JPS62140079A - Apparatus for detecting position of object - Google Patents

Apparatus for detecting position of object

Info

Publication number
JPS62140079A
JPS62140079A JP28098785A JP28098785A JPS62140079A JP S62140079 A JPS62140079 A JP S62140079A JP 28098785 A JP28098785 A JP 28098785A JP 28098785 A JP28098785 A JP 28098785A JP S62140079 A JPS62140079 A JP S62140079A
Authority
JP
Japan
Prior art keywords
wave
group
detection
frequency difference
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28098785A
Other languages
Japanese (ja)
Inventor
Masaki Teshigahara
勅使川原 正樹
Hiroshi Teramoto
寺本 浩志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP28098785A priority Critical patent/JPS62140079A/en
Publication of JPS62140079A publication Critical patent/JPS62140079A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect the position of an object with a high visual field and high accuracy, by constituting the titled apparatus so that the detection wave group generated from a detection wave generator of which frequency is variable contains a dense frequency detection wave group small in frequency difference and a rough frequency detection wave group large in frequency difference. CONSTITUTION:A wave receiver group is constituted of three stages of a 3X3 wave receiver group A consisting of wave receivers 11-19, a 3X3 wave receiver group B consisting of wave receivers 20-23, 15, 24-27 and a 3X3 wave receiver group C consisting of wave receivers 28-31, 15, 33-36. The position of an object is detected on the whole using the receiving signal obtained by a detection wave group dense in frequency difference and the wave receiver group A dense in an arrangement interval and the position of the object is locally detected using receiving signals successively obtained on the basis of the detection result by a detection wave group rough in frequency difference and the wave receiver groups B, C rough in an arrangement interval. As mentioned above, the estimation process of the position of the object is made stepwise and the approximate position of the matter is estimated at the initial stage and accuracy is made higher while a visual field is successively made narrow and the position of the object is finally detected with high resolving power to enable the detection of the position of the object with a high visual field and high accuracy.

Description

【発明の詳細な説明】 発明の要約 被検出物体に向けて順次送波される検出波群に2周波数
差が密な検出波群と周波数差が疎な検出波群とが含まれ
るようにし、物体からの検出波を受ける受波子群の配置
を密な部分と疎な部分とが存在するように構成し、まず
1周波数差が密な検出波群と配置間隔が密な受波子群と
によって得られる受波信号を用いて物体の位置を大局的
に検出し、この結果を基に、順次1周波数差が疎な検出
波群と配置間隔が疎な受波子群とによって得られる受波
信号を用いて物体の位置を局所的に検出するようにした
ことを特徴とする物体位置検出装置。
[Detailed Description of the Invention] Summary of the Invention A detection wave group sequentially transmitted toward a detected object includes a detection wave group with a dense two-frequency difference and a detection wave group with a sparse frequency difference, The arrangement of the wave receiving element group that receives the detected waves from the object is configured so that there are dense parts and sparse parts, and first, the one frequency difference is created by forming the detection wave group with a dense detection wave group and the wave receiving element group with a dense arrangement interval. The position of the object is detected globally using the received signal obtained, and based on this result, the received signal obtained by a group of detected waves with a sparse one frequency difference and a group of receivers with a sparse arrangement interval is sequentially determined. 1. An object position detection device characterized in that the position of an object is locally detected using.

[技術分野] この発明は、超音波、電磁波等の検出波を用いたホログ
ラフィによって物体の位置を検出する物体位置検出装置
に関し、とくに3次元タイプの物体位置検出装置に関す
る。
[Technical Field] The present invention relates to an object position detection device that detects the position of an object by holography using detection waves such as ultrasonic waves and electromagnetic waves, and particularly relates to a three-dimensional type object position detection device.

[従来技術の説明] 第1図は従来より提案されている物体位置検出装置ηの
概略構成を示している。この装置は1周波数差が等しい
複数の異なる周波数をもつ検出波を順次、物体に照射し
、物体から反射される反射波を配置間隔が等間隔な多数
の受波子群を用いて受波し、この受波信号を基に演算処
理によって物体位置を推定するものである。以下、検出
波として超音波を用い1周波数の種類を5とし、受波子
群を5×5チヤンネルとした場合について説明する。
[Description of Prior Art] FIG. 1 shows a schematic configuration of a conventionally proposed object position detection device η. This device sequentially irradiates an object with detection waves having a plurality of different frequencies with the same frequency difference, and receives the reflected waves reflected from the object using a large number of receiver groups arranged at equal intervals. The object position is estimated by arithmetic processing based on this received signal. Hereinafter, a case will be described in which an ultrasonic wave is used as the detection wave, the number of types of one frequency is 5, and the wave receiver group is 5×5 channels.

