JPS6214403B2 - - Google Patents

Info

Publication number
JPS6214403B2
JPS6214403B2 JP55164452A JP16445280A JPS6214403B2 JP S6214403 B2 JPS6214403 B2 JP S6214403B2 JP 55164452 A JP55164452 A JP 55164452A JP 16445280 A JP16445280 A JP 16445280A JP S6214403 B2 JPS6214403 B2 JP S6214403B2
Authority
JP
Japan
Prior art keywords
tire
rubber
sidewall
carcass
rolling resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55164452A
Other languages
Japanese (ja)
Other versions
JPS5787703A (en
Inventor
Minoru Togashi
Shinichi Furuya
Seisuke Tomita
Hirohide Hamashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP55164452A priority Critical patent/JPS5787703A/en
Publication of JPS5787703A publication Critical patent/JPS5787703A/en
Publication of JPS6214403B2 publication Critical patent/JPS6214403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は空気入りラジアルタイヤに関し、と
くにその転り抵抗の改善を、他のタイヤ性能の事
実上の劣下を伴うことなく有利に達成しようとす
るものである。 一般に実用性があると認められて来た従来のい
わゆるラジアル構造タイヤにつき、そのタイヤの
構成各部分がその転り抵抗に及ぼす要因の寄与率
を解析した結果によると、第1図に示したように
トレツド部で34%、バツトレス部27%、サイドウ
オール部25%、そしてビード部14%程度に配分さ
れとしてほゞ取扱い得ることがわかつた。 こゝで転り抵抗への寄与率が最も大きいのはト
レツドゴムであり、従つてこのトレツドゴムの内
部摩擦を少くし、転り抵抗を軽減するため、該ゴ
ムにつき損失正接(tan δ)、損失弾性率
(G″)を下げる一方、反発弾性率(Resilience)
を上げるゴム配合によつて対処することが一般で
ある。 しかるにこの場合には、転り抵抗が改良される
度合に応じて不所望にも、この種タイヤの重要特
性の一つであるウエツト性能が悪化する欠点が伴
われる。この点トレツドゴムの反発弾性率の値を
指標にして転り抵抗とウエツト性能に及ぼす影響
を第2図に示した。従つて上記対策は、ウエツト
性能の悪化を防ぐ別途手段を講ぜぬ限り転り抵抗
の飛躍改善は望まれ得ず、そしてウエツト性能の
維持に格別有効な手段も見当らないので結局のと
ころ、さしたる実効をあげることができないので
ある。 次善の対策としてトレツドゴムの特性について
上記したとほゞ同様に、内部摩擦を低減したゴム
配合を、サイドウオールに適用することも試みら
れたが、実際には転り抵抗のせいぜい3%前後ま
たはそれに満たない程度の改善にしか役立たない
ばかりでなく、タイヤに生じる振動に対する減衰
特性が悪化し、タイヤの重要な乗心地性能に及ぼ
す不利を随伴する欠点がある。 このほか、カーカスにつき2層構造から1層に
するとか、あるいはとくにベルトの幅を狭くする
ことによつてタイヤを軽量化し、転り抵抗を小さ
くする手法も採用されてはいるが、タイヤ補強に
重要なタイヤ要部の剛性低下による、操縦安定性
の低下を招くので、その効果に限界があるのはや
むを得ない。 そこでこの発明は、ラジアルタイヤにおけるウ
エツト性能の問題解決が不可避なことから、トレ
ツドゴムについてではなく、とくにサイドゴムに
ついて、それも上記のような損失正接や損失弾性
率または反発弾性率など、振動乗心地性能の悪化
を伴う在来の手法とは全く異なるゴム物性上の新
たな観点としての、適正な動的弾性率G′に着眼
した研究成果により、著しい転り抵抗の軽減や、
ウエツト性能はもとより、振動乗心地性能や、操
縦安定性能などの悪化を伴なうことなく、有利に
実現し得ることを見出したところに由来してい
る。 すなわちこの発明は、ラジアルタイヤに荷重が
作用した際に生じるサイドウオールの変形状態に
根本的究明を加えた結果として導かれたものであ
つて、この点の詳細な検討によると、このサイド
ウオールの変形は、張力に依存し、サイドウオー
ルゴムはその物性に殆ど左右されずにほぼ一定の
歪を受けることが、新たに判明した。そしてこの
ように一定歪状態においては、サイドウオールゴ
ムにおける内部エネルギロスELは、次式であら
わされる。 EL=Σ1/2G′・ε・v・tanδ こゝにG′で動的弾性率を示し、εは歪、vは
サイドウオールゴムの体積要素、またtan δは
損失正接である。 動的弾性率G′は、メカニカルスペクトロメー
タ(レオメトリツクス社製)による50℃−15Hz動
的せん断歪振幅1%の条件での測定値で定義され
る。 この発明は上式に従つて、従来技術におけるよ
うなtan δすなわちサイドウオールゴムの内部
摩擦特性に依存するのでなく、動的弾性率G′を
低くすることによつて内部エネルギロスが低減で
きて転り抵抗の軽減に、著しく役立つことの新規
知見を基礎とするものである。 この発明はタイヤの実質上の半径面内に配列し
た有機繊維コードからなる少くとも1プライのカ
ーカスを、ビートコアーのまわりに巻返してタイ
ヤの半径方向外方へ折返し、このカーカスのまわ
りを取囲んで配置した複数のコード層よりなるベ
ルトと協同作動するボデイ補強とし、このベルト
の外周のトレツドゴムと、カーカス両側のサイド
ウオールゴムとの各外皮をそなえた空気入りタイ
ヤであつて、サイドウオールゴムが、動的弾性率
5×106dyn/cm2以上、2×107dyn/cm2以下の物
性をもつことを特徴とする空気入りラジアルタイ
ヤである。 この発明では上記のようにサイドウオールゴム
を、動的弾性率G′がとくに低い物性範囲から選
択することを本旨とするので、元来その物性値が
はるかに高いトレツドゴムとの間の境界で、格差
が、著増するので、バツトレス部にその緩衝ゴム
を配置すること、すなわちトレツドゴムとサイド
ウオールゴムとの両外皮が、サイドウオールゴム
の動的弾性率よりは高いがトレツドゴムのそれよ
りは低いゴムストツクからなるシヨルダゴムの外
皮を介し互いに接合することが実施上のぞまし
く、またこの場合においてトレツドゴムの側端が
楔状をなすものとして、サイドウオールゴムの半
径方向外端と、シヨルダゴムとの間に挾在位置さ
せることが、よりのぞましいわけである。 以上何れの場合でも、ベルトとしてタイヤの赤
道に対し比較的小さい角度の傾斜配列で互いに交
差する少くとも2層の金属コード層を、慣例に準
じて用いること、さらにカーカスの折返しを、ビ
ードベースから測つてタイヤ高さの25%以内の折
返し高さとすることも、実際上推奨されるところ
である。 この発明に従い、サイドウオールゴムの動的弾
性率G′を、種々にかえてサイズ185/70SR14の型
式のラジアルタイヤを試作し、それらについて転
り抵抗に及ぼす影響を調べた成積をもとめて第3
図に示した。 この図によれば、動的弾性率G′が3×
107dyn/cm2以上のときの転り抵抗を、指数表示
で100としたとき、G′の値を5×106dyn/cm2
上、2×107dyn/cm2以下、とくに7×106〜1.5×
107dyn/cm2の範囲とすることにより、そのタイ
ヤの転り抵抗を指数110に達するような顕著な軽
減、改善を遂げ得ることが、明らかである。 こゝにG′は5×106dyn/cm2に満たないと、サ
イドウオールが軟弱となり、製造上も困難をもた
らして実用され得ない。反面G′が2×107dyn/
cm2をこえるや否や転り抵抗指数についての改善効
果はもたらされ得なくなることが第3図に明らか
である。 次にタイヤの使用中、大きいスリツプ角が付加
される条件下でバツトレス部に接地が拡張する事
態を生じ、このとき上記のように低い動的弾性率
G′をもつサイドウオールゴムで該部が形成され
ると、そこに急速な局部摩耗の進展がもたらされ
るうれいがあり、こゝに上記シヨルダゴムの外皮
を介装することが必要な所以である。 シヨルダゴムは、サイドウオールゴムの動的弾
性率G′よりは高いが、しかしトレツドゴムのそ
れよりは低い動的弾性率をもつことによつて、有
利に上記の問題点は克服され得る。しかしトレツ
ドゴムの上記物性値をこえるときは、バツトレス
部の剛性が高すぎることとなつてサイドウオール
における変形がトレツド部に伝り易くなり、転り
抵抗の改良を却つて阻害する。 またこの発明に従つてサイドウオールゴムの動
的弾性率G′を低くすることによる転り抵抗軽減
の効果は、ベルトが、剛性の高い金属コード層で
構成され、またカーカスの折返しがタイヤ高さの
25%以内の折返し高さにとゞめられてサイドウオ
ールの屈曲域をなるべく拡張するとき、より有利
に実現される。 この発明によるより具体的な効果を確認するた
め、第4図に一般的断面を示した供試タイヤを表
1に示すサイズ毎に、サイドウオールゴムの動的
弾性率が3×107dyn/cm2のものを比較例として
1.1×107dyn/cm2としたこの発明の実施例と比較
試験した。こゝに各タイヤのサイドウオールゴム
のボリウムおよびtan δについては、すでに同
一条件とした。
