JPS62143817A - Production of silica gel for liquid chromatography - Google Patents

Production of silica gel for liquid chromatography

Info

Publication number
JPS62143817A
JPS62143817A JP60283018A JP28301885A JPS62143817A JP S62143817 A JPS62143817 A JP S62143817A JP 60283018 A JP60283018 A JP 60283018A JP 28301885 A JP28301885 A JP 28301885A JP S62143817 A JPS62143817 A JP S62143817A
Authority
JP
Japan
Prior art keywords
aqueous solution
silica gel
hydrogel
mineral acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60283018A
Other languages
Japanese (ja)
Other versions
JPH0699133B2 (en
Inventor
Eiji Shioda
塩田 英司
Kazuaki Yamamoto
和明 山本
Masaaki Sasaki
正明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP60283018A priority Critical patent/JPH0699133B2/en
Publication of JPS62143817A publication Critical patent/JPS62143817A/en
Publication of JPH0699133B2 publication Critical patent/JPH0699133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To readily produce the titled silica gel at a low cost, by reacting an aqueous solution of an alkali metal silicate with an aqueous solution of a mineral acid, gelatinizing the resultant aqueous solution of silicic acid, treating the aqueous solution with an aqueous solution of ammonia, filtering and washing the filtrate with water, wet pulverizing the resultant hydrogel, spray-drying the pulverized hydrogel, treating the spray-dried hydrogel with a mineral acid and drying the treated hydrogel. CONSTITUTION:An aqueous solution of an alkali metal silicate is reacted with an aqueous solution of a mineral acid to give an aqueous solution of active silicic acid at 3.0-4.0pH in 6.5-11.5wt% SiO2 concentration, which is then gelatinized while stirring. An aqueous solution of ammonia is then added to react with the formed silica hydrogel slurry and the reaction slurry is filtered and washed with water to give hydrogel, which is wet pulverized. The pulverized hydrogel is further spray-dried, treated with an aqueous solution of a mineral acid, washed with water and dried. According to this method, the aimed silica gel, having high performance and smooth surfaces without containing deformed particles and useful as a packing for liquid chromatography is obtained at a low cost by a simple method without using an organic solvent or organic material and further requiring troublesome operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体クロマトグラフィー用’−7IJ力ゲル
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a '-7IJ gel for liquid chromatography.

シリカゲルは、架槁デキストラ/、ポリアクリルアミド
等のポリマー系充填剤に比して機械的強度が高く、また
pH,イオン強度、溶離液組成等の変化による膨潤・収
縮がほとんど無いことから、液体クロマトグラフィー用
充填剤として広く使用されている。
Silica gel has higher mechanical strength than polymer fillers such as cross-linked dextra/polyacrylamide, and it hardly swells or shrinks due to changes in pH, ionic strength, eluent composition, etc., so it is suitable for liquid chromatography. Widely used as a filler for graphics.

液体クロマトグラフィーは、分離を行う原理によって吸
着型2分配型、イオン変換型および分子篩型の四つの型
に分類され、そこに用いられる充填剤の性質も異なる。
Liquid chromatography is classified into four types, adsorption type, two-partition type, ion conversion type, and molecular sieve type, depending on the principle of separation, and the properties of the packing materials used therein also differ.

即ち、吸着型では、シリカゲルそのま\で;分配及びイ
オン交換型では、シリカゲルに有機7うン化合物あるい
はアルコール化合物等の有機化合物を化学的に結合させ
て;分子篩型では、シリカゲルその捷\あるいは有機化
合物を化学結合させて使用される。
That is, in the adsorption type, silica gel is used as it is; in the distribution and ion exchange type, organic compounds such as organic compounds or alcohol compounds are chemically bonded to silica gel; and in the molecular sieve type, silica gel is used as a Used by chemically bonding organic compounds.

〔従来の技術〕[Conventional technology]

従来、シリカゲルについては、球状シリカゲルと破砕状
シリカゲルとが知られている。球状シリカゲルは破砕状
シリカゲルに比して、その性能および使用特性の点で優
れている。
Conventionally, spherical silica gel and crushed silica gel are known as silica gel. Spherical silica gel is superior to crushed silica gel in terms of its performance and usage characteristics.

更に球状シリカゲルの内でも、液体クロマトグラフィー
用充填剤として使用する場合、その平均粒子径9表面種
、平均細孔径、細孔容積等の物性を厳密にコントロール
することが要求される。即ち、平均粒子径10〜50μ
1表面積600〜500ピ/9.平均細孔径80〜12
 OA、細孔容積08〜1.2a//gの物性を有した
球状シリカゲルが望まれている。
Furthermore, among spherical silica gels, when used as a packing material for liquid chromatography, it is required to strictly control physical properties such as average particle size, surface species, average pore diameter, and pore volume. That is, the average particle diameter is 10 to 50μ
1 surface area 600-500 pi/9. Average pore diameter 80-12
A spherical silica gel having physical properties of OA and pore volume of 08 to 1.2 a//g is desired.

しかしながら、この様なシリカゲルは製造が容易でなく
高価であっ乏。
However, such silica gel is not easy to manufacture and is expensive.

従来5球状のシリカゲルを得る方法としては、以下の方
法が知られている。
Conventionally, the following method is known as a method for obtaining 5-spherical silica gel.