まず、超音波発信子2から物体7に向けて送波された超
音波信号は、物体7により反射され、超音波受波子群3
において受波される。これらの受波信号は、増幅回路群
4を通過した後1位相検波回路群5において、その振幅
と位相がそれぞれ測定され1計算機のメモリ6上に記録
される。このデータがいわゆるホログラム・データであ
る。ホログラム・データの収集は1周波数を変えて、5
つの異なる周波数をもつ超音波を用いて順次行なわれる
First, an ultrasonic signal transmitted from the ultrasonic transmitter 2 toward the object 7 is reflected by the object 7, and is reflected by the ultrasonic receiver group 3.
The wave is received at After passing through the amplifier circuit group 4, the amplitude and phase of these received signals are measured in the phase detection circuit group 5 and recorded in the memory 6 of the computer. This data is so-called hologram data. Hologram data is collected by changing 1 frequency and 5
This is done sequentially using ultrasound waves with two different frequencies.

周波Ifなる超音波信号を用い、座標(x’ 、y’)
において受波信号を観測するものとすれば、ホログラム
・データ h(x’ 、y’ 、r)は次式のように表
わされる。
Using an ultrasonic signal with a frequency If, coordinates (x', y')
If the received signal is observed at , the hologram data h(x', y', r) is expressed as follows.

b(x’、y’汀)= ・・・(1) ここでf’(x、y、z)は物体7の反射率、Cは音速
b (x', y') = (1) where f' (x, y, z) is the reflectance of the object 7, and C is the speed of sound.

(tは送波子2と物体7間の距離、(rは受波子と物体
7間の距離である。このようなホログラム・データをす
べての周波数と受波子についてそれぞれ測定し1次に示
す再生演算処理に従って再生像1(x、y、z)を再生
する。
(t is the distance between the wave transmitter 2 and the object 7, (r is the distance between the wave receiver and the object 7.) Such hologram data is measured for all frequencies and the wave receiver, and the reproduction calculation shown in The reproduced image 1 (x, y, z) is reproduced according to the process.

1(x、y、z)= ・・・(2) ここでff1t’ は送波子と再生点間の距離、(r′
は受波子と再生点間の距離である。
1 (x, y, z) = ... (2) Here, ff1t' is the distance between the transmitter and the reproduction point, (r'
is the distance between the receiver and the reproduction point.

ところで、このような映像系において、物体がフレネル
領域に存在するものとすれば、横方向の分解能Δrと視
野g および縦方向の分解能Δ2と視野g は、それぞ
れ次のように表わされる。
By the way, in such an imaging system, assuming that the object exists in the Fresnel region, the horizontal resolution Δr and the field of view g and the vertical resolution Δ2 and the field of view g are respectively expressed as follows.

λZ。λZ.

Δ「−□           ・・・(3)λ ・・・(6) gz′″ 2Δf ここでλは中心周波数foにおける超音波の波長、Zo
はホログラム面から物体面までの距離。
Δ"-□ ... (3) λ ... (6) gz'" 2Δf Here, λ is the wavelength of the ultrasonic wave at the center frequency fo, Zo
is the distance from the hologram surface to the object surface.

Pは受波子の配置間隔、Lは受波子の開口幅、fは最大
周波数と最小周波数との差である(便宜上、以下これを
周波数開口幅と呼ぶ)。
P is the arrangement interval of the wave receivers, L is the aperture width of the wave receivers, and f is the difference between the maximum frequency and the minimum frequency (for convenience, this will be referred to as the frequency aperture width hereinafter).