The present invention relates to a pneumatic radial tire, and particularly aims to advantageously improve its rolling resistance without deteriorating other tire performances. According to the results of analyzing the contribution of the factors that each component of the tire has to the rolling resistance of conventional so-called radial structure tires, which have generally been recognized as being practical, the results are as shown in Figure 1. It was found that 34% of the tread area, 27% of the buttrest area, 25% of the sidewall area, and 14% of the bead area can be used as a tread area. Here, the treaded rubber has the largest contribution to the rolling resistance, and therefore, in order to reduce the internal friction of the treaded rubber and reduce the rolling resistance, the loss tangent (tan δ) and loss elasticity of the rubber are While lowering the impact modulus (G″), the impact resilience modulus (Resilience)
It is common to deal with this problem by using a rubber compound that increases the temperature. However, in this case, the disadvantage is that the wet performance, which is one of the important characteristics of this type of tire, deteriorates undesirably, depending on the degree to which the rolling resistance is improved. In this respect, FIG. 2 shows the effect on rolling resistance and wet performance using the value of the rebound modulus of the tread rubber as an index. Therefore, the above-mentioned measures cannot be expected to dramatically improve rolling resistance unless separate measures are taken to prevent deterioration of wet performance, and no particularly effective means for maintaining wet performance have been found, so in the end, they are not very effective. I can't give you anything. As a next-best measure, attempts have been made to apply a rubber compound that reduces internal friction to the sidewalls in a manner similar to that described above regarding the characteristics of treaded rubber, but in reality it only accounts for around 3% or less of the rolling resistance. Not only is this method only useful for improving the tire to a lesser extent, but it also has the drawback of deteriorating the damping characteristics of vibrations generated in the tire, which is accompanied by a disadvantage in terms of the important ride comfort performance of the tire. In addition, methods have been adopted to reduce tire weight and rolling resistance by changing the carcass structure from two layers to one, or by narrowing the width of the belt. It is unavoidable that there is a limit to its effectiveness, as it leads to a decrease in steering stability due to a decrease in the rigidity of the important main parts of the tire. Therefore, since it is inevitable to solve the problem of wet performance in radial tires, this invention focuses not on tread rubber, but especially on side rubber, in terms of vibration riding comfort performance such as loss tangent, loss modulus, and rebound modulus as mentioned above. As a new perspective on rubber physical properties, which is completely different from conventional methods that involve deterioration of
This comes from the discovery that it can be advantageously achieved without deteriorating not only wet performance but also vibration ride comfort performance, steering stability performance, etc. In other words, this invention was arrived at as a result of fundamental investigation into the deformation state of the sidewall that occurs when a load is applied to a radial tire. It has been newly discovered that deformation depends on tension, and that sidewall rubber is subject to almost constant strain, almost unaffected by its physical properties. In this constant strain state, the internal energy loss EL in the sidewall rubber is expressed by the following equation. EL=Σ1/2G'·ε 2 ·v·tan δ Here, G' represents the dynamic elastic modulus, ε is the strain, v is the volume element of the sidewall rubber, and tan δ is the loss tangent. The dynamic elastic modulus G' is defined as a value measured by a mechanical spectrometer (manufactured by Rheometrics) under conditions of 50° C., 15 Hz, and dynamic shear strain amplitude of 1%. In accordance with the above equation, this invention reduces internal energy loss by lowering the dynamic elastic modulus G', rather than relying on tan δ, that is, the internal friction characteristics of the sidewall rubber, as in the prior art. This is based on new knowledge that it is significantly useful in reducing rolling resistance. In this invention, at least one ply carcass made of organic fiber cords arranged in a substantially radial plane of the tire is wound around