(1)%開昭60−71515号公報には、水ガラスゾ
ルな第1の界面活性剤を含有する有機溶媒中で乳化させ
、次いで第2の界面活性剤を絵肌してゲル化させろ方法
が記載されている。
(1) Japanese Patent Publication No. 1987-71515 discloses a method in which a water glass sol is emulsified in an organic solvent containing a first surfactant, and then a second surfactant is applied to form a gel. Are listed.

この方法では、乳化に使用した有機溶媒とシリカゲルを
分離する為、蒸留工程を必要とし、経済的に不利である
This method requires a distillation step to separate the organic solvent used for emulsification and silica gel, which is economically disadvantageous.

また、得られたゲルの物性は明藁己されておらず、液体
クロマトグラフィー用充填剤としての有用性は不明であ
る。
Furthermore, the physical properties of the obtained gel have not been determined, and its usefulness as a packing material for liquid chromatography is unknown.

■ 特公昭54−9588号公報には、コロイド状シリ
カを水に対して混和性を有する重含可能な有機材料をバ
インダーとして用いて球状粒子を形成させる方法が記載
されている。
(2) Japanese Patent Publication No. 54-9588 describes a method of forming spherical particles using colloidal silica as a binder using an organic material that is miscible with water and capable of being loaded with water.

この方法で得られるものは、シリカゾル粒子と有機材料
の混合物であり、シリカゲルを得るには500℃以上で
、しかも4時間以上の焼結工程によりポリマー化した有
機材料を除去しなければならない。Iた、得られるゲル
の物性は、原料のコロイド状シリカの種類で決ってしま
い、所望とするゲル物性へのコントロールが困難である
What is obtained by this method is a mixture of silica sol particles and organic material, and in order to obtain silica gel, the polymerized organic material must be removed by a sintering process at 500° C. or higher and for 4 hours or more. Furthermore, the physical properties of the resulting gel are determined by the type of colloidal silica used as a raw material, and it is difficult to control the desired gel physical properties.

(3)  上述の如き有機溶媒あるいは有機材料を使用
することなく球状ゲルを得る方法としては噴霧乾燥法が
知られている。
(3) Spray drying is known as a method for obtaining spherical gels without using organic solvents or organic materials as described above.

特開昭 53−65293号には、シリカゾルを噴霧乾
燥する方法が提案されている。しかしながら、本発明者
等がこの方法を実施したところ、生成物に球状ではある
が中空あるいは犬きな?−Yみを有てるシリカゲルに成
り易い事が判った。
JP-A-53-65293 proposes a method of spray drying silica sol. However, when the present inventors carried out this method, the product was spherical but hollow or dog-shaped. It was found that silica gel tends to have a -Y appearance.

この様γC中空あるいは大きな窪みを有するシリカゲル
は、液体と・ロマトクシフィー用充填剤として使用する
場合、その強度が充分でなく破損したり、分離試料の広
がりの原因に成り易く好ましくない。
When silica gel having such γC hollows or large depressions is used as a packing material for liquid and romatoxy, it is not preferable because its strength is insufficient and it tends to break or spread the separated sample.

特公昭 45−7012号には、硅酸すl−IJウム溶
液をガス状炭敗ガスでケル化させ熟成した後、史に硫酸
で処理した後噴霧乾燥することにより、!100〜10
00 r11′79の表面積で05〜1.25 cc 
/9の孔体積のシリカゲルを得る方法が記載されている
In Japanese Patent Publication No. 45-7012, a sulfuric acid solution is kelized with gaseous carbonization gas, aged, treated with sulfuric acid, and then spray-dried. 100-10
05-1.25 cc with surface area of 00 r11'79
A method for obtaining silica gel with a pore volume of /9 is described.

この方法では、ガス状炭酸ガスを使用することから、反
応の制御が容易でなく、得られるシリカゲルの物性をコ
ントロールすることが困難である。
Since this method uses gaseous carbon dioxide, it is not easy to control the reaction and it is difficult to control the physical properties of the silica gel obtained.

特公昭47−3446号にはアルカリ金属珪酸塩水溶液
と鉱酸とを反応させてpH96〜10.9のシリカヒド
ロゾルを作り、ゲル化させ更に鉱酸と反応させ酸性シリ
カゲルスラリーとし噴霧乾燥する方法が報告されている
Japanese Patent Publication No. 47-3446 discloses a method in which a silica hydrosol with a pH of 96 to 10.9 is prepared by reacting an aqueous alkali metal silicate solution with a mineral acid, gelled, and further reacted with a mineral acid to form an acidic silica gel slurry and spray-dried. has been reported.

この方法において、その実施例によれば、740 m’
/ 9ないし965m’/9という非常に大きな表面積
のシリカゲルが得られている。この様に高い表面積θ)
シリカゲルは、一般に50A以下のミクロボアを有する
$が多い。液体クロマトグラフィー用充填削への使用を
目的とした場合、この様なミクロボアは分離にあ−より
4f効でないばかりか、シリカゲルの強度を低下させる
原因になる。
In this method, according to the example, 740 m'
Silica gels with very large surface areas ranging from /9 to 965 m'/9 have been obtained. Such a high surface area θ)
Silica gel generally has micropores of 50A or less. When the silica gel is intended to be used as a filler for liquid chromatography, such micropores not only make the 4F less effective for separation, but also cause a decrease in the strength of the silica gel.

