JPS62143960A - Heat-resistant, flame-retardant resin composition - Google Patents

Heat-resistant, flame-retardant resin composition

Info

Publication number
JPS62143960A
JPS62143960A JP28445385A JP28445385A JPS62143960A JP S62143960 A JPS62143960 A JP S62143960A JP 28445385 A JP28445385 A JP 28445385A JP 28445385 A JP28445385 A JP 28445385A JP S62143960 A JPS62143960 A JP S62143960A
Authority
JP
Japan
Prior art keywords
resin
flame
parts
weight
abs resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28445385A
Other languages
Japanese (ja)
Inventor
Kyozo Mori
森 恭三
Yasuo Kobayashi
康男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP28445385A priority Critical patent/JPS62143960A/en
Publication of JPS62143960A publication Critical patent/JPS62143960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:A resin composition having improved heat resistance and flame retardance without damaging characteristic physical properties of ABS resin, especially impact resistance, comprising a modified ABS resin and a specific phosphorus compound. CONSTITUTION:100pts.wt. modified ABS resin comprising (A) 97-75wt% resin component consisting of (i) 50-87wt% mixed monomer of vinyl aromatic monomer (preferably styrene) and acrylonitrile, (ii) 8-35wt% (meth)acrylic acid ester of halogen-containing phenolic derivative shown by formula I (R1 is H or CH$3; R2 is 1-4C alkyl or chloro; m is 2-5; n and l are 0-3 and l+m+n=5) and (iii) 5-30wt% mixed monomer of maleic anhydride and n- phenyl-maleimide and (B) 3-25wt% rubber component (preferably butadiene rubber) is blended with (C) 0.5-10pts.wt. phosphorus compound shown by formula II or formula III (R3 is H, 1-18C alkyl, alkylene, etc.; R4 and R5 are 1-18C alkyl, alkylene, etc.), having >=240 deg.C/760mmHg boiling point.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱性の優れた難燃性樹脂組成物に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flame-retardant resin composition with excellent heat resistance.

更に詳しくは、下記一般式(I) 式中a:H又はCに R,: C,〜qなるアルキル基又はクロルm:2,3
,4,5 n、’e:0,1,2,3 但し、e+m+n=sなる整数 ナルハロゲン含有フェノール誘導体のアクリル酸或いは
メタクリル酸のエステル及びビニル芳香族単量体、アク
リロニトリル、無水マレイン酸、n−フェニルマレイミ
ドを樹脂成分として含む変性ABS樹脂と、一般式(1
1) (III)のリン化合物(ただし沸点が240℃
以上/7’60jlllHg)とからなる1iIIt熱
性の優れた難燃性樹脂組成物に関する。
More specifically, the following general formula (I), where a: H or C is R,: C, - q alkyl group or chloro m: 2,3
,4,5 n,'e: 0,1,2,3 However, e+m+n=s is an integer of acrylic or methacrylic acid esters of halogen-containing phenol derivatives, vinyl aromatic monomers, acrylonitrile, maleic anhydride, Modified ABS resin containing n-phenylmaleimide as a resin component and general formula (1
1) Phosphorus compound (III) (with a boiling point of 240°C
The present invention relates to a flame-retardant resin composition with excellent thermal properties comprising:

八 八−P−八   (Iり 八 ヘーP−へ   (III) ++ 式中へ:水酸基、C1乃至Cps  のアルキル基、ア
ルキレン基及び芳香族置換基 RlFt、:O,乃至C+aのアルキル基、アルキレン
基及び芳香族置換基 (従来の技術) 所謂ABS樹脂は、その成形加工性や機械的強度、電気
絶縁性が優れていることから自動車部品、電気・電子機
器部品、精密・OA機器部品などに使用する為には、難
燃性の付与が要求されるケースが多い。又上記機器類は
、近年小型化、薄肉化による軽量化の方向にある為、諸
性能の向上、特に耐熱性の向上が求められて来ているの
も周知の通りである。
88-P-8 (Iri8heP- (III) ++ Into the formula: hydroxyl group, alkyl group from C1 to Cps, alkylene group and aromatic substituent RlFt,: O, to alkyl group from C+a, alkylene Groups and aromatic substituents (prior technology) ABS resin is used for automobile parts, electric/electronic equipment parts, precision/OA equipment parts, etc. due to its excellent moldability, mechanical strength, and electrical insulation properties. In many cases, flame retardancy is required in order to use the equipment.In recent years, the above-mentioned equipment has been becoming smaller and lighter due to thinner walls, so it is necessary to improve various performances, especially heat resistance. It is well known that there is a growing demand for

この様に、上記用途向けのABS樹脂は、ABS樹脂が
本来持っている優れた成形加工性や機械的強度、電気絶
縁性に加え、優れた耐熱性と難燃性を合わせ持つことが
要求されている。
In this way, ABS resins for the above applications are required to have excellent heat resistance and flame retardancy, in addition to the excellent moldability, mechanical strength, and electrical insulation properties that ABS resins inherently have. ing.

ABS樹脂の難燃化方法としては、所謂難燃剤をABS
樹脂に添加混合する方法や難燃性の化合物を共重合する
方法、樹脂状成分に官能基を導入し、これとの反応性を
有する官能基を含有した難燃剤とを押出機中等で反応さ
せる方法など種々の方法が行なわれている。
As a method for making ABS resin flame retardant, so-called flame retardants are added to ABS resin.
A method of adding and mixing with a resin, a method of copolymerizing a flame retardant compound, a method of introducing a functional group into a resinous component and reacting it with a flame retardant containing a functional group that is reactive with this in an extruder etc. Various methods are being used.