a beat core and folded outward in the radial direction of the tire, and the carcass is wrapped around the carcass. This is a pneumatic tire with a body reinforcement that works in conjunction with a belt made of multiple cord layers arranged in a treaded rubber belt and sidewall rubber on both sides of the carcass. The present invention is a pneumatic radial tire characterized by having a dynamic elastic modulus of 5×10 6 dyn/cm 2 or more and 2×10 7 dyn/cm 2 or less. As mentioned above, the purpose of this invention is to select the sidewall rubber from a physical property range in which the dynamic elastic modulus G' is particularly low. Since the disparity increases significantly, it is necessary to place the buffer rubber in the buttress part, that is, to make both the outer skins of the treaded rubber and the sidewall rubber have a rubber stock with a dynamic elastic modulus higher than that of the sidewall rubber but lower than that of the treaded rubber. In practice, it is preferable to join the shoulder rubber to each other through the outer skin of the shoulder rubber, and in this case, assuming that the side end of the tread rubber is wedge-shaped, the radially outer end of the sidewall rubber and the shoulder rubber are sandwiched between the sidewall rubber and the shoulder rubber. Therefore, it is more desirable to have it located there. In all cases, it is customary to use as belts at least two layers of metal cord intersecting each other in an inclined arrangement at a relatively small angle to the equator of the tire, and to fold the carcass back from the bead base. In practice, it is recommended that the folding height be within 25% of the tire height. In accordance with this invention, radial tires of size 185/70SR14 were produced with various dynamic modulus G' of the sidewall rubber, and their effects on rolling resistance were investigated. 3
Shown in the figure. According to this figure, the dynamic elastic modulus G′ is 3×
When the rolling resistance at 10 7 dyn/cm 2 or more is expressed as 100 in index form, the value of G' should be 5 x 10 6 dyn/cm 2 or more and 2 x 10 7 dyn/cm 2 or less, especially 7. ×10 6 ~1.5×
It is clear that by setting the tire to a range of 10 7 dyn/cm 2 , the rolling resistance of the tire can be significantly reduced and improved to reach an index of 110. If G' is less than 5×10 6 dyn/cm 2 , the sidewall will become soft and difficult to manufacture, making it impossible to put it into practical use. On the other hand, G′ is 2×10 7 dyn/
It is clear from FIG. 3 that as soon as cm 2 is exceeded, no improvement effect on the rolling resistance index can be brought about. Next, during use of the tire, under conditions where a large slip angle is applied, a situation occurs in which the contact area expands at the buttrest part, and at this time, the dynamic modulus of elasticity is low as described above.
If this part is formed with sidewall rubber having G', local wear will develop rapidly there, which is why it is necessary to interpose the outer skin of the shoulder rubber. . Advantageously, the above-mentioned problems can be overcome by the shoulder rubber having a dynamic modulus of elasticity higher than that of the sidewall rubber, G', but lower than that of the tread rubber. However, when the above-mentioned physical property values of the tread rubber are exceeded, the stiffness of the buttress portion becomes too high, and deformation in the sidewall is easily transmitted to the tread portion, which actually impedes improvement in rolling resistance. Further, according to the present invention, the effect of reducing rolling resistance by lowering the dynamic elastic modulus G' of the sidewall rubber is that the belt is composed of a highly rigid metal cord layer, and the folding of the carcass is of
This is more advantageously realized when the bending height of the sidewall is kept within 25% and the bending area of the sidewall is expanded as much as possible. In order to confirm the more specific effects of this invention, we tested the test tires whose general cross-section is shown in Fig. 4 for each size shown in Table 1, and determined that the dynamic elastic modulus of the sidewall rubber was 3 x 10 7 dyn/ cm 2 as a comparative example
A comparative test was conducted with an example of the present invention, which was set at 1.1×10 7 dyn/cm 2 . Here, the volume and tan δ of the sidewall rubber of each tire were already set to the same conditions.