更に、特公昭47−55676号には、珪酸ナトリウム
と硫酸を23〜50℃で混合してpH9,8〜10.4
の混合溶液を調製し、そこでヒドロゲルスラリを形成し
、熟成後p)(!x 5以下に低下させ、熟成後pHを
8〜10.2に上昇させ、熟成し噴霧乾燥する方法が記
載されている。
Furthermore, in Japanese Patent Publication No. 47-55676, sodium silicate and sulfuric acid are mixed at 23 to 50°C and the pH is 9.8 to 10.4.
A method is described in which a mixed solution is prepared, a hydrogel slurry is formed therein, the pH is lowered to below 5 after aging, the pH is raised to 8-10.2 after aging, and the pH is aged and spray-dried. There is.

この方法で得られるシリカゲルは、その実施例によれば
194〜560ば/9の表面積で0.9〜1.1511
79の細孔容積を有しているが、平均細孔径については
明記さ扛ていない。また上述した様に熟成工程が多く操
作が煩雑である。
The silica gel obtained by this method has a surface area of 0.9 to 1.1511 according to the examples, 194 to 560 b/9.
It has a pore volume of 79, but the average pore diameter is not specified. Furthermore, as mentioned above, there are many ripening steps, and the operation is complicated.

特公昭43−7012号、47−3446号。Special Publication No. 43-7012, No. 47-3446.

47−15676号いずれの方法もゲル生成工程をアル
カリ側で実施することを必須要件としているが、本発明
者等が同様にアルカリ側でゲル生成させたスラリを使用
したところ、原因は不明であるが、しばしば非常に脆い
ゲルが得られ易く、又表面に凹凸の多いものあるいけ球
状以外の異形粒子の混在するものが得られやてい事が解
った。この様なシリカゲルは、通常の乾燥剤としては問
題はないが、液体クロマトグラフィー用光填剤としての
使用を考えた場合、充填効率の低下をきたし好ましくな
い。
No. 47-15676 Both methods require that the gel generation step be carried out on the alkaline side, but when the present inventors used slurry that had been similarly gelled on the alkaline side, the cause was unknown. However, it has been found that very brittle gels are often obtained, and gels with many irregularities on the surface or containing irregularly shaped particles other than spherical ones are often obtained. Such silica gel poses no problem as a normal drying agent, but when it is used as an optical filler for liquid chromatography, it is undesirable because it lowers the packing efficiency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記従来技術に比して、よりfit年
な方法で安価に、表面が滑らかで、異形粒子の混在する
ことのない液体クロマトグラフィー用充填剤として高性
能なシリカゲルの製造法を提供することにある。
The object of the present invention is to produce a silica gel that is more efficient and inexpensive than the above-mentioned conventional techniques, has a smooth surface, is free of irregularly shaped particles, and has high performance as a packing material for liquid chromatography. Our goal is to provide the following.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明の要旨は、アルカリ金属珪酸塩水溶液な鉱酸の水
溶液と反応させて得られるとドロゲルスラリーを噴霧乾
燥することに依りシリカゲルを得る方法において。
The gist of the invention is a method for obtaining silica gel by spray drying a drogel slurry obtained by reaction with an aqueous solution of a mineral acid, such as an aqueous alkali metal silicate solution.

a、アルカリ金属珪酸塩の水溶液を鉱酸の水溶液と反応
させてpH3,0〜4.0でSin、濃度6.5〜11
.5wt%の活性なケイ酸を生成させb、該ケイ酸を攪
拌下でゲル化させ C,アンモニア水溶液と反応させた後、濾過、水洗し d、得られたヒドロゲルを湿式粉砕し e、噴霧乾燥後、鉱酸水溶液と接触させた後、乾燥する ことを特徴とする液体クロマトグラフィー用シリカゲル
の製造法にあり、以下その詳細について説明する。
a. React an aqueous solution of alkali metal silicate with an aqueous solution of mineral acid to produce Sin at pH 3.0 to 4.0, concentration 6.5 to 11.
.. 5 wt% of active silicic acid is produced b, the silicic acid is gelled under stirring C, reacted with an ammonia aqueous solution, filtered and washed with water d, the resulting hydrogel is wet-pulverized e, and spray-dried. The method for producing silica gel for liquid chromatography is characterized in that the silica gel is brought into contact with an aqueous mineral acid solution and then dried, and the details thereof will be described below.

本発明において使用するアルカリ金IIg珪酸塩として
は珪酸ナトリウム、珪酸カリウム等が挙げられるが、珪
酸ナトリウ′ムが一般的である。鉱酸としては硫酸、塩
酸、硝酸等が使用できる。
The alkali gold IIg silicate used in the present invention includes sodium silicate, potassium silicate, etc., but sodium silicate is generally used. As the mineral acid, sulfuric acid, hydrochloric acid, nitric acid, etc. can be used.

活性なケイ酸を生成させる方法としては、いかなる方法
でも艮いが、楕拌下にある鉱酸にアルカリ金属珪酸塩を
滴下する方法が好ましい。
Although any method may be used to generate active silicic acid, a method of dropping an alkali metal silicate into mineral acid under elliptical stirring is preferred.