(発明が解決しようとする問題点) しかるに、いずれの方法においても、難燃性は得られる
反面他の物性に好ましくない影響を招く傾向が見られる
(Problems to be Solved by the Invention) However, although flame retardance is obtained in either method, there is a tendency for other physical properties to be adversely affected.

不燃性ないしは難燃性化合物を添加混合する方法では、
それらの主要な性質である耐衝撃性及び成形時の熱安定
性を常に低下させる傾向がある。さらには低分子量の難
燃剤を添加混合した場合は、上記の問題点の他に熱変形
温度の低下成形加工時の腐食性気体の発生、長期使用期
間中に樹脂から滲出する物質の衛生性及び難燃性の持続
性等が問題とされてくる。
In the method of adding and mixing nonflammable or flame retardant compounds,
They always tend to reduce their main properties, impact resistance and thermal stability during molding. Furthermore, when a low molecular weight flame retardant is added and mixed, in addition to the above-mentioned problems, there is a reduction in heat distortion temperature, generation of corrosive gas during molding, and sanitary problems due to substances exuding from the resin during long-term use. The sustainability of flame retardancy is becoming an issue.

一方、共重合や反応を利用した難燃化では、耐熱性の低
下は防げるものの現実的には、共重合により難燃化する
方法については、難燃性賦与化合物と仕モノマーとの共
、重合性や得られた樹脂組成物に望まれる物性を具備さ
せることが困雌な場合が多く、又、樹脂状成分に官能基
を導入し、これとの反応性を有する官能基を含有した難
燃剤とを押出機中等で反応させる方法も反応のコントロ
ールや得られた樹脂組成物に望まれる物性を具備させる
ことが囃しい状況にある。
On the other hand, flame retardancy using copolymerization or reaction can prevent a decrease in heat resistance, but in reality, the only way to achieve flame retardancy by copolymerization is to copolymerize a flame retardant imparting compound and a functional monomer. In many cases, it is difficult to provide the desired physical properties to the resulting resin composition.Furthermore, flame retardants containing functional groups that are reactive with the resinous components are introduced. However, it is still difficult to control the reaction and to provide the resulting resin composition with the desired physical properties.

以上の如く、ABS樹脂が本来持っている物性、特に#
衝撃性に何ら悪影響を与えることなく、耐熱性に優れた
難燃性耐衝撃性樹脂組成物を得ることは、未だ充分に発
展せしめられていないのが現状である。
As mentioned above, the physical properties that ABS resin originally has, especially #
At present, it has not yet been sufficiently developed to obtain a flame-retardant, impact-resistant resin composition that has excellent heat resistance without any adverse effect on impact properties.

(問題を解決するための手段) 本発明者等はこの様な事情に鑑み、鋭意検討した結果、
耐熱性向上に効果のある無水誘導体のアクリル酸或いは
メタクリル酸エステルをビニル芳香族単量体及びアクリ
ロニトリルに共重合して得られる樹脂を必須成分として
含む変性ABS樹脂に一般式(II)又は(III)の
リン化合物の単独又は混合物を添加することにより、耐
熱性に優れた難燃性耐衝撃性の樹脂が得られることを明
らかにし、本発明に達したものである。
(Means for solving the problem) In view of the above circumstances, the inventors of the present invention have conducted extensive studies and have found that
A modified ABS resin containing as an essential component a resin obtained by copolymerizing anhydrous derivative acrylic acid or methacrylic ester, which is effective in improving heat resistance, with a vinyl aromatic monomer and acrylonitrile, is combined with general formula (II) or (III). It has been revealed that a flame-retardant and impact-resistant resin with excellent heat resistance can be obtained by adding one or a mixture of the following phosphorus compounds, thereby achieving the present invention.

更に詳しく説明すれば、本発明者等は、本発明の課程に
おいでビニル芳香族単量体及びアクリロニトリルの存在
下に無水マレイン酸及びn−フェニルマレイミドとハロ
ゲン含有フェノール誘導体のアクリル酸或いはメタクリ
ル酸エステルを共重合して得られるポリマーを必須成分
とする変性ABS樹脂は優れた耐熱性を有し、且つ難燃
性であることを見い出した。
More specifically, in the process of the present invention, the present inventors prepared an acrylic acid or methacrylic acid ester of maleic anhydride and n-phenylmaleimide with a halogen-containing phenol derivative in the presence of a vinyl aromatic monomer and acrylonitrile. It has been found that a modified ABS resin whose essential component is a polymer obtained by copolymerizing the above has excellent heat resistance and flame retardancy.

しかるに上記変性ABS樹脂のみで難燃性を得る為には
、臭素含有量に換算して12wt%以上のハロゲンが必
要である。樹脂成分としてのハロゲン含有フェノール誘
導体のアクリル酸或いはメタクリル酸エステルを多くす
ることはコスト的に不利であるばかりか重合反応性、特
にゴム成分へのグラフト重合時にゴム粒子径のコントロ
ールが難かしくなるなど好ましくない。
However, in order to obtain flame retardancy using only the above-mentioned modified ABS resin, 12 wt% or more of halogen is required in terms of bromine content. Increasing the amount of acrylic acid or methacrylic ester of a halogen-containing phenol derivative as a resin component is not only disadvantageous in terms of cost, but also makes it difficult to control the polymerization reactivity, especially the rubber particle size during graft polymerization to the rubber component. Undesirable.

難燃化に必要なハロゲンの量を減少せしめる為に三酸化
アンチモンやリン化合物などの難燃助剤を使用すること
はよく知られている。
It is well known to use flame retardant aids such as antimony trioxide and phosphorus compounds to reduce the amount of halogen required for flame retardancy.