さてこのような、ホログラフィの手法を応用した物体位
置検出装置には次のような問題があった。すなわち、物
体のX、Y方向の位置を精度よく測定するためには第(
3)式から開口幅りを太きくとること、また検出領域を
広くするためには第(4)式から受波子間隔Pを小さく
する必要がある。つまり物体のx、Y方向の位置を広視
野で精度よく検出するためには受波子群を密に、かつ受
波子を極めて多数個配置する必要がある。さらにZ方向
についても同様に物体のZ方向の位置を広視野で精度よ
く検出するためには、用いる検出波の周波数として小さ
な周波数差の極めて多数種類の周波数を用意する必要が
ある。このため発振回路、増幅回路1位相検波回路など
の電子的処理回路が大規模化し、実現が困難になるばか
りか、 、fill定デー少データとなり、計算機にお
けるメモリ容量と演算処理時間が極めて増大化する欠点
があった。
However, such object position detection devices that apply holography techniques have the following problems. In other words, in order to accurately measure the position of an object in the X and Y directions,
From equation (3), it is necessary to increase the aperture width, and from equation (4), it is necessary to reduce the receiver spacing P in order to widen the detection area. In other words, in order to accurately detect the position of an object in the x and y directions over a wide field of view, it is necessary to arrange the wave receiver group densely and in an extremely large number of wave receivers. Furthermore, in the Z direction as well, in order to accurately detect the position of an object in the Z direction over a wide field of view, it is necessary to prepare an extremely large number of different frequencies of detection waves with small frequency differences. For this reason, electronic processing circuits such as oscillation circuits, amplifier circuits, and single-phase detection circuits have become large-scale, making it difficult to implement them.In addition, the amount of data required to fill the data is small, and the memory capacity and calculation processing time of computers have increased significantly. There was a drawback.

[発明の目的コ この発明の目的は1周波数の種類が少ない検出波群と受
波子の個数の少ない受波子群とを用いても物体の位置を
広視野でかつ精度よく検出できる物体位置検出装置を提
供することにある。
[Object of the Invention] The object of the invention is to provide an object position detection device that can accurately detect the position of an object over a wide field of view even when using a detection wave group with a small number of frequency types and a wave receiver group with a small number of wave receivers. Our goal is to provide the following.

[発明の構成と効果] この発明は、物体から伝播してくる複数の異なる周波数
の検出波を受波子群で順次受波し、それらの受波信号か
ら物体の位置に関するホログラム・データを得る物体位
置検出装置において、受波子群の配置を、隣接する受波
子間の間隔が狭い密配置部分と、受波子間の間隔が広い
疎配置部分とが存在するように構成し1周波数可変の検
出波発生装置から発生する検出波群を1周波数差の小さ
い密周波数差検出波群と周波数差の大きい線屑波数差検
出波群とを含むようにしたことを特徴とする。
[Configuration and Effects of the Invention] The present invention provides an object in which a group of wave receivers sequentially receives detection waves of a plurality of different frequencies propagating from an object, and obtains hologram data regarding the position of the object from the received signals. In a position detection device, the wave receiving element group is arranged so that there are a densely arranged part where the spacing between adjacent wave receiving elements is narrow and a sparsely arranged part where the spacing between the wave receiving elements is wide, and detects a detection wave with one frequency variable. The detection wave group generated from the generator includes a dense frequency difference detection wave group with a small one-frequency difference and a wire scrap wave number difference detection wave group with a large frequency difference.

まず1周波数差が密な検出波群と配置間隔が密な受波子
群とによって得られる受波信号を用いて物体の位置を大
局的に検出し、この結果を基に。
First, the position of the object is detected globally using the received signals obtained by a group of detection waves with a close one-frequency difference and a group of receivers with a close arrangement interval, and based on this result.

順次1周波数差が疎な検出波群と配置間隔が疎な受波子
群とによって得られる受波信号を用いて物体の位置を局
所的に検出するようにしている。
The position of the object is locally detected using received signals obtained by a group of detection waves having a sparse one frequency difference and a group of receivers having a sparse arrangement interval.

このように、この発明では物体の位置の推定過程を段階
的にし、初期の段階においては広視野の検出領域を設定
して物体の大体の位置を推定し。
As described above, in the present invention, the process of estimating the position of the object is performed in stages, and in the initial stage, a wide field of view detection area is set to estimate the approximate position of the object.

順次、視野を狭めながら精度を高めていき、最終的に物
体位置を高分解能で検出する。したがって、結果として
種類の少ない周波数の検出波群と、受波子個数の少ない
受波子群とを用いて物体の位置を広視野でかつ精度よく
検出できる。
The accuracy is gradually increased while narrowing the field of view, and the object position is finally detected with high resolution. Therefore, as a result, the position of an object can be detected over a wide field of view and with high precision using a detection wave group with a small number of types of frequencies and a wave receiver group with a small number of wave receivers.

