JPS6214092A - Measuring device for output region of nuclear reactor - Google Patents

Measuring device for output region of nuclear reactor

Info

Publication number
JPS6214092A
JPS6214092A JP60152363A JP15236385A JPS6214092A JP S6214092 A JPS6214092 A JP S6214092A JP 60152363 A JP60152363 A JP 60152363A JP 15236385 A JP15236385 A JP 15236385A JP S6214092 A JPS6214092 A JP S6214092A
Authority
JP
Japan
Prior art keywords
detector
power range
nuclear reactor
measuring device
lppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60152363A
Other languages
Japanese (ja)
Inventor
大輔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60152363A priority Critical patent/JPS6214092A/en
Publication of JPS6214092A publication Critical patent/JPS6214092A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 水元Illは例えば沸騰水型原子炉の出力領[i+測装
置に係り、特に検出器の校正を効率良く行えるようにし
た出力領域計測装置に1旬する。
[Detailed Description of the Invention] [Technical Field of the Invention] Mizumoto Ill relates to a power range [i+ measuring device] of, for example, a boiling water nuclear reactor, and in particular to a power range measuring device that makes it possible to efficiently calibrate a detector. One season.

〔発明の技術的背景〕[Technical background of the invention]

一般に沸騰水型原子炉(BWR)においては、その原子
炉炉心内に出力分布を測定するための中性子計装が備え
られる。原子炉出力は中性子源領域から出力運転領域ま
で広範囲に亘るので、この中性子計装は起動領域系、中
間領域系および出力領域系に分けられ、所定出力範囲ご
との4測が行われる。起動領域系の中性子計装(Sr(
M)および中間領域系の中性子計装(IRM)では、円
通、検出器が所定数の案内管内に各1個、昇降可能に設
けられ、原子炉起動後、定格出力以下の低出力運転時に
のみ炉心内に挿入され、定格出力に達した後は炉心外に
引抜かれる。
Generally, boiling water reactors (BWRs) are equipped with neutron instrumentation within the reactor core to measure power distribution. Since the reactor output ranges over a wide range from the neutron source region to the power operation region, this neutron instrumentation is divided into a startup region system, an intermediate region system, and a power region system, and four measurements are performed for each predetermined power range. Neutron instrumentation of the startup region system (Sr(
M) and intermediate region system neutron instrumentation (IRM), one circular passage and one detector each are installed in a predetermined number of guide tubes so that they can be raised and lowered. It is inserted into the reactor core, and after reaching the rated output, it is pulled out of the reactor core.

一方、出力領域系の中性子計装(以下LPPMと略称す
る)は、定格出力付近の領域での出力を検出するために
用いられ、例えば第3図に示すように、原子炉炉心1の
垂直なドライチューブ2内に支持管(以下L P RM
検出器支持管と称する)3を設け、これに局部出力領域
検出器(以下LPRM検出器と称する)4を上下に複数
、間隔的に設けた構成とされる。このLPRM検出器4
は常に高いレベルの中性子束に曝らされているため、感
度が変化する。そこで、長期器に亘って原子炉内の中性
子束分布を正確に測定するためには、適切な11間毎に
校正することが必要となる。
On the other hand, the power range neutron instrumentation (hereinafter abbreviated as LPPM) is used to detect the power in the region near the rated power. For example, as shown in FIG. A support tube (hereinafter L PRM
A detector support tube (hereinafter referred to as a detector support tube) 3 is provided, and a plurality of local power range detectors (hereinafter referred to as LPRM detectors) 4 are provided above and below at intervals. This LPRM detector 4
is constantly exposed to high levels of neutron flux, which changes its sensitivity. Therefore, in order to accurately measure the neutron flux distribution within the nuclear reactor over a long period of time, it is necessary to calibrate it at appropriate intervals.