しかじ三酸化アンチモンの添加はABS樹脂q)衝撃性
を著しく減じせしめ、本来の物性を損うことがあるし、
又、リン化合物例えばトリフェニルフォスファイト□、
トリスジブロムプロピルフォスフェート等の添加は、A
BS樹脂の熱変形温度を低下せしめたりあるいは成形物
に望ましくない色相を与えたりすることがあるのも周知
の通りである。
However, the addition of antimony trioxide can significantly reduce the impact resistance of ABS resin q) and may impair its original physical properties.
Also, phosphorus compounds such as triphenylphosphite□,
Addition of tris dibromopropyl phosphate etc. is A.
It is also well known that this may lower the heat distortion temperature of the BS resin or impart an undesirable hue to the molded product.

ところが、本発明者等は鋭意検討する中で上記変性AB
S@脂に一般式(■)又は([)のリン化合物の単独又
は混合物を添加するとP#衝撃性と熱変形温度になんら
悪影響を及ぼすことなく、臭素化合物とリン化合物の相
剰作用により著しい難燃効果をもたらすことを明らかに
し、本発明に達したものである。
However, the inventors of the present invention discovered that the above-mentioned modified AB
When phosphorus compounds of general formula (■) or ([) are added alone or as a mixture to S@ fat, there is no adverse effect on P# impact strength and heat distortion temperature, but due to the interaction of the bromine compound and the phosphorus compound, there is a significant The present invention was achieved by clarifying that the flame retardant effect can be achieved.

本発明の第一成分である変性ABS樹脂は、ゴム成分3
〜25wt%と樹脂成分97〜75wt%からなる組成
物でその樹脂成分はビニル芳香族単量体とアクリロニト
リルの混合モノマー50〜87wt%、ハロゲン含有フ
ェノール誘導体のアクリル酸或いはメタクリル酸のエス
テルを8〜35wt%と無水マレイン酸及びn−フェニ
ルマレイミドの混合モノマー5〜30wt%とからなる
ものである。
The modified ABS resin which is the first component of the present invention is rubber component 3.
~25 wt% and a resin component of 97 to 75 wt%, the resin component being 50 to 87 wt% of a mixed monomer of vinyl aromatic monomer and acrylonitrile, and 8 to 87 wt% of a halogen-containing phenol derivative ester of acrylic acid or methacrylic acid. 35 wt% and 5 to 30 wt% of a mixed monomer of maleic anhydride and n-phenylmaleimide.

ここでビニル芳香族単量体としてはスチレンカ最モ適当
であるがα−メチルスチレン、P−メチルスチレン等の
如きスチレン誘導体も使用でき、又、これらを併用して
も差し支えない。
Styrene is most suitable as the vinyl aromatic monomer, but styrene derivatives such as α-methylstyrene, P-methylstyrene, etc. can also be used, and these may also be used in combination.

ハロゲン含有フェノール誘導体のアクリル酸或いはメタ
クリル酸のエステルとは、次の一般式(1)で示される
化合物でありハロゲン含有フェノール誘導体とアクリル
酸りロライド或いはメタクリμ酸クロライドとの反応に
よって得られるエステルである。
The ester of acrylic acid or methacrylic acid of a halogen-containing phenol derivative is a compound represented by the following general formula (1), and is an ester obtained by the reaction of a halogen-containing phenol derivative with acrylic acid chloride or methacrylic acid chloride. be.

式中R,:H又はCに F% : C,〜qなるアルキル基或いはクロル e:2. 3. 4. 5 m、  n:0.  1.  2. 3但しe +m+
n = sなる整数 樹脂成分中のビニル芳香族単量体とアクリロニトリルの
混合モノマーの含有量は50〜8 ’ywt%であり、
両車量体の使用比率はビニIV 芳香族単量体/アクリ
ロニ)!jzu=65・〜9515〜35(重量比)の
範囲が望ましい。
In the formula, R, :H or C is F%: C, ~q alkyl group or chloro e:2. 3. 4. 5 m, n: 0. 1. 2. 3 However, e +m+
Integer n = s The content of the mixed monomer of vinyl aromatic monomer and acrylonitrile in the resin component is 50 to 8'ywt%,
The usage ratio of both vehicles is Vini IV aromatic monomer/acryloni)! The range of jzu=65.about.9515˜35 (weight ratio) is desirable.

ハロゲン含有フェノール誘導体のアクリル酸或はメタク
リル酸エステルの含有量は8wt%から35wt%、好
ましくは10Vi’t%からaowt%である。8wt
%より少なくすると離燃性の点から、又35wt%以上
にすると得られる樹脂の性状及び重合反応のコントロー
ル面から好ましくない。
The content of acrylic acid or methacrylic ester of the halogen-containing phenol derivative is from 8 wt% to 35 wt%, preferably from 10 Vi't% to aowt%. 8wt
If it is less than 35 wt %, it is unfavorable from the viewpoint of flammability, and if it is more than 35 wt %, it is unfavorable from the viewpoint of controlling the properties of the resin obtained and the polymerization reaction.

又、無水マレイン酸及びn−フェニルマレイミドの混合
モノマーの含有量はSwt%から30wt%であり、好
ましくはSwt%から2 owt%である。swt%よ
り少ないと得られる樹脂、の耐熱性が不充分であり30
wt%を越えると得られる樹脂の性状及び重合反応のコ
ントロール面から好ましくない。
Further, the content of the mixed monomer of maleic anhydride and n-phenylmaleimide is from Swt% to 30wt%, preferably from Swt% to 2 owt%. If it is less than swt%, the resulting resin will have insufficient heat resistance and 30
If it exceeds wt%, it is unfavorable from the viewpoint of the properties of the resulting resin and the control of the polymerization reaction.

又、無水マレイン酸とn−フェニルマレイミドの使用比
率については特に制限はない。
Further, there is no particular restriction on the ratio of maleic anhydride to n-phenylmaleimide.