[実施例の説明コ 第2図は、この発明で用いられる受波子群の配置の一例
を示している。この受波子群は3段構成になっており、
受波子11,12,13,14゜15.16,17.1
8.19によって構成される3X3の受波子群が、相互
間隔が最も密になるように配置された受波子群であり、
隣接する受波子の間隔をPとする(この受波子群を以下
、受波子群Aと呼ぶ)。次に受波子20,21,22゜
23.15,24,25,26.27で構成される3×
3の受波子群は、受波子間隔が受波子群Aの開口幅2P
と等しくなるように配置された受波子群である(これを
以後、受波子群Bと呼ぶ)。さらに受波子28,29,
30,31゜15.33,34,35.36によって構
成される3×3の受波子群は、受波子間隔が受波子群B
の開口幅4Pと等しくなるように配置された受波子群で
ある(以後受波子群Cと呼ぶ)。
[Description of Embodiments] FIG. 2 shows an example of the arrangement of the wave receiver group used in the present invention. This receiver group has a three-stage configuration,
Receiving wave element 11, 12, 13, 14° 15.16, 17.1
8.19 The 3×3 wave receiver group is a wave receiver group arranged so that the mutual spacing is the closest,
Let P be the interval between adjacent wave receivers (this wave receiver group is hereinafter referred to as wave receiver group A). Next, the 3×
In the receiver group 3, the receiver spacing is the aperture width 2P of receiver group A.
(hereinafter referred to as wave receiver group B). Furthermore, receivers 28, 29,
30, 31° 15.33, 34, 35.36, the receiver spacing is the receiver group B.
(hereinafter referred to as wave receiver group C) arranged so as to be equal to the aperture width 4P of (hereinafter referred to as wave receiver group C).

さらに検出波群についても3段構成とし1周波数f=f
、fo±Δfの検出波によって構成される検出波群が、
検出波周波数差が最も小さい密層波数検出波群で、検出
波群A′と呼ぶ。次に。
Furthermore, the detection wave group is also configured in three stages, with one frequency f=f
, a group of detected waves composed of detected waves of fo±Δf is,
The dense layer wave number detection wave group having the smallest detected wave frequency difference is called the detection wave group A'. next.

周波数f−f、fo±2Δfによって構成される検出波
群をB’、f−f、f  ±4foによって構成される
検出波群をC′とする。検出波群C′はその周波数差が
最も大きくなるように選択された線屑波数差検出波群で
ある。
Let B' be a detected wave group composed of frequencies ff and fo±2Δf, and C' be a detected wave group composed of frequencies ff and f±4fo. The detection wave group C' is a line waste wave number difference detection wave group selected so that the frequency difference thereof is the largest.

つぎにこのような受波子群と検出波群を用いて物体の位
置を推定する方式について述べる。処理回路のハードウ
ェア構成は第1図に示すものと同一である。まず最初に
受波子群Aと検出波群A′との組合せによって得られる
ホログラム・データを用いて物体領域を再生する。この
組合せは、受波子間隔P、受受波開開0幅1周波数差Δ
f1周波数開口幅f=2Δfがともに小さいので第(3
)式〜第(6ン式より、低分解能ながら高視野の再生画
像が得られる。すなわち、第3図に示すように再生領域
を大局的に3X3X3の領域に等分割t、て得られる各
領域を1画素とする画像が得られる。今、対象物体を1
個とし、これが再生画素Sの中に検出されたとする。し
かしこの段階においては、物体は再生画素S内のどこか
にあることがわかるだけで、さらに正確な位置は認識で
きない。
Next, a method for estimating the position of an object using such a receiver group and a detection wave group will be described. The hardware configuration of the processing circuit is the same as that shown in FIG. First, the object region is reconstructed using hologram data obtained by a combination of the receiver group A and the detection wave group A'. This combination has a receiving wave element spacing P, receiving/receiving wave opening/opening 0 width 1 frequency difference Δ
Since f1 frequency aperture width f=2Δf is both small, the (3rd
) to formula (6), reproduced images with low resolution but high field of view can be obtained.In other words, as shown in Fig. 3, each area obtained by equally dividing the reproduction area into 3 x 3 x 3 areas. An image with 1 pixel is obtained.Now, the target object is 1 pixel.
Suppose that this is detected in the reproduced pixel S. However, at this stage, it is only known that the object is somewhere within the reproduced pixel S, and the more accurate position cannot be recognized.