【表】 なお第4図において1はトレツドゴム、2はベ
ルト、3はカーカス、4はサイドウオールゴム、
5はシヨルダゴム、6はビードコアーであり、B
はベースライン、Hはタイヤ高さ、Tはカーカス
折返し高さをあらわす。 タイヤの転り抵抗のテストは、荷重445Kgfで
直径1707mmのドラムに各供試タイヤを押つけて
100Km/hをこえるまで一たん回転駆動したのち
直ちにクラツチを切り、だ行回転中の100Km/h
および50Km/hの際における減速度の度合いにつ
き従来例(コントロール)の性能を100として逆
数による指数表示でもつてあらわし、比較に供し
た。 すなわち転り抵抗指数はそれぞれの試供タイヤ
のサイドウオールゴムの動的弾性率が3×
107dyn/cm2である従来例の転り抵抗(Kg)(表
2)をそれぞれ100とした時、実施例の転り抵抗
指数を 従来例の転り抵抗(Kg)/実施例の転り抵抗(Kg)×10
0 で表示した。 各供試タイヤの充てん内圧は1.7Kgf/cm2にてす
べて一様に揃えた。 試験成積は表2のとおりである。
[Table] In Figure 4, 1 is the tread rubber, 2 is the belt, 3 is the carcass, 4 is the sidewall rubber,
5 is shoulder rubber, 6 is bead core, B
is the baseline, H is the tire height, and T is the carcass folding height. To test the rolling resistance of tires, each test tire was pressed against a drum with a diameter of 1707 mm under a load of 445 kgf.
After rotating once until the speed exceeds 100Km/h, immediately release the clutch and continue to drive at 100Km/h during the slow rotation.
The degree of deceleration at 50 km/h was also expressed as an index using a reciprocal number, with the performance of the conventional example (control) set as 100, for comparison. In other words, the rolling resistance index is determined by the dynamic elastic modulus of the sidewall rubber of each sample tire being 3
When the rolling resistance (Kg) of the conventional example (Table 2), which is 10 7 dyn/cm 2 , is set as 100, the rolling resistance index of the example is calculated as the rolling resistance (Kg) of the conventional example/rolling resistance of the example. resistance (Kg) x 10
Displayed as 0. The internal filling pressure of each test tire was kept uniform at 1.7 kg f /cm 2 . The test results are shown in Table 2.

