JPS6214340Y2 - - Google Patents
Info
- Publication number
- JPS6214340Y2 JPS6214340Y2 JP7894079U JP7894079U JPS6214340Y2 JP S6214340 Y2 JPS6214340 Y2 JP S6214340Y2 JP 7894079 U JP7894079 U JP 7894079U JP 7894079 U JP7894079 U JP 7894079U JP S6214340 Y2 JPS6214340 Y2 JP S6214340Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- cooling water
- heat storage
- cylinder head
- storage section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005338 heat storage Methods 0.000 claims description 19
- 239000000498 cooling water Substances 0.000 claims description 16
- 238000002485 combustion reaction Methods 0.000 claims description 10
- 238000005192 partition Methods 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Description
【考案の詳細な説明】
この考案はエンジンのシリンダヘツドに関し、
シリンダヘツドの燃焼室に臨む壁における比較的
肉厚の厚い蓄熱量の大きい個所を十分に冷却でき
るようにして、熱歪・熱亀裂等の発生を解消する
事を主たる目的とする。[Detailed explanation of the invention] This invention relates to the engine cylinder head.
The main purpose is to sufficiently cool the comparatively thick portion of the wall facing the combustion chamber of the cylinder head that stores a large amount of heat, thereby eliminating the occurrence of thermal strain, thermal cracks, etc.
例えば、副燃焼室を有する強制水冷式のデイゼ
ルエンジンでは、第1図に示すように、副燃焼室
1と吸・排気両ポート2,3が主燃焼室4に対し
て三角状に配設され、三者の中心付近に各周壁同
士が集合して厚肉部が形成される。そして、従来
はこの厚肉部を冷却するために、三叉状の水路5
を通設していた。が、これでは水路5が狭いた
め、冷却水を必要十分なだけ通過させることがで
きないうえ、時間がたつにつれ、水あかやスケー
ルなどが水路5に付着して冷却能力が低下する問
題があつた。 For example, in a forced water-cooled diesel engine having an auxiliary combustion chamber, the auxiliary combustion chamber 1 and both intake and exhaust ports 2 and 3 are arranged in a triangle with respect to the main combustion chamber 4, as shown in FIG. , the respective peripheral walls gather near the center of the three to form a thick wall portion. Conventionally, in order to cool this thick part, a three-pronged waterway 5 was used.
was established. However, in this case, since the water channel 5 is narrow, it is not possible to allow the necessary and sufficient amount of cooling water to pass through it, and as time passes, water scales and the like adhere to the water channel 5, resulting in a reduction in cooling capacity.
この考案は肉厚の厚い蓄熱部を十分に冷却でき
るようにして、上記のような問題点を解消するも
のであつて、熱伝導効率が高く大量の熱を移送で
きるヒートパイプで、蓄熱部の熱を十分に放熱さ
せるようにした点に特徴を有する。 This idea solves the above problems by making it possible to sufficiently cool the thick heat storage section.The heat pipe has high heat conduction efficiency and can transfer large amounts of heat. It is characterized by sufficient heat dissipation.
以下この考案の実施例を図面に基づき説明す
る。 Examples of this invention will be described below based on the drawings.
第2図は強制水冷デイーゼルエンジンの要部縦
断面図、第3図は第2図−線断面図である。
図においてクランクケース10の内部にはシリン
ダ11を取囲む状態でシリンダジヤケツト12が
形成されており、このシリンダジヤケツト12の
上面開口を塞ぐ状態でラジエータ13が配設され
ている。また、クランクケース10の側壁に装着
されるシリンダヘツド14の内部には、上記のシ
リンダジヤケツト12と連通するヘツドジヤケツ
ト(冷却流体通路)15が形成されている。16
はピストン、17は動弁装置、18は燃料噴射ノ
ズルである。 FIG. 2 is a longitudinal cross-sectional view of a main part of the forced water-cooled diesel engine, and FIG. 3 is a cross-sectional view taken along the line shown in FIG. 2.
In the figure, a cylinder jacket 12 is formed inside a crankcase 10 so as to surround a cylinder 11, and a radiator 13 is disposed so as to close the upper opening of the cylinder jacket 12. Further, inside the cylinder head 14 mounted on the side wall of the crankcase 10, a head jacket (cooling fluid passage) 15 is formed which communicates with the cylinder jacket 12 described above. 16
1 is a piston, 17 is a valve train, and 18 is a fuel injection nozzle.
第3図に示すように、シリンダヘツド14内に
は、吸気弁19及び排気弁20で開閉される吸気
ポート(室)21及び排気ポート(室)22が左
右に配設されるとともに、両者間の中央上部に副
燃焼室(室)23が配設されている。吸・排気両
ポート21,22及び副燃焼室23をそれぞれ区
畫する区畫壁21a,22a,23aは、三者の
隣接部同士で集合して三叉状の厚肉の壁を形成し
ている。 As shown in FIG. 3, inside the cylinder head 14, an intake port (chamber) 21 and an exhaust port (chamber) 22, which are opened and closed by an intake valve 19 and an exhaust valve 20, are arranged on the left and right sides, and there are An auxiliary combustion chamber (chamber) 23 is arranged at the upper center of the combustion chamber. The partition walls 21a, 22a, 23a which partition the intake and exhaust ports 21, 22 and the auxiliary combustion chamber 23, respectively, are assembled at adjacent portions to form a trident-shaped thick wall. .