この時最終pHが6.0〜40でS+Ot濃度が6.5
〜11.5 wt% になる様に、アルカリ金属珪酸塩
及び鉱酸の各濃度及び混合割合を調整することが必要で
ある。
At this time, the final pH is 6.0-40 and the S+Ot concentration is 6.5.
It is necessary to adjust the respective concentrations and mixing ratios of the alkali metal silicate and mineral acid so that the concentration is ~11.5 wt%.

pHQ値はゲル化時間に大きく影響し、pH3未満では
ゲル化に長時間を発し実際的ではな(、pHが4を超え
るとゲル化が急速に進行し、ケイ酸を安定的に調製する
ことか困難になる。
The pH value greatly affects the gelation time, and if the pH is less than 3, it will take a long time to gel, making it impractical. or becomes difficult.

生成ケイ酸のS IOt濃度は、最終的に、得られるシ
リカゲルの平均細孔径に重大な影響を及ぼす。
The S IOt concentration of the produced silicic acid ultimately has a significant influence on the average pore size of the resulting silica gel.

即ち、  Sin、濃度が6.5wt%未満では得られ
るシリカゲルの平均細孔径は80A未満となり、Sin
、濃度が11.5 wt% を超えると得られるシリカ
ゲルの平均細孔径1d120Aを超え、また、強度の低
いゲルとなる。
That is, when the concentration of Sin is less than 6.5 wt%, the average pore diameter of the obtained silica gel is less than 80A, and the
When the concentration exceeds 11.5 wt%, the average pore diameter of the resulting silica gel exceeds 1d120A, and the gel has low strength.

活性ケイ酸生成温度は5〜60℃の範囲で実施できるが
、特に30〜50℃が好筐しく、実際的である。生成温
度が5℃未満ではゲル化に長時間を委し、逆に60℃を
こえるとゲル化が急速に進行し、活性ケイ酸を安定的に
生成させろことが困難になる。
The active silicic acid production temperature can be carried out in the range of 5 to 60°C, but 30 to 50°C is particularly favorable and practical. If the formation temperature is less than 5°C, gelation will take a long time, whereas if it exceeds 60°C, gelation will proceed rapidly, making it difficult to stably generate active silicic acid.

この様にして得られた活性なケイ酸の水溶液な攪拌下で
ゲル化させ、シリカヒドロゲルのスラリーを生成させる
− ゲル化の温度は特に限定されないが、低温ではゲル化を
完了させるのに長時間を要し、逆に高温ではゲル化が狗
速に進んで均一な攪拌が困難となるので20〜50℃が
適当である。また、一般にゲル化温度の低い方がゲル化
速度が遅く攪拌も容易であるので、例えば20℃でゲル
化Z開始させ、スラリー状にした後80°Cに昇温して
ゲル化を完了させるといった方法も可能である。
The aqueous solution of active silicic acid thus obtained is gelled under stirring to produce a slurry of silica hydrogel - the temperature of gelation is not particularly limited, but at low temperatures it may take a long time to complete gelation. On the other hand, at high temperatures, gelation proceeds rapidly and uniform stirring becomes difficult, so a temperature of 20 to 50°C is appropriate. In general, the lower the gelation temperature, the slower the gelation rate and the easier stirring, so for example, gelation Z is started at 20°C, made into a slurry, and then heated to 80°C to complete gelation. This method is also possible.

攪拌手段は、活性ケイ酸がゲル化する際に生成するヒド
ロゲルを破砕してヒドロゲルのスラリーを生成すること
が可能であれば、いかなるものでも良く、通常のパドル
型攪拌翼でも実施6丁能であるが、必要に応じて高速攪
拌装置あるいけニーダ−等も使用できる。
The stirring means may be of any type as long as it can crush the hydrogel produced when activated silicic acid gels to produce a hydrogel slurry, and a regular paddle-type stirring blade can also be used. However, if necessary, a high-speed stirring device or a kneader can also be used.

生成したシリカヒドロゲルスラリーにアンモニア水溶液
を添加して反応させる。この時スラリーの濃度は特に限
定されないが、高濃度では粘度が高く攪拌が困難となり
、低濃度では経済的に不利となることから、S io2
濃度として5〜1owt%が適当である。
An ammonia aqueous solution is added to the generated silica hydrogel slurry and reacted. At this time, the concentration of the slurry is not particularly limited, but if the concentration is high, the viscosity will be high and stirring will be difficult, and if the concentration is low, it will be economically disadvantageous.
A suitable concentration is 5 to 1 wt%.

そのアンモニア処理をした液のpHが大きいほど最終生
成シリカゲルの平均細孔径は大きくなり、また、表面積
は小さくなる。たとえば、このpHを8.0〜90とす
ることにより、それらをそれぞれ80〜120^および
600〜500m/lに調節することかできる。
The higher the pH of the ammonia-treated solution, the larger the average pore diameter and the smaller the surface area of the final silica gel. For example, by adjusting the pH to 8.0 to 90, they can be adjusted to 80 to 120^ and 600 to 500 m/l, respectively.

反応温度は特に限定されないが、低温では反応終了まで
に長時間を要するので、60〜90°Cが適当である。
The reaction temperature is not particularly limited, but a temperature of 60 to 90°C is appropriate since it takes a long time to complete the reaction at low temperatures.