【表】 * 転り抵抗の指数は、それが大きい程、転
り抵抗の低減効果の高いことを意味する。
上に比較したようにして、この発明により、一
般的な実用車速の下で、ほゞ数%ときに10%に達
する転り抵抗の低減が実現されている。 次に供試番号1の各タイヤを代表として、それ
ぞれコンクリート路面(路面あらさをあらわすス
キツドNo.SN=35)ならびにアスフアルト路面
(同SN=50)上でウエツト性能を比較したとこ
ろ、この発明によるタイヤは比較タイヤと区別が
なかつた。 ウエツト性能指数については60Km/hで走行時
にブレーキをかけ停止までの距離を比較したもの
でトレツドゴム反発弾性率40%、タイヤサイズ
185/70 SR14、T/Hが0.53のタイヤの停止距
離(27.5m)を指数100とし他のトレツドゴム反
発弾性率を有するタイヤのウエツト指数を 27.5/他のトレツドゴム反発弾性率を有するタイヤの60Km/hからの停止距離×100 で表わされる。 さらに上記代表各タイヤにつき、突起つき試験
ドラムで回転中にタイヤの回転軸に生じる力の大
小を比較し振動乗心地性能の試験を行い次の成積
を得た。
[Table] * The larger the rolling resistance index, the greater the rolling resistance reduction effect.
As compared above, the present invention achieves a reduction in rolling resistance of approximately several percent, sometimes reaching 10%, under typical practical vehicle speeds. Next, using each tire of test number 1 as a representative, we compared the wet performance on a concrete road surface (skid number SN = 35, which indicates road surface roughness) and an asphalt road surface (skin number SN = 50). was indistinguishable from the comparison tires. The wet performance index is a comparison of the distance it takes to apply the brakes and stop when driving at 60 km/h, and the repulsion elasticity of the tread rubber is 40%, and the tire size.
185/70 The stopping distance (27.5 m) of a tire with SR14 and T/H of 0.53 is taken as an index of 100, and the wet index of a tire with a different tread rubber impact resilience is 27.5/of a tire with an other tread rubber impact resilience. It is expressed as stopping distance from 60 km/h x 100. Furthermore, each of the representative tires mentioned above was tested for vibration ride quality by comparing the magnitude of the force generated on the tire's rotating shaft during rotation on a test drum with protrusions, and the following results were obtained.