次にゴム成分としては、耐衝撃性樹脂の製造に一般に用
いられるものであり、ブタジェン系ゴムが好適であるが
、特に限定されるものではない。そして、変性ABS樹
脂中のゴム量は3wt%から25wt%である。3wt
%以下では耐衝撃性が不十分であり、2 swt%以上
では耐衝撃性以外の物理的性質に欠陥が生じてくる。
Next, as the rubber component, a butadiene rubber is suitable, which is generally used in the production of impact-resistant resins, but it is not particularly limited. The amount of rubber in the modified ABS resin is from 3 wt% to 25 wt%. 3wt
If it is less than 2 swt%, the impact resistance will be insufficient, and if it is more than 2 swt%, defects will occur in physical properties other than impact resistance.

本発明における変性ABS樹脂の製造は、樹脂成分を構
成する反応性化合物を所定の割合に混合してゴム成分の
存在下にグラフト重合せしめる方法、或いはゴムの存在
下又は非存在下に樹脂成分を構成する反応性化合物を混
合して共重合せしめた樹脂を通常のABS樹脂と所定の
割合で混合せしめる方法等を採用することが出来る。
The modified ABS resin in the present invention can be produced by mixing the reactive compounds constituting the resin component in a predetermined ratio and graft polymerizing the mixture in the presence of a rubber component, or by adding the resin component in the presence or absence of rubber. A method can be adopted in which a resin obtained by mixing and copolymerizing the constituent reactive compounds is mixed with an ordinary ABS resin at a predetermined ratio.

本発明の第二、第三成分であるリン系化合物は次の一般
式(■)、(([1) で示されるフォスフイン化合物で(n) (nu)式中
へはH又はCI乃至C1,のアルキル基、アルキレン基
、芳香族置換基であり、八、八はCI乃至C1゜のアル
キル基、アルキレン基、芳香族置換基である。
The phosphorus compound which is the second and third component of the present invention is a phosphine compound represented by the following general formula (■), (([1) (n) (nu) in which H or CI to C1, is an alkyl group, alkylene group, or aromatic substituent, and 8 and 8 are an alkyl group, alkylene group, or aromatic substituent of CI to C1°.

上記一般式(II)及び一般式Qll)で示されるリン
化合物の沸点は添加する対象となる変性ABS樹脂の成
形加工温度が230℃前後であること及び成形後の樹脂
の耐熱性の維持のため240℃以上/760ffHgで
あることを必要とする。
The boiling point of the phosphorus compound represented by the above general formula (II) and general formula Qll) is determined because the molding temperature of the modified ABS resin to which it is added is around 230°C and to maintain the heat resistance of the resin after molding. The temperature must be 240°C or higher/760ffHg.

一般式(n)及び一般式(Ill)のリン化合物の添加
量は好ましくはC5乃至towt%の[囲である。o、
 s w t%以下では難燃化のだめの添加効果があま
り期待できず、又towt%以上では熱変形温度が若干
低下したシするので好ましくない。
The amount of the phosphorus compound of general formula (n) and general formula (Ill) to be added is preferably in the range of C5 to towt%. o,
If it is less than swt%, no significant flame retardant effect can be expected, and if it is more than towt%, the heat distortion temperature will be slightly lowered, which is not preferable.

一般式(ff)のリン化合物(沸点240℃以上/76
0肩llHg)とは、例えばジフェニルフォ ス フ 
ィ ン 、  ジ ト リ ル フ ォ ヌ フ ィ 
ン 、トリ  フェ ニ ル フ ォ ス フ ィ ン
 、  ト リ  ト リ ル フ ォ ス フ イン
、トリスエチルフェニルフォスフイン、トリヌクロルフ
エニルフォスフィン等でアル。
Phosphorus compound of general formula (ff) (boiling point 240°C or higher/76
For example, diphenylphosph
fin, trill founfi
Aluminum, triphenylphosphine, tritrilylphosphine, trisethylphenylphosphine, trinuchlorophenylphosphine, etc.

一般式(II[)のリン化合物(沸点2′40℃以上7
760mH9)とは、例えばトリエチルフォスフインオ
キシド、トリプロビルフォスフト リ ル フ ォ ス
 フ ィ オ キ ン ド 、  ト リ ヌ エ チ
 ル フェニルフォスフインオキシド、トリスクロルフ
ェニルフォスフインオキシド等−’する。
Phosphorus compound of general formula (II[) (boiling point 2'40℃ or higher 7
760mH9) includes, for example, triethylphosphine oxide, tripropylphosphthryl phosphine oxide, triethyl phenylphosphine oxide, trischlorphenylphosphine oxide, etc.

なお、上述した三成分の他に、必要に応じて種々の添加
剤例えば一般に使用されている熱安定剤、抗酸化剤、滑
剤、着色剤を同時に添加する事が出来る。
In addition to the above-mentioned three components, various additives such as commonly used heat stabilizers, antioxidants, lubricants, and colorants can be added at the same time as necessary.

次に混合方法は特別の手段を要することなく、慣用の混
合装置、例えば押出機、パンバリーミキサー等が使用さ
れる。
Next, the mixing method does not require any special means, and conventional mixing equipment such as an extruder, a Panbury mixer, etc. can be used.

以下実施例について本発明の詳細を述べる。The present invention will be described in detail with reference to Examples below.

なお、実施例及び比較例における耐炎性は米国アンダー
ライターズラボラトリーにて制定されたサブジェクト番
号94号に基づく方法(以下UL規格94号と略す)に
より測定した。試験片の形状は厚み属インチ、巾%イン
チ、長さ6インチである。
The flame resistance in the Examples and Comparative Examples was measured by a method based on Subject No. 94 established by the American Underwriters Laboratory (hereinafter abbreviated as UL Standard No. 94). The shape of the test piece is 1 inch thick, 1 inch wide, and 6 inches long.