次にこの結果を基に、受波子群Bと検出波群B′ との
組合せによって得られるホログラム・データを用いて再
生画素Sをさらに3X3X3の領域(画素)に分割する
。このとき受波子14 Bの受波子間隔2Pは受波子群
Aの開口幅2Pに等しいので、第(3)式および第(4
)式より、受波子群Bによって再生されるX、Y方向の
視野は、受波子群Aによって再生されるX、Y方向の分
解能に等しい。また検出波群についても同様の関係が成
り立つので、検出波群B′によって再生されるZ方向の
視野は、検出波群A′によって再生されるZ方向の分解
能に等しい。従ってこの段階においては第4図に示すよ
うな再生画像が得られ、たとえば物体の位置が画素T内
に含まれていることを検出することができる。以下同様
に、この結果を基に受波子群Cと検出波群C′との組合
せによって得られるホログラム・データを用いて第5図
に示すように再生画素Tを3X3X3の領域に分割し、
最終的な物体位置(画素)Uを検出する。
Next, based on this result, the reproduced pixel S is further divided into 3×3×3 regions (pixels) using the hologram data obtained by the combination of the receiving wave element group B and the detected wave group B'. At this time, since the receiver spacing 2P of the receiver 14B is equal to the aperture width 2P of the receiver group A, equations (3) and (4)
), the field of view in the X and Y directions reproduced by the receiver group B is equal to the resolution in the X and Y directions reproduced by the receiver group A. Furthermore, since a similar relationship holds for the detected wave group, the field of view in the Z direction reproduced by the detected wave group B' is equal to the resolution in the Z direction reproduced by the detected wave group A'. Therefore, at this stage, a reproduced image as shown in FIG. 4 is obtained, and it is possible to detect, for example, that the position of the object is included in the pixel T. Similarly, based on this result, the reproduced pixel T is divided into 3×3×3 regions as shown in FIG. 5 using the hologram data obtained by the combination of the receiver group C and the detected wave group C'.
The final object position (pixel) U is detected.

このようにこの発明によれば、物体の位置推定の過程は
、最初は大局的に、順次視野範囲を狭めていって局所的
に行なわれるため、少ない検出波群と少ない受波子群を
用いても、広視野、高精度で物体の3次元位置の検出が
可能である。従って電子的処理回路もさほど大きくなら
ず、計算機におけるメモリ容量も小さく、その演算処理
時間も短くできる。
As described above, according to the present invention, the process of estimating the position of an object is performed globally at first, and then locally by gradually narrowing the field of view. It is also possible to detect the three-dimensional position of an object with a wide field of view and high precision. Therefore, the electronic processing circuit is not so large, the memory capacity of the computer is small, and the calculation processing time can be shortened.

たとえば、上記実施例においては7種類の周波数の検出
波群と25個の受波子からなる受波子群の組合せによっ
て9X3X3−81個のホログラム・データを得、これ
を用いて位置検出を行なった場合について説明したが、
これと同一視野で同一精度の位置検出を従来装置で実現
するためには、9種類の周波数の検出波群と9×9個の
受波子をもつ受波子群、すなわち9X9X9=729個
のホログラム・データを必要とする。この発明による効
果はこの比較によって明白である。
For example, in the above embodiment, 9X3X3-81 hologram data are obtained by a combination of detection wave groups of 7 types of frequencies and a wave receiver group consisting of 25 wave receivers, and this is used to perform position detection. I explained about
In order to achieve position detection with the same precision in the same field of view using a conventional device, a detection wave group with nine different frequencies and a wave receiver group with 9 x 9 wave receivers, that is, 9 x 9 x 9 = 729 holograms. Requires data. The effects of this invention are clear from this comparison.

[他の実施例] 上記実施例においては、検出波群と受波子群を3段構成
とし、各段における周波数要素を3種類、受波子要素を
3×3個としたが、これらの構成段数と要素数は目的に
応じて任意に選んでよい。また超音波の代りに電磁波を
用いても同様の効果が得られる。さらに、受波子群は第
2図では正方形状に配置されているが、他の配置たとえ
ば円状(同心円状)に配置してもよい。
[Other Examples] In the above embodiment, the detection wave group and the receiver group are configured in three stages, each stage has three types of frequency elements, and the number of receiver elements is 3×3. and the number of elements may be arbitrarily selected depending on the purpose. The same effect can also be obtained by using electromagnetic waves instead of ultrasonic waves. Furthermore, although the wave receiver group is arranged in a square shape in FIG. 2, it may be arranged in another arrangement, for example, in a circular shape (concentric circles).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の物体位置検出装置の構成を示す説明図、
第2図はこの発明による物体位置検出装置における受波
子群の配置の一例を示す図、第3図から第5図は、この
発明による物体位置検出装置の位置検出過程を説明する
ための説明図である。 1・・・高周波発振器、   2・・・送波子。 3・・・受波子群、     4・・・増幅回路群。 5・・・位相検波回路群、  6・・・計算機のメモリ
。 7・・・物体、11〜36・・・受波子。 以  上
FIG. 1 is an explanatory diagram showing the configuration of a conventional object position detection device.
FIG. 2 is a diagram showing an example of the arrangement of a wave receiver group in the object position detection device according to the present invention, and FIGS. 3 to 5 are explanatory diagrams for explaining the position detection process of the object position detection device according to the present invention. It is. 1... High frequency oscillator, 2... Wave transmitter. 3... Wave receiver group, 4... Amplifier circuit group. 5... Phase detection circuit group, 6... Computer memory. 7...Object, 11-36...Receiver. that's all