この肉厚の壁、すなわち、蓄熱部Hにはその冷
却水通路15の入口29側に冷却水案内用の溝3
1が凹設されており、この溝31で蓄熱部H付近
の冷却水が冷却水通路15の出口30側に案内さ
れるようになつている。また、上記溝31には蓄
熱部Hの肉壁内と冷却水通路15とに亘つてヒー
トパイプPが設けられている。第4図に示すよう
に、ヒートパイプPは、ステンレス製の密閉容器
24に金属フエルト製のウイツク25を内張し、
このウイツク25にアンモニアまたはメタノール
などの作動液を含浸させてなる。そして、その一
端を受熱部26とし、これを蓄熱部Hの肉壁内に
位置させるとともに、他端の放熱部27をヘツド
ジヤケツト15に臨ませている。 This thick wall, that is, the heat storage part H has a groove 3 for guiding cooling water on the inlet 29 side of the cooling water passage 15.
1 is recessed, and the cooling water near the heat storage section H is guided to the exit 30 side of the cooling water passage 15 by this groove 31. Further, a heat pipe P is provided in the groove 31 so as to extend between the inside of the wall of the heat storage section H and the cooling water passage 15. As shown in FIG. 4, the heat pipe P has a stainless steel airtight container 24 lined with a metal felt wick 25.
This wick 25 is impregnated with a working fluid such as ammonia or methanol. One end of the heat receiving part 26 is located within the wall of the heat storage part H, and the other end of the heat radiating part 27 faces the head jacket 15.
以上のように、蓄熱部HにヒートパイプPを埋
設すると、蓄熱部Hの熱は受熱部26からヒート
パイプP内に伝えられ、作動液を蒸発させる。そ
して、この蒸気は密閉容器24内を放熱部27側
へ高速で移動し、そこで凝縮して液化し、ウイツ
ク25の毛細管現象によつて受熱部26側へ戻さ
れる。この動作サイクルにおいて、作動液が蒸発
時に吸収した潜熱を、凝縮時に放熱部27から冷
却水に放熱するので、蓄熱部Hは十分に冷却さ
れ、熱歪や熱亀裂の発生を解消できる。 As described above, when the heat pipe P is embedded in the heat storage section H, the heat of the heat storage section H is transferred from the heat receiving section 26 into the heat pipe P, and the working fluid is evaporated. Then, this steam moves at high speed within the closed container 24 toward the heat radiating section 27, condenses there, becomes liquefied, and is returned to the heat receiving section 26 by the capillary action of the wick 25. In this operation cycle, the latent heat absorbed by the working fluid during evaporation is radiated from the heat radiating section 27 to the cooling water during condensation, so that the heat storage section H is sufficiently cooled and the occurrence of thermal strain and thermal cracks can be eliminated.
尚、蓄熱部Hに2個以上のヒートパイプPを配
設しても良い。 Note that two or more heat pipes P may be arranged in the heat storage section H.
以上説明したようにこの考案では、シリンダヘ
ツドの蓄熱部に凹設した溝にヒートパイプを設け
るとともに、このヒートパイプの放熱部を冷却水
通路の入口に向かつて突出させたので、冷却水通
路の入口から入つてきた低温の冷却水でヒートパ
イプの放熱部を強力に冷却できるうえ、多量の冷
却水を溝に集めて流す途中でヒートパイプの放熱
部を強力に冷却することができる。 As explained above, in this invention, a heat pipe is provided in the groove recessed in the heat storage part of the cylinder head, and the heat dissipation part of this heat pipe is made to protrude toward the entrance of the cooling water passage. The heat dissipating section of the heat pipe can be powerfully cooled by the low-temperature cooling water that enters from the inlet, and the heat dissipating section of the heat pipe can also be powerfully cooled while a large amount of cooling water is collected in the grooves and flowing.
このため、燃焼室から蓄熱部に伝えられる大量
の熱をヒートパイプの放熱部から能率よく、しか
も、大量の冷却水で放熱することができるので、
蓄熱部は十分に冷却される。これにより蓄熱部と
他の個所との温度勾配を緩やかにして、熱歪や熱
亀裂が発生するのを解消できるうえ、シリンダヘ
ツドに対する熱負荷を大きくできるので、エンジ
ンの高速化・高圧縮比を実現でき、その出力性能
を一段と向上することができる。 Therefore, the large amount of heat transferred from the combustion chamber to the heat storage section can be efficiently radiated from the heat radiating section of the heat pipe, and moreover, using a large amount of cooling water.
The heat storage section is sufficiently cooled. This makes it possible to reduce the temperature gradient between the heat storage section and other parts, eliminating the occurrence of thermal distortion and thermal cracking, and also increasing the thermal load on the cylinder head, allowing the engine to run at higher speeds and with higher compression ratios. can be realized, and its output performance can be further improved.