(実施例1) スチレン2346g投入した攪拌器、還流コンデンサー
、窒素導入口及び添加用ノズルがついた10eオートク
レーブに、小塊状に切ったスチレン・ブタジェンゴム(
旭化成■製タフデン2000A)153gを投入し、窒
素気流下で4時間攪拌してゴムを完溶させた。次に、こ
の溶液中に、アクリロニトリル351 g、2,4.6
−)  リプロモフ、エニルメタクリレート255g、
無水マレイン酸26、5 g及びn−フェニルマレイミ
ド26.5gと重合開始剤であるラウロイルパーオキシ
ド10. s q 、重合溶媒としてのトルエン750
qを加え、室温で30分攪拌後、75°Cに昇温しで5
時間重合した。この時、内温が75℃に上ってから20
分毎に無水マレイン酸78、59とn−フェニルマレイ
ミド78.59を表−1に示す分割添加スケジュールに
従って粉末状態で投入口ノズルから後添加した。
(Example 1) A 10e autoclave equipped with a stirrer, a reflux condenser, a nitrogen inlet, and an addition nozzle was charged with 2346 g of styrene, and styrene-butadiene rubber cut into small pieces (
153 g of Tuffden 2000A (manufactured by Asahi Kasei ■) was added and stirred for 4 hours under a nitrogen stream to completely dissolve the rubber. Next, in this solution, 351 g of acrylonitrile, 2,4.6
-) Lipromov, enyl methacrylate 255 g,
26.5 g of maleic anhydride, 26.5 g of n-phenylmaleimide, and 10.5 g of lauroyl peroxide as a polymerization initiator. sq, toluene 750 as polymerization solvent
q and stirred at room temperature for 30 minutes, then heated to 75°C and stirred for 5 minutes.
Polymerized for hours. At this time, after the internal temperature rose to 75℃,
Every minute, maleic anhydride 78,59 and n-phenylmaleimide 78,59 were post-added in powder form from the inlet nozzle according to the divided addition schedule shown in Table 1.

重合終了後、高粘度の重合液をアルミ箔製の箱に移し、
減圧乾燥品中で第一段:100℃X 10 TOrrX
3時間、第二段:160℃×3 ’rorrxs時間減
圧脱揮し、乳白黄色の塊状樹脂16109を得た。生成
した樹脂をア七トンで分別し、遠心分離後の可溶分につ
いてm ’f& 粘度(溶媒、メチルエチルケトン測定
温度30℃)を測定したところ〔η) = 0.66で
あった。
After polymerization, transfer the highly viscous polymerization solution to an aluminum foil box.
First stage in vacuum dried product: 100℃X 10 TOrrX
The mixture was devolatilized under reduced pressure for 3 hours and second stage: 160° C. for 3'rorrxs hours to obtain milky white yellow lumpy resin 16109. The produced resin was fractionated with an acetate, and the m'f& viscosity (solvent, methyl ethyl ketone measurement temperature: 30° C.) of the soluble portion after centrifugation was measured, and it was found that [η) = 0.66.

表−1無水マレイン酸とn−フェニル マレイミドの分割添加スケジュール 得られた樹脂は分析の結果 スチレン         63重量部アクリロニトリ
ル     11重量部2、4.6−1−リプロモフェ
ニルメタクリレート12 無水マレイン酸       7 n−フェニルマレイミド    7 スチレン・ブタジェンゴム 10 の組成を有した。この樹脂100′重量部とトリフェニ
ルフォスフイン3重量部をリボンプレンダーで均一に混
合した後、押出機(シリンダ一温度230℃)でベレ7
)化し、射出成形機(シリンダ一温度230℃、ゲージ
圧801)で所定の試験片を作成し、耐炎性、熱変形温
度及びアイゾツト新譜強度を測定した。結果を表−2に
示すが、本組成物は優れた耐熱性と難燃性、耐衝撃性を
示した。
Table 1 Schedule for the divisional addition of maleic anhydride and n-phenylmaleimide The obtained resin was analyzed as follows: Styrene: 63 parts by weight Acrylonitrile: 11 parts by weight 2, 4.6-1-Lipromophenyl methacrylate 12 Maleic anhydride: 7 n- It had a composition of 7 parts phenylmaleimide and 10 parts styrene-butadiene rubber. After uniformly mixing 100 parts by weight of this resin and 3 parts by weight of triphenylphosphine in a ribbon blender, an extruder (cylinder temperature 230°C)
), predetermined test pieces were prepared using an injection molding machine (cylinder temperature: 230°C, gauge pressure: 801°C), and flame resistance, heat distortion temperature, and Izod strength were measured. The results are shown in Table 2, and the composition showed excellent heat resistance, flame retardancy, and impact resistance.

(比較例1) 実施例1で得られた樹脂を実施例1と同様にして押出・
射出成形して試験片を作成し、実施例1と同様の評価を
行なった。結果を表−2に示す。本樹脂は実施例1より
やや憂れた熱変形温度を示したが耐炎性が94%Bであ
った。
(Comparative Example 1) The resin obtained in Example 1 was extruded and
Test pieces were prepared by injection molding and evaluated in the same manner as in Example 1. The results are shown in Table-2. Although this resin exhibited a heat distortion temperature slightly lower than that of Example 1, its flame resistance was 94% B.