Claims (1)

【特許請求の範囲】  物体から伝播してくる複数の異なる周波数の検出波を
受波子群で順次受波し、それらの受波信号から物体の位
置に関するホログラム・データを得る物体位置検出装置
において、受波子群の配置を、隣接する受波子間の間隔
が狭い密配置部分と、受波子間の間隔が広い疎配置部分
とが存在するように構成し、 周波数可変の検出波発生装置から発生する検出波群を、
周波数差の小さい密周波数差検出波群と周波数差の大き
い疎周波数差検出波群とを含むようにした、 ことを特徴とする物体位置検出装置。
[Claims] An object position detection device in which a group of wave receivers sequentially receives detection waves of a plurality of different frequencies propagating from an object and obtains hologram data regarding the position of the object from the received signals, The wave receiver group is arranged so that there are densely arranged parts where the spacing between adjacent wave receivers is narrow and sparsely arranged parts where the spacing between the wave receivers is wide. The detected wave group is
An object position detection device comprising: a fine frequency difference detection wave group with a small frequency difference and a sparse frequency difference detection wave group with a large frequency difference.
JP28098785A 1985-12-16 1985-12-16 Apparatus for detecting position of object Pending JPS62140079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28098785A JPS62140079A (en) 1985-12-16 1985-12-16 Apparatus for detecting position of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28098785A JPS62140079A (en) 1985-12-16 1985-12-16 Apparatus for detecting position of object

Publications (1)

Publication Number Publication Date
JPS62140079A true JPS62140079A (en) 1987-06-23

Family

ID=17632676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28098785A Pending JPS62140079A (en) 1985-12-16 1985-12-16 Apparatus for detecting position of object

Country Status (1)

Country Link
JP (1) JPS62140079A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232580A (en) * 1989-03-06 1990-09-14 Honda Motor Co Ltd Object detector
US10773930B2 (en) 2016-07-27 2020-09-15 Jeong-Hoon SHIN Home-delivered article loading device for drone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232580A (en) * 1989-03-06 1990-09-14 Honda Motor Co Ltd Object detector
US10773930B2 (en) 2016-07-27 2020-09-15 Jeong-Hoon SHIN Home-delivered article loading device for drone

Similar Documents

Publication Publication Date Title
US4706031A (en) Method and system for detecting an object with a radio wave
EP1643210B1 (en) Method and apparatus for measuring shape of an object
WO2001084165A1 (en) Field distribution measuring method and device
US4982375A (en) Acoustic intensity probe
US9785824B2 (en) Apparatus and a method for detecting a motion of an object in a target space
JPS62140079A (en) Apparatus for detecting position of object
Jordan Correlation algorithms, circuits and measurement applications
US5406375A (en) Angular distortion measurements by moire fringe patterns
JP2969202B2 (en) 3D object recognition method using neural network
JP7011533B2 (en) Partial discharge sound source display method and partial discharge sound source display device
JPS62140078A (en) Apparatus for detecting position of object
JPS61258182A (en) Three-dimensional video device
Chi-Fang et al. A new approach to high precision 3-D measuring system
Maginness The reconstruction of elastic wave fields from measurements over a transducer array
JPH10221066A (en) Apparatus and method for measuring three-dimensional position by stereo method
RU2163015C2 (en) Procedure determining positions of sources of acoustic emission signals and device for its realization
JP2667404B2 (en) Sound source locator
JP2021056046A (en) Evaluation system and evaluation device
JPS62115307A (en) Method and instrument for measuring displacement distribution in real time
JPH0148548B2 (en)
JPH01136081A (en) Passive sonar
JPH0421148B2 (en)
JPH05323013A (en) Sound source position plotting device
JP2843030B2 (en) Moiré fringe generator
JP2581760B2 (en) Radar equipment