反応終了後、濾過、水洗し、副生じたアルカリ金属塩を
除去する。この副生塩を除去することなぐ噴霧乾燥する
と、得られるシリカゲル中に該塩の結晶が析出する為、
ボアが不均一になりや丁い。
After the reaction is completed, it is filtered and washed with water to remove by-produced alkali metal salts. If spray drying is performed without removing this by-product salt, crystals of the salt will precipitate in the resulting silica gel.
The bore may become uneven or tight.

得られた濾過ケーキを水に分散した後湿式粉砕する。The resulting filter cake is dispersed in water and then wet-milled.

この粉砕処理は、最終生成シリカケルの粒子表面状態及
び形状に大きな影響を及ぼす。即ち、表面が滑らかで、
異形粒子の混在することのないシリカゲルを得る為に粉
砕処理は必須である。粉砕方法としては、湿式であれば
いかなる方法でも良く、例えば、ボールミル、振動ミル
、撹拌ボールミル、ロッドミル、摩擦円板ミル、石臼式
コロイドル等が使用できろ。
This pulverization treatment has a large effect on the particle surface condition and shape of the final silica kel. That is, the surface is smooth,
Grinding is essential in order to obtain silica gel that does not contain irregularly shaped particles. As the pulverization method, any wet method may be used, such as a ball mill, vibration mill, stirring ball mill, rod mill, friction disk mill, stone mill type colloidal, etc.

こうして得らnた粉砕シリカヒドロゲルスラリを噴霧乾
燥することにより球状のシリカゲルを得ることができる
。噴霧乾燥機としては、ノズルタイプ、ディスクタイプ
、二流体方式が一般的であり、いずれも使用できるが、
10〜50μ程度の粒度のゲルをPfr啜する場合ディ
スクタイプが適当である。
By spray-drying the pulverized silica hydrogel slurry thus obtained, spherical silica gel can be obtained. Spray dryers are generally nozzle type, disc type, and two-fluid type, and any of them can be used.
When sipping Pfr gel with a particle size of about 10 to 50 microns, a disc type is suitable.

乾燥用の熱風温度はioo〜300°C程度で差し支え
ない。
The temperature of the hot air for drying may be about io~300°C.

噴霧乾燥により得らnた球状のシリカゲルを、続いて鉱
酸水溶液で処理する。
The spherical silica gel obtained by spray drying is subsequently treated with an aqueous mineral acid solution.

この処理は、シリカゲルに有機化合物を化学結合させて
、分配型、イオン交換型1分子筒型として、核酸、アミ
ノ酸、アミン等のイオン性物質を分離しようとする場合
、特に重要である。即ち、この酸処理を施さずに得られ
たシリカゲルを用いて上述の如き分離を試みた所、しば
しば分離試相の吸着あるいは排斥を生じ充分な分離を行
うことが困難であった。
This treatment is particularly important when an organic compound is chemically bonded to silica gel and ionic substances such as nucleic acids, amino acids, and amines are to be separated using a partition type or ion exchange type single molecule cylinder type. That is, when the above-described separation was attempted using silica gel obtained without acid treatment, the separation sample phase often adsorbed or was rejected, making it difficult to perform sufficient separation.

鉱酸のシリカゲルに対する作用機構については不明であ
るが、酸処理を実施することに依り、この様な吸着ある
いは排斥による分離能の低下を著しく改善出来ることを
見出した。
Although the mechanism of action of mineral acids on silica gel is unknown, it has been found that by carrying out acid treatment, the decrease in separation ability due to adsorption or exclusion can be significantly improved.

鉱酸としては、硫酸、塩酸、硝酸等が使用できる。As the mineral acid, sulfuric acid, hydrochloric acid, nitric acid, etc. can be used.

処理方法としては、鉱酸水溶液に7リカケルを分散し猜
拌下で行なっても良いし、また、静jil +〜ておい
ても良い。この処理の効果を充分子K 4zのとするた
めには、分散液のpt[が4以下になる様に鉱酸水溶液
の濃度を調整するのが望ましい。
As a treatment method, it may be carried out by dispersing 7 Likakel in an aqueous mineral acid solution and stirring, or it may be carried out at a still temperature. In order to make the effect of this treatment as sufficient as K4z, it is desirable to adjust the concentration of the mineral acid aqueous solution so that the pt[ of the dispersion becomes 4 or less.

処理温度は¥温で充分であるが、加熱しても差し支えな
い。処理時間は50分以上で光分な効果を得ることが出
来ろ。
The treatment temperature is approximately ¥300 yen, but heating may also be used. The treatment time should be 50 minutes or more to achieve the desired effect.

この様に酸処理を行ったシリカゲルを水洗した後乾燥す
る。
The silica gel treated with acid in this manner is washed with water and then dried.