(比較例2) スチレン          64重量部ア り リ 
口 ニ ト  リ ル               
  242、4.6− )リプロモフェニルメタクリレ
 −  ト                    
                1 2スチレン・ブ
タジェンゴム  1゜ ベンゾイルパーオキシド   o415ジクミルパーオ
キシド    0.1 上記組成物を攪拌装置のついた密閉型反応器に仕込み、
ゴム成分が完溶後70iCに昇温して攪拌下に4時間塊
状重合した。
(Comparative Example 2) Styrene 64 parts by weight
mouth ni tril
242, 4.6-) Ripromophenyl methacrylate
1 2 Styrene-butadiene rubber 1°benzoyl peroxide o415 dicumyl peroxide 0.1 The above composition was charged into a closed reactor equipped with a stirring device,
After the rubber component was completely dissolved, the temperature was raised to 70 iC and bulk polymerization was carried out for 4 hours while stirring.

さらに予じめ水200重量部、水酸化マグネシウム10
重量部、ラウリル硫酸ソーダα05重量部を混合して調
整しておいた水性分散剤を加え攪拌して懸濁させた。そ
の後120℃に昇温し5時間懸濁重合した。次に反応生
成物を室温迄冷却し、塩酸にて分散剤を分解した後得ら
れた重合体粒子を水洗乾燥した。
Furthermore, in advance, 200 parts by weight of water, 10 parts by weight of magnesium hydroxide,
An aqueous dispersant prepared by mixing 5 parts by weight of sodium lauryl sulfate α0 was added and stirred to suspend. Thereafter, the temperature was raised to 120°C and suspension polymerization was carried out for 5 hours. Next, the reaction product was cooled to room temperature, the dispersant was decomposed with hydrochloric acid, and the resulting polymer particles were washed with water and dried.

かくして得られた樹脂100重量部とトリフェニ/L’
 7才スフィン3N量部を実施例1と同様の手順で混合
・押出、射出成形して試験片を作成し、実施例2と同様
の評価を行なった。結果を表=1に示す。本組成物は実
施例1の組成物と同等の耐炎性及び耐衝撃性を示すが、
樹脂成分中にn−フェニルマレイミドを含んでいない為
に熱変形温度が劣る。
100 parts by weight of the resin thus obtained and tripheny/L'
A 3N portion of 7-year-old sphine was mixed, extruded, and injection molded in the same manner as in Example 1 to prepare a test piece, and evaluated in the same manner as in Example 2. The results are shown in Table 1. This composition exhibits flame resistance and impact resistance equivalent to the composition of Example 1, but
Since the resin component does not contain n-phenylmaleimide, the heat distortion temperature is poor.

表−2 実施例1  比較例1  比較例2 組成物中のBr含有量        7. OW t
% 7.1wt%  6.4Wtf)組成物中のトリフ
ェニルフオ     17wt%  O2,7wt%ス
フィンの含有量 耐炎性(UL規格94号)       94V−2’
94HB   94’V−2アイシフト衝撃強度 。イ/fji’mオ、7.イ、°°′掬“°°70 °
°′″゛0(実施例2) 実施例1で述べた装置にスチレン231゜qを入れ、実
施例1と同様にてスチレン・ブタジェンゴム115gを
溶解させた。引続きア り リ ロ ニ ト  リ ル
 369  g 、2,4.6−)  リ フ゛ロモフ
ェニルメタクリレート276g、無水マV47酸319
及Un−フェニルマレイミド14gを加え、均一な溶液
とした後ラウロイルパーオキシド10.8 gト)ルエ
ン7509を加え、室温で30分攪拌後、75℃に昇温
して5時間重合した。この時、内温が75℃になってか
ら無水マレイン酸72.2 gとn−フェニルマレイミ
ド32.19を20分毎に実施例1で示した如き方法で
分割添加し、樹脂組成が均一になるように努めた。重合
終了後、実施例1に述べた後処理法によって、うす白黄
色の樹脂1250gを得た。又、このった。
Table-2 Example 1 Comparative Example 1 Comparative Example 2 Br content in the composition 7. OW t
% 7.1wt% 6.4Wtf) Triphenylpho 17wt% O2, 7wt% Sphine content in the composition Flame resistance (UL Standard No. 94) 94V-2'
94HB 94'V-2 Eye shift impact strength. Lee/fji'm o, 7. I, °°´掬“°°70 °
°'''゛0 (Example 2) 231゜q of styrene was placed in the apparatus described in Example 1, and 115 g of styrene-butadiene rubber was dissolved in the same manner as in Example 1. 369 g, 2,4.6-) 276 g of rifromophenyl methacrylate, 319 g of Macan V47 acid anhydride
After adding 14 g of Un-phenylmaleimide to form a homogeneous solution, 10.8 g of lauroyl peroxide and 7509 toluene were added, and after stirring at room temperature for 30 minutes, the temperature was raised to 75° C. and polymerized for 5 hours. At this time, after the internal temperature reached 75°C, 72.2 g of maleic anhydride and 32.19 g of n-phenylmaleimide were added in portions every 20 minutes using the method shown in Example 1, so that the resin composition was uniform. I tried to be. After the polymerization was completed, 1250 g of a pale white-yellow resin was obtained by the post-treatment method described in Example 1. Also, this was it.

得られた樹脂は分析の結果 スチレン           62重量部アクリロニ
トリル      10重量部2、4.6− )リブロ
モフェニルメタクリレート15 無水マレイン酸         9 n−フェニルマレイミド     4 スチレン・ブタジェンゴム  10 の組成を有していた。上記樹脂100重量部にトリフェ
ニルフォスフイン1重量部を実施例1と同様にして混合
、押出、射出成形して試験片を作成し、実施例1と同様
の評価を行なった。本組成物は表−3に示す如く優れた
耐熱性と難燃性、耐衝撃性を示した。
As a result of analysis, the obtained resin had a composition of 62 parts by weight of styrene, 10 parts by weight of acrylonitrile, 15 parts by weight of ribromophenyl methacrylate, 15 parts by weight of maleic anhydride, 9 parts by weight of n-phenylmaleimide, and 10 parts by weight of styrene-butadiene rubber. 100 parts by weight of the above resin and 1 part by weight of triphenylphosphine were mixed, extruded, and injection molded in the same manner as in Example 1 to prepare a test piece, and the same evaluation as in Example 1 was performed. This composition exhibited excellent heat resistance, flame retardancy, and impact resistance as shown in Table 3.

