JPS62140044A - Method for weighing and mixing liquid specimen - Google Patents

Method for weighing and mixing liquid specimen

Info

Publication number
JPS62140044A
JPS62140044A JP60282438A JP28243885A JPS62140044A JP S62140044 A JPS62140044 A JP S62140044A JP 60282438 A JP60282438 A JP 60282438A JP 28243885 A JP28243885 A JP 28243885A JP S62140044 A JPS62140044 A JP S62140044A
Authority
JP
Japan
Prior art keywords
liquid
supply
tube
pipe
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60282438A
Other languages
Japanese (ja)
Inventor
Yosuke Takai
庸輔 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Boseki KK
Original Assignee
Daiwa Boseki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Boseki KK filed Critical Daiwa Boseki KK
Priority to JP60282438A priority Critical patent/JPS62140044A/en
Publication of JPS62140044A publication Critical patent/JPS62140044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To perform certain feeding and mixing regardless of the length of a feed distance and to prevent the generation of liquid dripping or contamination and deterioration, by supplying a predetermined amount of a liquid to a receiver by a quantitative pump before performing the liquid drainage in a feed pipe by jet gas. CONSTITUTION:Gas feed pipes 12, 12A are opened to the outlet sides of the fine tubes 11, 11A provided to a part of feed pieces 10, 10A each having such an inner diameter that an internal liquid steadily forms a gas-liquid interface with the min. area in a horizontal direction. Quantitative pumps 13, 13A are provided to the liquid feed sides of the feed pipes 10, 10A and a change-over cock 15 is provided in the liquid sending sides thereof. For example, a predetermined amount of a liquid 19 pumped up by one quantitative pump 13 is fed to he feed pipe 10 and gas is injected to the outlet of the fine tube 11 when the supply of the liquid is stopped to perform liquid drainage and the liquid in the downstream side is injected in a receiver 17 through the change-over cock 15 and a discharge tube 16. If the quantitative supply by one pump 13 is finished, the change-over cock 15 is changed over to perform the quantitative supply of the liquid from the other quantitative pump 13A. Hereupon, a desire liquid mixture of liquids 19, 19A is obtained in the receiver 17.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、廃水や各種の溶液、懸濁液などの液体試料を
計量し混合する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for measuring and mixing liquid samples such as waste water and various solutions and suspensions.

(ロ)従来の技術 複数の液体試料あるいは試薬溶液を扱う自動検査装置に
おいて、液体試料に試薬溶液を添加したり、該試料液と
希釈液あるいは試薬溶液を各種の割合に混合する操作を
2分注、希釈、あるいは混合操作と称され、これらの操
作を行なう一般的手段としては1例えばチューブポンプ
による定量供給手段、電動ビューレットやシリンジなど
の手段による任意量の可変計量供給手段などがあり、特
開昭49−39490号公報、特開昭52−69383
号公報、特開昭53−22492号公報にみられるよう
に混合あるいは反応槽などの容器に、上記計量供給手段
を用いて試料液や試薬溶液などの液体試料を計量し混合
している。これらの液体試料の計量、供給、混合手段は
、基本的には液体試料の種類毎に各々専用の供給管を使
用し、その吐出口から出る液体のすべてを容器へ供給で
きるように設定して混合操作が行われている。
(B) Conventional technology In automatic testing equipment that handles multiple liquid samples or reagent solutions, operations such as adding a reagent solution to a liquid sample or mixing the sample liquid and a diluent or reagent solution in various ratios can be performed in 2 minutes. This is referred to as dilution, dilution, or mixing operation, and common means for performing these operations include 1, for example, fixed-quantity supply means using a tube pump, and means for variable-metered supply of arbitrary amounts using means such as an electric burette or syringe. JP-A-49-39490, JP-A-52-69383
As shown in Japanese Patent Laid-Open No. 53-22492, a liquid sample such as a sample liquid or a reagent solution is measured and mixed into a container such as a mixing or reaction tank using the above-mentioned metering and supplying means. The means for measuring, supplying, and mixing these liquid samples basically uses dedicated supply pipes for each type of liquid sample, and is set so that all of the liquid discharged from the discharge port can be supplied to the container. A mixing operation is taking place.