以上の方法に依り5表面が滑らかで、異形粒子の混在す
ることない液体クロマトクラフィー用光填剤として高性
能なシリカケルを得ることが出来る。
By the above method, it is possible to obtain a high-performance silica gel as an optical filler for liquid chromatography, which has a smooth surface and does not contain irregularly shaped particles.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな様に本発明によれば、有機溶媒
あるいは有機材料を使用することなく、しかも煩雑な操
作を要せず、簡単な方法で安価に表面が滑らかで異形粒
子の混在することのない液体クロマトグラフィー用充填
剤として高性能なシリカゲルを得ることができる。
As is clear from the above description, according to the present invention, it is possible to achieve a smooth surface and a mixture of irregularly shaped particles easily and inexpensively without using an organic solvent or an organic material, and without requiring complicated operations. It is possible to obtain high-performance silica gel as a packing material for liquid chromatography.

次に本発明を実施例により更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 濃度15 wt%の硫酸水溶液500gを50℃恒温槽
に設置した反応槽に供給した。パドル型攪拌翼で硫酸水
溶液を攪拌しながら、S io、濃度12Wj%の珪酸
ナトIJウム水溶液約12609を添加し、pH3,5
で Sin2濃度8.6 wt%の活性なケイ酸を調製
した。約10分後膣ケイ酸水溶液は増粘しゲル化を開始
した。この時攪拌を続行して、ヒドロゲルを破砕しなが
らゲル化を完了させ、シリカヒドロゲルスラリーを得た
Example 1 500 g of a sulfuric acid aqueous solution having a concentration of 15 wt% was supplied to a reaction tank installed in a 50° C. constant temperature bath. While stirring the sulfuric acid aqueous solution with a paddle-type stirring blade, approximately 12609 of a sodium silicate aqueous solution having a concentration of 12Wj% was added to the sulfuric acid aqueous solution at pH 3.5.
Active silicic acid with a Sin2 concentration of 8.6 wt% was prepared. After about 10 minutes, the vaginal silicic acid aqueous solution thickened and started to gel. At this time, stirring was continued to complete gelation while crushing the hydrogel to obtain a silica hydrogel slurry.

シリカヒドロゲルスラリーに純水及び濃度約8wt  
%のアンモニア水溶液を加え、Sin、 8度約6 w
t%、pHを80に調整した後80℃で2時間反応させ
た。
Silica hydrogel slurry with pure water and a concentration of approximately 8w
Add % ammonia aqueous solution, Sin, 8 degrees approx. 6 w
After adjusting the t% and pH to 80, the reaction was carried out at 80° C. for 2 hours.

反応終了後、濾過水洗した後、水に分散させダイノーミ
ル(クィリー・A・バツコー7エン社製→により湿式粉
砕し、次いで入口熱風温度100°C1出ロ熱風温度6
0℃にセットしたディスクタイプのスプレードライヤー
に依り噴霧乾燥した。
After completion of the reaction, it was filtered and washed with water, then dispersed in water and wet-pulverized using a Dyno Mill (manufactured by Quiley A. Batskoe Co., Ltd. →).
Spray drying was performed using a disc type spray dryer set at 0°C.

得られたシリカゲルを硫酸水溶液に懸濁させ、pH′5
.0で室温において約1時間酸処理を行った後濾過水洗
し、110℃で一夜乾燥した。
The obtained silica gel was suspended in an aqueous sulfuric acid solution, and the pH was adjusted to 5.
.. After acid treatment at room temperature for about 1 hour at 0°C, the mixture was filtered, washed with water, and dried at 110°C overnight.

得られたシリカゲルは、球状で表面は滑らかであり異形
粒子の混在はほとんど無かった。
The obtained silica gel was spherical, had a smooth surface, and contained almost no irregularly shaped particles.

また物性忙ついては表1に示す様に液体クロマトグラフ
ィー用充填剤として好適なものであった。
In terms of physical properties, as shown in Table 1, it was suitable as a packing material for liquid chromatography.

更にシリカゲルに有機化合物を化学的に結合させた場合
の性能を調べる為、上記の方法で得られたシリカゲル2
0gをキシレン120dに懸濁させ、オクタデシルトリ
クロロシラン129を加え60℃で3時間反応させた。
Furthermore, in order to investigate the performance when an organic compound is chemically bonded to silica gel, silica gel 2 obtained by the above method was used.
0g was suspended in xylene 120d, octadecyltrichlorosilane 129 was added, and the mixture was reacted at 60°C for 3 hours.

反応終了後、生成物をキシレンで洗浄し、次いでメタノ
ールで洗浄した後、80℃で一夜乾燥した。得られたゲ
ルをカラム(直径18龍×長さ300111)に充填し
、3wt %メタノール水溶液を移動相として1−メチ
ルニコチンアミドの溶出挙動を調べた結果、試料の吸着
がほとんど無く、液体クロマトグラフィー用充填として
高性能であった。
After the reaction was completed, the product was washed with xylene, then with methanol, and then dried at 80° C. overnight. The obtained gel was packed into a column (diameter 18 x length 300111) and the elution behavior of 1-methylnicotinamide was investigated using a 3 wt % methanol aqueous solution as the mobile phase.As a result, there was almost no adsorption of the sample, and liquid chromatography was performed. It had high performance as a filler.