(比較例3) 実施例2で得られた樹脂を実施例1と同様にして押出・
射出成形して試験片を作成し、実施例1と同様の評価を
行なった。結果を表−3に示す。本樹脂は比較例1の嗣
脂と同順に耐炎性が94HBであった。
(Comparative Example 3) The resin obtained in Example 2 was extruded and
Test pieces were prepared by injection molding and evaluated in the same manner as in Example 1. The results are shown in Table-3. The flame resistance of this resin was 94HB, which was the same as that of Comparative Example 1.

≠と← 表−3 実施例2    比較例3 組成物中のBr含有量      8.1wt%   
8.2 W t%酎耐性(UL規格94号)     
94■−294HB(一実施例3) 実施例1で述べた装置を用い、窒素気流下で攪拌しなが
ら スチレン         2145  Qア り リ
 ロ ニ ト  リ lし             
     3 0 6    g2、4; 6− ) 
!Jグロモフェニルメタクリレート504g 無水マレイン酸         17.39n−フェ
ニルマレイミド     27.7gラウロイルパーオ
キサイド   10.8 gトルエン750g を加え、室温で30分攪拌後、75°Cに昇温して5時
間重合した。この時、無水マレイン酸33.59とn−
フェニルマレイミド53.57を実施例1で示した如き
方法で20分毎に分割添加を行なった。重合終了後、未
反応モノマーを減圧脱揮することにより、うす黄色で透
明な樹脂1020gを回収した。この樹脂のアセトン可
溶分の〔η〕(溶KMEK、測定温度30℃)は0.6
8であった。
≠ and ← Table-3 Example 2 Comparative Example 3 Br content in composition 8.1wt%
8.2 Wt% alcohol resistance (UL standard No. 94)
94■-294HB (Example 3) Using the apparatus described in Example 1, styrene 2145Q was mixed with stirring under a nitrogen stream.
3 0 6 g2, 4; 6-)
! 504 g of J-glomophenyl methacrylate, 17.39 g of maleic anhydride, 27.7 g of n-phenylmaleimide, 10.8 g of lauroyl peroxide, and 750 g of toluene were added, and after stirring at room temperature for 30 minutes, the temperature was raised to 75°C and polymerized for 5 hours. At this time, maleic anhydride 33.59 and n-
53.57 ml of phenylmaleimide was added in portions every 20 minutes as described in Example 1. After the polymerization was completed, unreacted monomers were devolatilized under reduced pressure to recover 1020 g of a pale yellow and transparent resin. The acetone soluble content [η] of this resin (molten KMEK, measurement temperature 30°C) is 0.6
It was 8.

得られた樹脂は分析の結果 スチレン          511重部アクリロニト
リル        7 2、4.6− トリブロモフェニルメタクリレート28 無水マレイン酸         5 n−フェニルマレイミド     8 の組成を有していた。
As a result of analysis, the obtained resin had the following composition: styrene, 511 heavy acrylonitrile, 72,4,6-tribromophenyl methacrylate, 28 maleic anhydride, 5 n-phenylmaleimide, and 8.

かくして得られた樹脂60重量部と日本合成ゴム製AB
S樹脂(商品名DP−61’l)4 o 重fA部及U
 +−リフェニルフオスフインオキシド2重量部を実施
例1と同様の手順で混合、押出、射出成形して試験片を
作成し実施例1と同様の評価を行なった。
60 parts by weight of the thus obtained resin and AB manufactured by Japan Synthetic Rubber
S resin (product name DP-61'l) 4 o heavy f A part and U
2 parts by weight of +-liphenylphosphine oxide was mixed, extruded, and injection molded in the same manner as in Example 1 to prepare a test piece, and the same evaluation as in Example 1 was performed.

本組成物は表−4に示す如く優れた耐熱性と離燃性を示
しだ。
This composition exhibited excellent heat resistance and flammability as shown in Table 4.

(比較例4) 実施例3で得られた樹脂60重量部と日本合成ゴム製A
BS樹脂(商品名DP−611)40重量部を実施例1
と同様の手順で混合、押出、射出成形して試、験片を作
成し、実施例1と同様の評価を訂なった。結果を表−4
に示すが本組成物は耐炎性が94HBであった。
(Comparative Example 4) 60 parts by weight of the resin obtained in Example 3 and Nippon Synthetic Rubber A
Example 1 40 parts by weight of BS resin (trade name DP-611)
Test pieces were prepared by mixing, extruding, and injection molding in the same manner as in Example 1, and the same evaluation as in Example 1 was conducted. Table 4 shows the results.
As shown in the figure, the flame resistance of this composition was 94HB.