この校正用として移動中性予測計ill器(以下TIP
と略称する)5が設けられる。即ち、TIP5は、ドラ
イデユープ2内にTIP案内管6を介して昇降可能に設
けられ、操作ワイV7を介してTIP駆動機構8により
4降駆動される。このTIP5をLPRM検出器4に沿
って昇降させることにより校正を行い、その優インデッ
クスボックス9まで引抜き、次に校正ηべきLPRM検
出器4へ索引装置によって案内し、以後、同様の操作を
行う。
For this calibration, a mobile neutral predictor illumination device (hereinafter referred to as TIP) is used.
) 5 is provided. That is, the TIP 5 is provided within the dry duplex 2 so as to be movable up and down via the TIP guide tube 6, and is driven four times downward by the TIP drive mechanism 8 via the operation wire V7. Calibration is performed by moving this TIP 5 up and down along the LPRM detector 4, and it is pulled out to its superior index box 9, and then guided by the indexing device to the LPRM detector 4 with the power of calibration η, and thereafter the same operation is performed.

なお、10は原子炉圧力容器、11は炉心支持板、12
は上部格子板を示す。
Note that 10 is a reactor pressure vessel, 11 is a core support plate, and 12 is a reactor pressure vessel.
indicates the upper grid plate.

〔背蔚技術の問題点〕[Problems with dorsal technique]

従来のLPPMでは、ドライチューブ2内にLPRM検
出器4を固定しているため、LPPMの校正に際し、T
IPが炉心下端から上端までの往複初作をくり返すこと
になり、TIPの走査距離が大きくなって、例えば2峙
間以上を要するなど、作業効率が比較的悪いなどの欠点
があった。
In the conventional LPPM, the LPRM detector 4 is fixed inside the dry tube 2, so when calibrating the LPPM, the T
The IP has to repeatedly move back and forth from the lower end of the core to the upper end of the core, and the scanning distance of the TIP becomes large, requiring, for example, two or more distances, resulting in relatively poor work efficiency.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたもので、TI
Pの走査距離を減少し、TIPによるLPRM検出器の
校正を効率よく行える原子炉の出力領域計測装置を提供
することを目的とする。
The present invention was made in view of these circumstances, and the TI
It is an object of the present invention to provide a power range measurement device for a nuclear reactor that can efficiently calibrate an LPRM detector using TIP by reducing the scanning distance of P.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、本発明は原子炉炉心の垂
直なドライチューブ内に支持管を介して上下に複数、間
隔的に設けられたLPPM検出本検出前記ドライチュー
ブ内に案内管を介して昇降可能に設けられたTIPとを
有する原子炉の出力領域計測袋2において、前記LPR
M検出器の支持管をそのLPPM検出器の上下間隔を保
持したまま昇降させる駆vJ機構を設けたことを特徴と
している。
In order to achieve the above object, the present invention includes a plurality of LPPM detection units installed vertically and at intervals in a vertical dry tube of a nuclear reactor core via support tubes. In the power range measurement bag 2 for a nuclear reactor, which has a TIP that can be raised and lowered by
It is characterized by the provision of a driving vJ mechanism that raises and lowers the support tube of the M detector while maintaining the vertical interval of the LPPM detector.

(発明の実施例) 以下、本発明の一実施例を第1図および第2図を参照し
て説明する。
(Embodiment of the Invention) An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図はこの実施例に係る原子炉の出力領域計測装置の
概略構成を示す。
FIG. 1 shows a schematic configuration of a nuclear reactor power range measuring device according to this embodiment.

図において、13は圧力容器ペデスタル13a内の原子
炉圧力容器、14は炉心支持板、15は上部格子板、1
6は原子炉炉心を示ず。原子炉炉心16内には垂直なド
ライチューブ17を設け、そのドライチューブ17内に
LPPM検出器支持管18を昇降可能に設けている。L
PRM検出器支持管18内にはLPPM検出P!i19
を上下に複数、間隔的に設けている。そしてLPRM検
出器支持管18を駆動機構20によりLPRM検出器1
9の上下間隔を保持したまま昇降可能としている。
In the figure, 13 is a reactor pressure vessel in a pressure vessel pedestal 13a, 14 is a core support plate, 15 is an upper lattice plate, 1
6 does not show the reactor core. A vertical dry tube 17 is provided within the reactor core 16, and an LPPM detector support tube 18 is provided within the dry tube 17 so as to be movable up and down. L
Inside the PRM detector support tube 18 is an LPPM detection P! i19
There are multiple spaces above and below. Then, the LPRM detector support tube 18 is connected to the LPRM detector 1 by the drive mechanism 20.
It is possible to go up and down while maintaining the vertical distance of 9.