実施例2 濃度15wt%の硫酸水溶液100gを20℃恒温槽に
設置した反応槽に供給した。パドル型攪拌翼で硫酸水溶
液を攪拌しなから5iO= 93度12wt %の珪酸
すl−1,1ラム水溶液約285gを添加し、pH4,
0でSin2濃度8.9Wt %の活性なケイ酸を調製
した。約50分後肢ケイ酸水溶液はゲル化を開始した。
Example 2 100 g of an aqueous sulfuric acid solution with a concentration of 15 wt% was supplied to a reaction tank installed in a constant temperature bath at 20°C. While stirring the sulfuric acid aqueous solution with a paddle-type stirring blade, approximately 285 g of a 12 wt % silicate solution containing 12 wt % of 5iO = 93 degrees was added, and the pH was 4.
0 and a Sin2 concentration of 8.9 Wt%. After about 50 minutes, the hindlimb silicic acid aqueous solution started to gel.

攪拌によりヒドロゲルを破砕しながらゲル化させ更[8
0℃に昇温してゲル化を完了させた。
The hydrogel is gelatinized while being crushed by stirring [8]
The temperature was raised to 0°C to complete gelation.

得られたシリカヒドロゲルスラリーを、続いて実施例1
と同様の操作を行い、シリカゲルを得た。
The obtained silica hydrogel slurry was subsequently prepared in Example 1.
A similar operation was performed to obtain silica gel.

得られたシリカゲルは、球状で表面は滑らかであり、異
形粒子の混在はほとんど無かりた。また物性については
第1表に示す様に液体クロマトグラフィー用充填剤とし
て好適なものであった。
The obtained silica gel was spherical and had a smooth surface, with almost no irregularly shaped particles mixed therein. As for the physical properties, as shown in Table 1, it was suitable as a packing material for liquid chromatography.

更に実施例1と同様にしてオクタデシルl−IJジクロ
ロランを化学結合させ1−メチルニコチンアミドの溶出
挙動を調べた結果試料の吸着がほとんど無く、液体クロ
マトグラフィー用充填剤として高性能であった。
Further, in the same manner as in Example 1, octadecyl l-IJ dichlorolane was chemically bonded and the elution behavior of 1-methylnicotinamide was investigated. As a result, there was almost no adsorption of the sample, and it was found to have high performance as a packing material for liquid chromatography.

比較例1 濃度15 wt%の硫酸水溶液200gにS i02濃
度12wt%の珪酸す) IJウム水溶液約3419を
添加して、pH4,0でS i02濃度約12.6wt
%の活性ケイばンえた以外は、実施例2と同じ条件で実
施した。
Comparative Example 1 Approximately 3,419 silicic acid aqueous solution with an Si02 concentration of 12 wt% was added to 200 g of a sulfuric acid aqueous solution with a concentration of 15 wt%, and the Si02 concentration was approximately 12.6 wt at pH 4.0.
The experiment was carried out under the same conditions as in Example 2, except that the activity level was increased.

得られたシリカゲルは球状で表面は滑らかで、異形粒子
の混在は無かったが第1表に示す様に平均粒子径、ポア
サイズが大きく、また細孔容積も大きく比較的弱いもの
であった。
The obtained silica gel was spherical and had a smooth surface, and did not contain irregularly shaped particles, but as shown in Table 1, it had a large average particle diameter, large pore size, and large pore volume, and was relatively weak.

比較例2 実施例2と同様にして、ただし Sin、濃度7.5W
j%の珪酸ナトリウム446gを添加して、pH4,0
でSiQ、9度6.1wt%の活性なケイ酸を調製して
実験を行った。
Comparative Example 2 Same as Example 2, except that Sin, concentration 7.5W
Add 446g of sodium silicate to pH 4.0.
An experiment was conducted by preparing active silicic acid containing 9 degrees and 6.1 wt% of SiQ.

得られたシリカゲルは、球状で、表面は滑らかで、異形
粒子の混在は無かったが、第1表に示す様にポアサイズ
が小さく細孔容積の小さいものであった。
The obtained silica gel had a spherical shape, a smooth surface, and no irregularly shaped particles, but as shown in Table 1, the pore size was small and the pore volume was small.

比較例3 実施例2を同様にして、ただしアンモニアを添加せず、
pH6で80°C−夜処理して実施した。
Comparative Example 3 Same as Example 2, but without adding ammonia,
The test was performed at pH 6 at 80°C overnight.

得られたシリカゲルは、球状で表面は滑らかであり、異
形粒子の混在のほとんどなかったが、第1表に示す様に
ポアサイズの小さいものであった。
The obtained silica gel had a spherical shape and a smooth surface, and contained almost no irregularly shaped particles, but had a small pore size as shown in Table 1.

比較例4 実施例1と同様にして、ただし湿式粉砕せずに実施した
Comparative Example 4 This was carried out in the same manner as in Example 1, but without wet grinding.

得られたシリカゲルは球状ではあるが、表面に凹凸があ
り、しかも異形粒子の混在するものであった。
Although the obtained silica gel was spherical, the surface was uneven and contained irregularly shaped particles.

比較例5 実施例1と同様にして、ただし酸処理を行わず実施した
Comparative Example 5 This was carried out in the same manner as in Example 1, except that the acid treatment was not performed.