表−4 実施例3   比較例4Table-4 Example 3 Comparative example 4

Claims (1)

【特許請求の範囲】 (a)ビニル芳香族単量体とアクリロニトリルの混合モ
ノマー50〜87wt% (b)下記一般式( I )で示されるハロゲン含有フェ
ノール誘導体のアクリル酸或いはメタクリル酸エステル
8〜35wt% ▲数式、化学式、表等があります▼( I ) 式中R_1:H又はCH_3 R_2:C_1〜C_4なるアルキル基又はクロルm:
2、3、4、5 n、:l:0、1、2、3 ただし、l+m+n=5なる整数 (c)無水マレイン酸及びn−フェニルマレイミドの混
合モノマー5〜30wt% で〔(a)+(b)+(c)=100wt%〕である樹
脂成分97乃至75wt%とゴム成分3乃至25wt%
からなる変性ABS樹脂100重量部と、一般式(II)
又は(III) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III) R_3:H、C_1乃至C_1_0のアルキル基アルキ
レン基及び芳香族置換基 R_4、R_5:C_1乃至C_1_8のアルキル基、
アルキレ基及び芳香族置換基 で示され、しかも沸点が240℃以上/760mmHg
のリン化合物の両方又はいずれか一方0.5乃至10重
量部からなる耐熱・難燃性樹脂組成物。
[Scope of Claims] (a) Mixed monomer of vinyl aromatic monomer and acrylonitrile 50 to 87 wt% (b) 8 to 35 wt% of acrylic acid or methacrylic acid ester of a halogen-containing phenol derivative represented by the following general formula (I) % ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (I) In the formula, R_1: H or CH_3 R_2: C_1 to C_4 alkyl group or chlor m:
2, 3, 4, 5 n,: l: 0, 1, 2, 3, where l + m + n = 5 integer (c) Mixed monomer of maleic anhydride and n-phenylmaleimide at 5 to 30 wt% [(a) + (b) + (c) = 100 wt%], the resin component is 97 to 75 wt% and the rubber component is 3 to 25 wt%.
100 parts by weight of a modified ABS resin consisting of general formula (II)
Or (III) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (II) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (III) R_3: H, alkyl group of C_1 to C_1_0, alkylene group, and aromatic substituent R_4, R_5 : C_1 to C_1_8 alkyl group,
It is represented by an alkylene group and an aromatic substituent, and has a boiling point of 240°C or higher/760mmHg
A heat-resistant and flame-retardant resin composition comprising 0.5 to 10 parts by weight of either or both of the above phosphorus compounds.
JP28445385A 1985-12-19 1985-12-19 Heat-resistant, flame-retardant resin composition Pending JPS62143960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28445385A JPS62143960A (en) 1985-12-19 1985-12-19 Heat-resistant, flame-retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28445385A JPS62143960A (en) 1985-12-19 1985-12-19 Heat-resistant, flame-retardant resin composition

Publications (1)

Publication Number Publication Date
JPS62143960A true JPS62143960A (en) 1987-06-27

Family

ID=17678734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28445385A Pending JPS62143960A (en) 1985-12-19 1985-12-19 Heat-resistant, flame-retardant resin composition

Country Status (1)

Country Link
JP (1) JPS62143960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194496B1 (en) * 1996-05-09 2001-02-27 Basf Aktiengesellschaft Flame-resistant thermoplastic moulding materials with improved processing behavior

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944059A (en) * 1972-09-04 1974-04-25
JPS5282950A (en) * 1975-12-29 1977-07-11 Monsanto Co Flame retardant polymer composition
JPS57167341A (en) * 1981-04-08 1982-10-15 Asahi Chem Ind Co Ltd Thermoplastic resin composition
JPS6047045A (en) * 1983-08-24 1985-03-14 Denki Kagaku Kogyo Kk Thermoplastic resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944059A (en) * 1972-09-04 1974-04-25
JPS5282950A (en) * 1975-12-29 1977-07-11 Monsanto Co Flame retardant polymer composition
JPS57167341A (en) * 1981-04-08 1982-10-15 Asahi Chem Ind Co Ltd Thermoplastic resin composition
JPS6047045A (en) * 1983-08-24 1985-03-14 Denki Kagaku Kogyo Kk Thermoplastic resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194496B1 (en) * 1996-05-09 2001-02-27 Basf Aktiengesellschaft Flame-resistant thermoplastic moulding materials with improved processing behavior

Similar Documents

Publication Publication Date Title
EP0700968A1 (en) Flameproof thermoplastic resin compositions
EP1654315B1 (en) Flameproof thermoplastic resin composition
JP2008527070A (en) Flame retardant styrene resin composition
TWI353372B (en) Flame retardant molding composition
KR19990082693A (en) Flame-retarded resin composition
TWI262941B (en) Flameproof thermoplastic resin compositions
JP4674254B2 (en) Rubber-modified styrene flame retardant resin composition
GB2330583A (en) Flame-retardant thermoplastic resin compositions
JPS62143960A (en) Heat-resistant, flame-retardant resin composition
KR101411825B1 (en) Char generating agent, and abs resin composition using thereof
JPS6395249A (en) Flame-retardant resin composition
JPS63117057A (en) Flame-retardant, heat-resistant aromatic vinyl resin composition
JPH107870A (en) Flame-retardant thermoplastic resin composition
JPS62143961A (en) Flame-retardant resin composition having improved heat resistance
JPS62143962A (en) Flame-retardant, impact-resistant resin composition having improved heat resistance
JP4084873B2 (en) Flame retardant thermoplastic resin composition
JP3413293B2 (en) Flame retardant resin composition with excellent light resistance
JPH0680885A (en) Flame-retardant, heat-resistant, impact-resistant resin composition having excellent water resistance and fluidity
JPH10147679A (en) Flame-retardant styrene resin composition
JPH0195143A (en) Resin composition
EP0578873B1 (en) Flame-retardant resin composition
JP3254413B2 (en) Non-halogen flame-retardant resin composition
KR101010120B1 (en) Flame retardant rubber-modified styrene resin composition
JPH0971702A (en) Heat-resistant thermoplastic resin composition
JP3524992B2 (en) Flame retardant resin composition with excellent light resistance