叩ち、ドライデユープ17の原子炉炉心16下側部分に
駆動機構収納空間21を形成し、この駆動機構収納空間
21にモータ、ギアなどによる駆動機構20を収納しし
ている。そして、少くとも上下端のLPRM検出器19
間の距離だけ、LPPM検出器支持管18を昇降可能と
している。
A drive mechanism housing space 21 is formed in the lower portion of the nuclear reactor core 16 of the dry duplex 17, and a drive mechanism 20 including a motor, gears, etc. is housed in this drive mechanism housing space 21. At least the LPRM detectors 19 at the upper and lower ends
The LPPM detector support tube 18 can be moved up and down by the distance between.

校正用のTIP22は、ドライデユープ17内にTIP
案内管23を介して昇降可能に設け、操作ワイヤ24を
介してTIP駆動機構25により昇降外8するようにし
ている。なお、26はインデックスボックスで、内装し
た索引装置により、TIP22を校正ずべきL P R
M検出器19に案内するためのものである。
TIP 22 for calibration is installed inside the dry duplex 17.
It is provided so that it can be raised and lowered via a guide tube 23, and is raised and lowered 8 by a TIP drive mechanism 25 via an operating wire 24. In addition, 26 is an index box, and TIP22 should be calibrated by the indexing device built into it.
It is for guiding to the M detector 19.

次に第2図により校正作用をm明する。Next, the calibration action will be explained with reference to FIG.

例えば第2図(A)に示すように、L P RM検出器
19を通常の位置に保持したままで、TIP22を最下
段のLPPM検出器19の高さ位置まで押入し、その最
下段のしPRM検出検出41絞次に第2図(B)に示す
ように、TIP22を引き抜き、その後、第2図(C)
 13よび第2図(D)に示ずように、原子炉炉心16
内の中性子束を走査させながら、LPPM検出器支持管
18を上下方向に移動し、Jatt>に第2図(E)に
示Jように、再び通常の位置に戻す。
For example, as shown in FIG. 2(A), while holding the LPRM detector 19 in its normal position, push the TIP 22 up to the height of the lowest LPPM detector 19, and PRM detection Detection 41 Next, as shown in Fig. 2 (B), pull out the TIP 22, and then, as shown in Fig. 2 (C)
13 and as shown in FIG. 2(D), the reactor core 16
While scanning the neutron flux inside, the LPPM detector support tube 18 is moved vertically and returned to its normal position as shown in FIG. 2(E).

このような操作により、炉心内の軸方向中性子束分布が
各LPRM検出器19によって測定されると同時に、上
下に隣接するLPRM検出器19の感麿を相nに校正し
合うことができる。
By such an operation, the axial neutron flux distribution in the reactor core can be measured by each LPRM detector 19, and at the same time, the sensitivity of the vertically adjacent LPRM detectors 19 can be calibrated to each other in phase n.

そこで、先に行なったTIP22による最下段のLPP
M検出器19の校正の結果から、上下に隣接づる各LP
RM検出器19の絶対的な校正および原子炉炉心16の
軸方向中竹子東分布の測定を行なうことができる。
Therefore, the lowest LPP by TIP22 performed earlier
From the results of the calibration of the M detector 19, each LP adjacent to the upper and lower
Absolute calibration of the RM detector 19 and measurement of the axial center distribution of the nuclear reactor core 16 can be performed.