得られたシリカゲルは球状で表面は滑らかであり、異形
粒子の混在は無かった。また物性については第1表に示
す様に望ましいものであったが、更に実施例1と同様に
してオクタデシルトリクロロシランを化合結合させ、1
−メチルニコチンアミドの溶出挙動を調べた結果、試料
はゲルに吸着さnて浴出することか出来ず、液体クロマ
トグラフィー用光填剤として充分な性能を発現できなか
った。
The obtained silica gel was spherical and had a smooth surface, and no irregularly shaped particles were present. In addition, the physical properties were desirable as shown in Table 1, but octadecyltrichlorosilane was further bonded in the same manner as in Example 1.
- As a result of investigating the elution behavior of methylnicotinamide, the sample was adsorbed to the gel and could only be removed from the bath, and it was not able to exhibit sufficient performance as an optical filler for liquid chromatography.

第  1  表Table 1

Claims (1)

【特許請求の範囲】[Claims] (1)アルカリ金属珪酸塩の水溶液を鉱酸の水溶液と反
応させて得られるシリカヒドロゲルスラリーを噴霧乾燥
することに依りシリカゲルを得る方法において a、アルカリ金属珪酸塩の水溶液を鉱酸の水溶液と反応
させてpH3.0〜4.0でSiO_2濃度6.5〜1
1.5wt%の活性なケイ酸を生成させ b、該ケイ酸を攪拌下でゲル化させ c、アンモニア水溶液と反応させた後、ろ過水洗し d、得られたヒドロゲルを湿式粉砕し e、噴霧乾燥後、鉱酸水溶液と接触させた後乾燥する ことを特徴とする液体クロマトグラフィー 用シリカゲルの製造方法。
(1) In a method for obtaining silica gel by spray drying a silica hydrogel slurry obtained by reacting an aqueous solution of an alkali metal silicate with an aqueous solution of a mineral acid, a. Reacting an aqueous solution of an alkali metal silicate with an aqueous solution of a mineral acid. SiO_2 concentration 6.5-1 at pH 3.0-4.0
1.5 wt% active silicic acid is produced b, the silicic acid is gelled under stirring c, reacted with an aqueous ammonia solution, filtered and washed with water d, the obtained hydrogel is wet-pulverized e, and sprayed. A method for producing silica gel for liquid chromatography, which comprises drying, contacting with an aqueous mineral acid solution, and then drying.
JP60283018A 1985-12-18 1985-12-18 Method for producing silica gel for liquid chromatography Expired - Lifetime JPH0699133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283018A JPH0699133B2 (en) 1985-12-18 1985-12-18 Method for producing silica gel for liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283018A JPH0699133B2 (en) 1985-12-18 1985-12-18 Method for producing silica gel for liquid chromatography

Publications (2)

Publication Number Publication Date
JPS62143817A true JPS62143817A (en) 1987-06-27
JPH0699133B2 JPH0699133B2 (en) 1994-12-07

Family

ID=17660159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283018A Expired - Lifetime JPH0699133B2 (en) 1985-12-18 1985-12-18 Method for producing silica gel for liquid chromatography

Country Status (1)

Country Link
JP (1) JPH0699133B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589150A (en) * 1989-02-20 1996-12-31 Fuji-Davison Chemical Ltd. Method for preparing spherular silica gel particles
JP2002037610A (en) * 2000-07-27 2002-02-06 Kansai Electric Power Co Inc:The Method of storing and taking out ozone
US9481799B2 (en) 2008-10-29 2016-11-01 The Chemours Company Fc, Llc Treatment of tailings streams

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589150A (en) * 1989-02-20 1996-12-31 Fuji-Davison Chemical Ltd. Method for preparing spherular silica gel particles
JP2002037610A (en) * 2000-07-27 2002-02-06 Kansai Electric Power Co Inc:The Method of storing and taking out ozone
US9481799B2 (en) 2008-10-29 2016-11-01 The Chemours Company Fc, Llc Treatment of tailings streams

Also Published As

Publication number Publication date
JPH0699133B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
Sun et al. Synthesis of porous zirconia spheres for HPLC by polymerization-induced colloid aggregation (PICA)
EP2181069B1 (en) A method for synthesising porous silica microparticles
CA2192548C (en) Method for making spherical adsorbent particles
JPH0699135B2 (en) Manufacturing method of spherical silica gel
JPH10511889A (en) Gel composition containing carbonaceous compound
JP3719687B2 (en) Method for producing silica gel
JPH10236818A (en) Production of hollow spherical silicate cluster
EP1020402B1 (en) Method for producing spherical silica particles
JPS60180912A (en) Porous inorganic substance
EP0224547B1 (en) Structured silicas
JP3735990B2 (en) Method for producing magnetic silica gel
JPH0536366B2 (en)
JP2001139320A (en) Method for manufacturing spherical silica gel
JPS62143817A (en) Production of silica gel for liquid chromatography
Lee et al. Preparation of colloidal silica using peptization method
JP3719686B2 (en) Silica gel for filter media
JPS62275014A (en) Production of silica gel for liquid chromatography
JPH08169710A (en) Silica gel having high specific surface area and low controlled constructive property and its production
JP3025609B2 (en) Silica gel for filter aid and method for producing the same
JPS6252120A (en) Production of silica gel for liquid chromatography
JP2007076941A (en) Porous spherical silica and its producing method
JPS6065725A (en) Preparation of spherical particles of titania
CN115180642B (en) Method for improving pore volume and pore diameter of pseudo-boehmite
JPH0222120A (en) Spherical silica porous form and production thereof
JPH0645453B2 (en) Method for producing spherical silica gel