【表】 すなわち、この発明によるタイヤには、振動乗
心地性能の事実上の劣化が伴われていない。 また同様の代表タイヤについてそれぞれコーナ
リングパワーを比較試験し、比較タイヤの操縦性
能を指数100であらわしたとき、この発明のタイ
ヤは指数101で、ほゞ同一の成積が得られた。 操縦性能の指数は、比較タイヤのコーナリング
パワー(74.2Kg/deg)を100とした時本発明の操
縦性能指数は、 本発明のコーナリングパワー/74.2(Kg/deg)
×100 で表わされる。 以上のべたように、この発明によれば、サイド
ウオールゴムについての従来とは観点を異にする
物性値の選択で、タイヤの転り抵抗を飛躍的に、
しかしウエツト性能、振動乗心地性能さらには操
縦安定性などの悪化を事実上伴うなく、有利に軽
減改善することができる。
[Table] That is, the tire according to the present invention is not accompanied by virtually any deterioration in vibration ride comfort performance. In addition, similar representative tires were tested to compare their cornering power, and when the handling performance of the comparative tires was expressed as an index of 100, the tire of the present invention had an index of 101, and almost the same performance was obtained. The steering performance index of the present invention is: Cornering power of the present invention/74.2 (Kg/deg) When the cornering power (74.2 Kg/deg) of the comparison tire is taken as 100, the steering performance index of the present invention is: Cornering power of the present invention/74.2 (Kg/deg)
It is expressed as ×100. As described above, according to the present invention, by selecting physical property values for the sidewall rubber that are different from the conventional ones, the rolling resistance of the tire can be dramatically improved.
However, it is possible to advantageously reduce and improve wet performance, vibration riding comfort performance, and steering stability without actually causing any deterioration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般ラジアルタイヤの各部が、転り抵
抗に及ぼす要因の寄与率を示したタイヤ断面図、
第2図はトレツドゴムの反発弾性率の、転り抵抗
およびウエツト性能に及ぼす影響をあらわすグラ
フ、第3図はサイドウオールゴムの種々な動的弾
性率の下で、転り抵抗に及ぼされる傾向を示した
グラフであり、第4図はこの発明の適用に有利な
ラジアルタイヤの一般断面図である。 1……トレツドゴム、2……ベルト、3……カ
ーカス、4……サイドウオールゴム、5……シヨ
ルダーゴム、6……ビードコアー、B……ビード
ベース、H……タイヤ高さ、T……折返し高さ。
Figure 1 is a tire cross-sectional view showing the contribution of factors to rolling resistance of each part of a general radial tire.
Figure 2 is a graph showing the effect of the impact modulus of tread rubber on rolling resistance and wet performance. Figure 3 is a graph showing the influence of the impact modulus of tread rubber on rolling resistance under various dynamic moduli of sidewall rubber. FIG. 4 is a general cross-sectional view of a radial tire to which the present invention is advantageously applied. 1...Tread rubber, 2...Belt, 3...Carcass, 4...Side wall rubber, 5...Shoulder rubber, 6...Bead core, B...Bead base, H...Tire height, T...Turn height difference.