なJ3、実際の原子炉について炉心全体のLPPM校正
を行なう場合は、予め原子炉炉心16内の全てのL P
 P M検出器支持管18を同時に上下移動させて、中
性子束分布を走査し、TIPによる最下段のLPPM検
出器19の校正は別に行なうものである。
J3, when performing LPPM calibration of the entire core of an actual reactor, all LPPM in the reactor core 16 should be calibrated in advance.
The PM detector support tube 18 is simultaneously moved up and down to scan the neutron flux distribution, and the calibration of the lowest stage LPPM detector 19 by TIP is performed separately.

このような構成によれば、TIP22を最下段の1ρR
M検出器19の品さ位置まで挿入し、その1−ド段のL
PRM検出器19の校正を行なうだけで流むので、従来
の出力領域計測装置装2に比べて走査時間が1/4〜1
15程度となり、作業効率を向上できるとともに、炉心
中性子束分布は各LPPMにより同時に走査されるため
、炉心出力の時間変化による影響を受けにくいなどの利
点が得られる。
According to such a configuration, the TIP 22 is connected to the bottom 1ρR.
Insert it up to the quality position of the M detector 19, and then
Since the flow only needs to be calibrated for the PRM detector 19, the scanning time is reduced to 1/4 to 1/2 compared to the conventional output area measuring device 2.
Since the core neutron flux distribution is simultaneously scanned by each LPPM, there are advantages such as being less affected by temporal changes in the core output.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る原子炉の出力領域計測装置
によれば、局部出力領域検出器の支持管をその出力領域
検出器の上下間隔を保持したまま4降さける駆@機構を
設け、移動中性予測計811器を最下段の局部出力領域
検出器の^さ位置まで挿入し、その最下段の局部出力領
域検出器の校正を行なうだけで済むものとしたので、移
動中性予測計測器の走査距離を減少することができ、そ
の移動中性予測計i1!IP!iによる局部出力領域検
出器の校正の効率化が計れるようになる。
As described above, according to the power range measurement device for a nuclear reactor according to the present invention, a drive mechanism is provided to lower the support tube of the local power range detector 4 times while maintaining the vertical interval of the power range detector, Since it is only necessary to insert the moving neutral predictor 811 up to the position of the lowest local output area detector and calibrate the lowest local output area detector, the mobile neutral predictive measurement is possible. The scanning distance of the device can be reduced, and its moving neutral predictor i1! IP! It becomes possible to improve the efficiency of the calibration of the local output region detector by i.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す要部の断面図、第2図
(A)〜(E)は作用を示す説明図、第3図は従来例を
示す断面図である。 16・・・原子炉炉心、17・・・ドライチューブ、1
8・・・支持管、19・・・周部出力領域検出器、2o
・・・駆動機構、22・・・移動中性予測計量器、23
・・・案内管。 代理人弁理士  別 近 憲 佑 第1図
FIG. 1 is a sectional view of essential parts showing one embodiment of the present invention, FIGS. 2(A) to (E) are explanatory views showing the operation, and FIG. 3 is a sectional view showing a conventional example. 16... Nuclear reactor core, 17... Dry tube, 1
8... Support tube, 19... Peripheral output area detector, 2o
... Drive mechanism, 22 ... Moving neutral predictive measuring instrument, 23
...Guiding tube. Representative Patent Attorney Kensuke Chika Figure 1

Claims (1)

【特許請求の範囲】[Claims] 原子炉炉心の垂直なドライチューブ内に支持管を介して
上下に複数、間隔的に設けられた局部出力領域検出器と
、前記ドライチューブ内に案内管を介して昇降可能に設
けられた移動中性子測計測器とを有する原子炉の出力領
域計測装置において、前記局部出力領域検出器の支持管
をその出力領域検出器の上下間隔を保持したまま昇降さ
せる駆動機構を設けたことを特徴とする原子炉の出力領
域計測装置。
A plurality of local power range detectors are provided at intervals above and below via support tubes in the vertical dry tube of the nuclear reactor core, and moving neutrons are provided in the dry tube so as to be movable up and down via guide tubes. A power range measuring device for a nuclear reactor having a measuring instrument, characterized in that a drive mechanism is provided for raising and lowering the support tube of the local power range detector while maintaining the vertical interval of the power range detector. Furnace power range measuring device.
JP60152363A 1985-07-12 1985-07-12 Measuring device for output region of nuclear reactor Pending JPS6214092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60152363A JPS6214092A (en) 1985-07-12 1985-07-12 Measuring device for output region of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60152363A JPS6214092A (en) 1985-07-12 1985-07-12 Measuring device for output region of nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6214092A true JPS6214092A (en) 1987-01-22

