】 1)ゲート部を含む素子の表面部分が疎水性を有する窒
化硅素保護膜により覆われたイオン感受性電界効果型ト
ランジスタと、このイオン感受性電界効果型トランジス
タの窒化硅素保護膜の供試水溶液浸漬部分を覆うよう被
着されたアンモニア選択透過性膜と、このアンモニア選
択透過性膜を覆うよう被着された酵素固定化膜とを備え
たことを特徴とする酵素センサー。 2)特許請求の範囲第1項記載のものにおいて、アンモ
ニア選択透過性膜が膜を形成するポリマーとアンモニア
選択透過能を有するノナクチンとからなることを特徴と
する酵素センサー。 3)特許請求の範囲第1項記載のものにおいて、ポリマ
ーがポリ−γ−トリクロロエチルグルタメートであるこ
とを特徴とする酵素センサー。
[Claims] 1) An ion-sensitive field effect transistor in which the surface portion of the device including the gate portion is covered with a hydrophobic silicon nitride protective film, and a silicon nitride protective film of this ion-sensitive field effect transistor. An enzyme sensor comprising: an ammonia selectively permeable membrane attached to cover a portion immersed in a test aqueous solution; and an enzyme immobilization membrane attached to cover the ammonia selectively permeable membrane. 2) The enzyme sensor according to claim 1, wherein the ammonia selectively permeable membrane is composed of a membrane-forming polymer and nonactin having ammonia selectively permeable ability. 3) The enzyme sensor according to claim 1, wherein the polymer is poly-γ-trichloroethylglutamate.
JP60285308A 1985-12-18 1985-12-18 Enzyme sensor Pending JPS62144062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285308A JPS62144062A (en) 1985-12-18 1985-12-18 Enzyme sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285308A JPS62144062A (en) 1985-12-18 1985-12-18 Enzyme sensor

Publications (1)

Publication Number Publication Date
JPS62144062A true JPS62144062A (en) 1987-06-27

Family

ID=17689846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285308A Pending JPS62144062A (en) 1985-12-18 1985-12-18 Enzyme sensor

Country Status (1)

Country Link
JP (1) JPS62144062A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514365U (en) * 1991-02-07 1993-02-23 ツヨ 山田 Stand fitting
US6280587B1 (en) 1998-07-02 2001-08-28 Nec Corporation Enzyme electrode and a biosensor and a measuring apparatus therewith
WO2005012896A1 (en) * 2003-07-30 2005-02-10 Micronas Gmbh Capacitively controlled field effect transistor gas sensor comprising a hydrophobic layer
JP2008511837A (en) * 2004-09-02 2008-04-17 アイ−スタット コーポレーション Blood urea nitrogen (BUN) sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514365U (en) * 1991-02-07 1993-02-23 ツヨ 山田 Stand fitting
US6280587B1 (en) 1998-07-02 2001-08-28 Nec Corporation Enzyme electrode and a biosensor and a measuring apparatus therewith
WO2005012896A1 (en) * 2003-07-30 2005-02-10 Micronas Gmbh Capacitively controlled field effect transistor gas sensor comprising a hydrophobic layer
JP2008511837A (en) * 2004-09-02 2008-04-17 アイ−スタット コーポレーション Blood urea nitrogen (BUN) sensor
US8182663B2 (en) 2004-09-02 2012-05-22 Abbott Point Of Care Inc. Blood urea nitrogen (BUN) sensor
US8236517B2 (en) 2004-09-02 2012-08-07 Abbott Point Of Care Inc. Blood urea nitrogen (BUN) sensor

Similar Documents

Publication Publication Date Title
Senillou et al. A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip
van der Schoot et al. ISFET based enzyme sensors
Karbue et al. A microsensor for urea based on an ion-selective field effect transistor
US4476005A (en) Urease-immobilized urea electrode and process for preparing the same
Hendji et al. Sensitive detection of pesticides using a differential ISFET-based system with immobilized cholinesterases
Liu et al. Potentiometric ion-and bioselective electrodes based on asymmetric polyurethane membranes
Hamlaoui et al. Development of a urea biosensor based on a polymeric membrane including zeolite
Yin et al. Enzyme immobilization on nitrocellulose film for pH-EGFET type biosensors
Soldatkin et al. Glucose-sensitive field-effect transistor with additional Nafion membrane: reduction of influence of buffer capacity on the sensor response and extension of its dynamic range
JPH0235933B2 (en)
DE2415997A1 (en) BIOCHEMICAL TEMPERATURE-SENSITIVE SENSOR DEVICE AND METHOD FOR MEASURING REACTION AGENT CONCENTRATIONS WITH IT
Karimi-Maleh et al. Voltammetric determination of captopril using a novel ferrocene-based polyamide as a mediator and multi-wall carbon nanotubes as a sensor
Starodub et al. Optimisation methods of enzyme integration with transducers for analysis of irreversible inhibitors
KR870008189A (en) Enzyme sensor and manufacturing method
JPS62144062A (en) Enzyme sensor
Vlasov et al. Enzyme semiconductor sensor based on butyrylcholinesterase
DE4436001C2 (en) Biosensor with enzyme fixed on a Si¶3¶N¶4¶ surface
Gardies et al. Micro-enzyme field effect transistor sensor using direct covalent bonding of urease
JPS61120053A (en) Biosensor
JPH0570103B2 (en)
Chandler et al. An ISFET-based flow injection analysis system for determination of urea: experiment and theory
JPS62132160A (en) Biosensor using separation gate type isfet
JPS6366454A (en) Enzyme sensor and manufacture thereof
JPS6328264B2 (en)
JPH0550272B2 (en)