第1図は従来例を示すシリンダヘツドの断面
図、第2図乃至第5図はこの考案の実施例を示
し、第2図はエンジンの縦断面図、第3図は第2
図−線断面図、第4図はヒートパイプの概略
構造を示す断面図である。
14……シリンダヘツド、15……冷却流体通
路(ヘツドジヤケツト)、21……吸気ポート、
22……排気ポート、23……副燃焼室、21
a,22a,23a……21,22,23の区畫
壁、H……蓄熱部、P……ヒートパイプ、26…
…受熱部、27……放熱部。
Fig. 1 is a sectional view of a cylinder head showing a conventional example, Figs. 2 to 5 show an embodiment of this invention, Fig. 2 is a longitudinal sectional view of an engine, and Fig.
FIG. 4 is a sectional view showing a schematic structure of a heat pipe. 14...Cylinder head, 15...Cooling fluid passage (head jacket), 21...Intake port,
22...Exhaust port, 23...Sub-combustion chamber, 21
a, 22a, 23a... section walls of 21, 22, 23, H... heat storage section, P... heat pipe, 26...
...Heat receiving section, 27... Heat dissipating section.
Claims (1)
ポート22と副燃焼室23とを三角状に配設し、
シリンダヘツド14の主燃料室28に臨む壁とこ
の壁に連続する上記各室の区画壁とで三叉状の厚
肉の蓄熱部Hを形成し、シリンダヘツド14内に
形成された冷却水通路15の途中部に蓄熱部Hを
配設したものにおいて、吸気ポート21と排気ポ
ート22間の蓄熱部Hを冷却水通路15の入口2
9側に向けて配設するとともに、この蓄熱部Hに
冷却水案内用の溝31を凹設し、蓄熱部Hの肉壁
内と冷却水通路15とに亘つてヒートパイプPを
上記溝31に設け、ヒートパイプPの受熱部26
を蓄熱部H内に位置させ、放熱部27を冷却水通
路15の入口29に向かつて突出させてなるエン
ジンのシリンダヘツド。 An intake port 21, an exhaust port 22, and an auxiliary combustion chamber 23 are arranged in a triangular shape within the cylinder head 14,
The wall facing the main fuel chamber 28 of the cylinder head 14 and the partition walls of the above-mentioned chambers that are continuous with this wall form a trifurcated thick-walled heat storage section H, and a cooling water passage 15 formed in the cylinder head 14 is formed. The heat storage part H between the intake port 21 and the exhaust port 22 is connected to the inlet 2 of the cooling water passage 15.
At the same time, a groove 31 for guiding cooling water is provided in the heat storage section H, and the heat pipe P is inserted into the groove 31 across the wall of the heat storage section H and the cooling water passage 15. The heat receiving part 26 of the heat pipe P
A cylinder head of an engine, which is located in a heat storage part H and has a heat radiation part 27 protruding toward an inlet 29 of a cooling water passage 15.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7894079U JPS6214340Y2 (en) | 1979-06-08 | 1979-06-08 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7894079U JPS6214340Y2 (en) | 1979-06-08 | 1979-06-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55180019U JPS55180019U (en) | 1980-12-24 |
JPS6214340Y2 true JPS6214340Y2 (en) | 1987-04-13 |
Family
ID=29312376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7894079U Expired JPS6214340Y2 (en) | 1979-06-08 | 1979-06-08 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6214340Y2 (en) |
-
1979
- 1979-06-08 JP JP7894079U patent/JPS6214340Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55180019U (en) | 1980-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3731660A (en) | Vapor-cooled internal combustion engine | |
US2244323A (en) | Internal combustion engine | |
US20050229875A1 (en) | Cylinder head for a water-cooled internal combustion piston engine having inner reinforcement | |
JPS6214340Y2 (en) | ||
JP2010084581A (en) | Structure for cooling egr gas | |
US2133842A (en) | Internal combustion engine | |
US2911967A (en) | Intake manifold | |
JPH0541219Y2 (en) | ||
JPS6060242A (en) | Coolant boiling and cooling type engine | |
JPS6221688Y2 (en) | ||
CN220909833U (en) | Cylinder, engine and vehicle | |
JPH0741861Y2 (en) | Air-cooled overhead valve engine cylinder head | |
JPS5840005B2 (en) | Intake system for supercharged engines | |
JPS5852344Y2 (en) | 3-valve cylinder head | |
JPS6036745Y2 (en) | A radiator for internal combustion engines that obtains two types of cooling water with different temperatures. | |
JPS5851374Y2 (en) | Intake system for supercharged engines | |
JPH03107563A (en) | Cooling water passage structure for engine | |
JPS6224751Y2 (en) | ||
FR3056717B1 (en) | HEAT EXCHANGER COMPRISING A PHASE CHANGE MATERIAL | |
JPS6019941Y2 (en) | water cooled engine | |
JPS63170519A (en) | Cylinder head oil cooling device for auxiliary chamber type engine | |
JPS6033309Y2 (en) | Crankcase liner cooling water passage | |
JPH0141858Y2 (en) | ||
JPS5844275Y2 (en) | Heat exchanger | |
JPS6320818Y2 (en) |