Family

ID=15538894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60152363A Pending JPS6214092A (en) 1985-07-12 1985-07-12 Measuring device for output region of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6214092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272140A (en) * 1990-03-22 1991-12-03 Fujitsu Ltd Chemical treater for semiconductor substrate
EP0496998A1 (en) * 1991-01-30 1992-08-05 Combustion Engineering, Inc. Extending in-core instrument life
FR2753299A1 (en) * 1996-09-12 1998-03-13 Commissariat Energie Atomique MINIATURIZED, SELF-POWERED AND FAST RESPONSE DEVICE FOR THE STAGE DETECTION OF A NEUTRONIC FLOW, ESPECIALLY IN A NUCLEAR REACTOR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272140A (en) * 1990-03-22 1991-12-03 Fujitsu Ltd Chemical treater for semiconductor substrate
EP0496998A1 (en) * 1991-01-30 1992-08-05 Combustion Engineering, Inc. Extending in-core instrument life
FR2753299A1 (en) * 1996-09-12 1998-03-13 Commissariat Energie Atomique MINIATURIZED, SELF-POWERED AND FAST RESPONSE DEVICE FOR THE STAGE DETECTION OF A NEUTRONIC FLOW, ESPECIALLY IN A NUCLEAR REACTOR
WO1998011560A1 (en) * 1996-09-12 1998-03-19 Commissariat A L'energie Atomique Quick response, self-power- supplied, miniaturised device for sensing a multistage neutron flux, in particular in a nuclear reactor

Similar Documents

Publication Publication Date Title
JPH06105312B2 (en) Control rod inspection method and control rod inspection device
US3717765A (en) Device for non-destructive consumption testing of reactor fuel elements
JPS6214092A (en) Measuring device for output region of nuclear reactor
Matsuura et al. Non-destructive gamma-ray spectrometry on spent fuels of a boiling water reactor
US3160567A (en) Solid state power mapping instrument
US3070538A (en) Fuel assay reactor
US12046386B2 (en) Method for periodically measuring the total gamma radiation activity of a target radioisotope being produced inside a nuclear reactor core
Redman et al. Critical experiments with thoria-urania fuel in heavy water
Blomberg Reactor physics problems concerning the startup and operation of power reactors
Rice et al. EXPERIMENTS ON BOILING CORE B-2, BORAX-V
Lipsett et al. Failed fuel location in CANDU-PHW reactors using a feeder scanning technique
JPS60256093A (en) Movable incore-probe device
Ghosh et al. Monitoring plutonium enrichment in mixed-oxide fuel pellets inside sealed nuclear fuel pins by neutron radiography
SU711905A1 (en) Method of non-dectructive analysis of waste fuel elements
Morgan In-core neutron monitoring system for general electric boiling water reactors
Dawson et al. Measurement of thermal power density distributions by fuel pin gamma scanning
Loving Neutron, temperature and gamma sensors for pressurized water reactors
JPH04283696A (en) Measuring method of burnup of spent fuel assembly
Batch et al. Consolidated edison thorium reactor critical experiments with oxide fuel pins
Delaney et al. Gamma scanning of CANDU fuel
Parkos et al. Gamma scan measurements at Zion Station Unit 2 following Cycle 1. Final report
Eiji Present status of JRR-3M
Loving et al. Reactor Core Measurements at Connecticut-Yankee and Zorita
Pyecha et al. Nondestructive examination of Oconee 1 fuel assemblies after three cycles of irradiation
Aarrestad In-core instrumentation for LWRs