Claims (1)

【特許請求の範囲】 1 タイヤの実質上の半径面内に配列した有機繊
維コードからなる少くとも1プライのカーカス
を、ビードコアーのまわりに巻返してタイヤの半
径方向外方へ折返し、このカーカスのまわりを取
囲んで配置した複数のコード層よりなるベルトと
協同作動するボデイ補強とし、このベルトの外周
のトレツドゴムと、カーカス両側のサイドウオー
ルゴムとの各外皮をそなえた空気入りタイヤであ
つて、サイドウオールゴムが、動的弾性率5×
106dyn/cm2以上、2×107dyn/cm2以下の物性を
もつことを特徴とする空気入りラジアルタイヤ。 2 トレツドゴムとサイドウオールゴムとの両外
皮が、サイドウオールゴムの動的弾性率よりは高
いがトレツドゴムのそれよりは低いゴムストツク
からなるシヨルダゴムの外皮を介し互いに接合す
る特許請求の範囲第1項記載のタイヤ。 3 トレツドゴムの側端が楔状をなしてサイドウ
オールゴムの半径方向外端とシヨルダゴムとの間
に狭在位置する特許請求の範囲第2項記載のタイ
ヤ。 4 ベルトがタイヤの赤道に対し比較的小さい角
度の傾斜配列で、互いに交差する少くとも2層の
金属コード層である特許請求の範囲第1、2項ま
たは第3項記載のタイヤ。 5 カーカスの折返しが、ビードベースから測つ
てタイヤ高さの25%以内の折返し高さをもつ特許
請求の範囲第1、2、3項または第4項記載のタ
イヤ。
[Claims] 1. At least one ply carcass made of organic fiber cords arranged substantially within the radial plane of the tire is wound around a bead core and folded outward in the radial direction of the tire, and the carcass is A pneumatic tire having a body reinforcement that works in cooperation with a belt consisting of a plurality of cord layers arranged around the circumference, and a pneumatic tire having outer skins of tread rubber around the outer circumference of the belt and sidewall rubber on both sides of the carcass, The sidewall rubber has a dynamic elastic modulus of 5×
A pneumatic radial tire characterized by having physical properties of 10 6 dyn/cm 2 or more and 2×10 7 dyn/cm 2 or less. 2. The outer skins of the tread rubber and the sidewall rubber are joined to each other through the outer skin of the shoulder rubber, which has a rubber stock having a dynamic elastic modulus higher than that of the sidewall rubber but lower than that of the tread rubber. tire. 3. The tire according to claim 2, wherein the side end of the tread rubber is wedge-shaped and is located between the radially outer end of the sidewall rubber and the shoulder rubber. 4. A tire according to claim 1, 2 or 3, wherein the belt is at least two layers of metal cords crossing each other in an inclined arrangement at a relatively small angle to the equator of the tire. 5. The tire according to claim 1, 2, 3 or 4, wherein the carcass folds have a fold height within 25% of the tire height as measured from the bead base.
JP55164452A 1980-11-21 1980-11-21 Pneumatic radial tire Granted JPS5787703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55164452A JPS5787703A (en) 1980-11-21 1980-11-21 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55164452A JPS5787703A (en) 1980-11-21 1980-11-21 Pneumatic radial tire

Publications (2)

Publication Number Publication Date
JPS5787703A JPS5787703A (en) 1982-06-01
JPS6214403B2 true JPS6214403B2 (en) 1987-04-02

Family

ID=15793435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55164452A Granted JPS5787703A (en) 1980-11-21 1980-11-21 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JPS5787703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521041Y2 (en) * 1986-04-11 1993-05-31

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4184669B2 (en) * 2002-01-21 2008-11-19 株式会社ブリヂストン Pneumatic tire and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521041Y2 (en) * 1986-04-11 1993-05-31

Also Published As

Publication number Publication date
JPS5787703A (en) 1982-06-01

Similar Documents

Publication Publication Date Title
US8490667B2 (en) Pneumatic tire
JP4540487B2 (en) Pneumatic tire
JPS644922B2 (en)
WO2006070533A1 (en) Pneumatic tire
JP2790982B2 (en) Pneumatic radial tire
JPS61200004A (en) Radial tire having improved configuration
EP0928704B1 (en) High transverse curvature tyre for two-wheeled vehicles
JPS59186702A (en) Pneumatic radial tyre
JPS6213203B2 (en)
JPH06115311A (en) Pneumatic tire
US20020195184A1 (en) High transverse-curvature tire for two-wheeled vehicles
JPH019681Y2 (en)
JP3749351B2 (en) High performance flat pneumatic radial tire
JP6507029B2 (en) Pneumatic tire
JP4526363B2 (en) Pneumatic tire
JPS5845366B2 (en) Pneumatic radial tires with excellent high-speed durability
JPS6214403B2 (en)
JPS6147721B2 (en)
JPH0319803B2 (en)
JPH0127884B2 (en)
JPS63180506A (en) Pneumatic radial tire
JP5227826B2 (en) Pneumatic radial tire
JP3426287B2 (en) Pneumatic tires with low tire noise
JPH07115568B2 (en) Pneumatic radial tires
JPH11217779A (en) Material for reinforcing rubber product and pneumatic tire