また液体の検査装置において、数μl から数10om
lという比較的少量の液体が扱われることから。
In addition, in liquid inspection equipment, from several μl to several tens of ohms
This is because a relatively small amount of liquid, 1 liter, is handled.

液体の供給管の内径は約3〜5 m/m以下であり。The inner diameter of the liquid supply pipe is approximately 3 to 5 m/m or less.

その吐出口はさらに細く絞って用いられている。The discharge port is narrowed down further.

したがって供給管に液体を充満させその1端を閉塞して
静置すると、他の1端位置で該液体は空気との界面すな
わち先端面を生じて該供給管の隅々まで液体が充満して
いる状態が保持されることから、特開昭57−4485
7号公報あるいは特開昭57−144464号公報など
にみられるごとく、少量液体の定量供給手段は殆んどこ
の現象を利用して計量性を保持している。その具体的な
例を第7図に示す電動ビューレットの概略図にもとずき
説明すると計量すべき液体をまずシリンダ一部(1)、
コック部(2)及び搬送管(3)の先端吐出口(3A)
まで充満させた状態で静止滞留させて該液体の先端を常
に吐出口(3A)位置で規定し1次いてピストン(4)
を所望二押してシリンダ一部(1)より該液体を押し出
し、上記吐出口(3A)から上記所望量の液体を排出す
る。そして該ピストン(12)を停止すると、該液体の
先端は該吐出口(3A)位置ミこ留まり送液が停止され
、再び該ピストン(4)を押すと該吐出口〈3A)から
所望量の液体が排出させるものである。
Therefore, when a supply pipe is filled with liquid and left to stand with one end closed, the liquid forms an interface with air at the other end, that is, a tip surface, and every corner of the supply pipe is filled with liquid. JP-A-57-4485
As seen in Japanese Patent Publication No. 7 or Japanese Unexamined Patent Publication No. 144464/1983, means for quantitatively supplying a small amount of liquid almost always utilizes this phenomenon to maintain meterability. A specific example of this will be explained based on the schematic diagram of an electric burette shown in FIG.
The tip outlet (3A) of the cock part (2) and the conveyor pipe (3)
The tip of the liquid is always defined at the discharge port (3A) position, and then the piston (4) is
Press twice as desired to push out the liquid from the cylinder part (1), and discharge the desired amount of liquid from the discharge port (3A). When the piston (12) is stopped, the tip of the liquid stays at the discharge port (3A), and liquid delivery is stopped. When the piston (4) is pushed again, the desired amount of liquid is delivered from the discharge port (3A). The liquid is what makes it drain.

(ハ)発明が解決しようとする問題点 上記した従来の液体定量供給手段においては。(c) Problems that the invention attempts to solve In the conventional liquid quantitative supply means described above.

搬送中はもとより、搬送を中断した状態においても供給
部から搬送管の吐出口までの流路には液体が充満してお
り、搬送中断時に搬送管の吐出口から液体が滴下すると
いう液だれ現象が生じ易くなり、搬送管に何らかの振動
が伝達されると吐出口から該液体が滴下するという不都
合が生じる。
The flow path from the supply section to the discharge port of the transport tube is filled with liquid not only during transport but also when transport is interrupted, and a dripping phenomenon occurs in which liquid drips from the discharge port of the transport pipe when transport is interrupted. If some kind of vibration is transmitted to the conveying pipe, there will be a problem that the liquid will drip from the discharge port.

また液体の所定供給量が極めて少なく液体が該吐出口よ
り液滴として排出されるような場合には、供給部より該
液体を高精度かつ定流量で供給しても、供給先では1粒
の液滴の整数倍という間欠段階的な供給となっているた
め最後の液滴が自己滴下できない大きさの侭供給されず
に残るという現象がしばしば発生し、供給先で供給部の
液量の混合精度が保たれないという不都合が生じる。こ
の不都合である間欠段階的な供給による液量精度低下を
さけるために、吐出口周辺に残る半端量を特開昭57−
127853号公報の様にブロー気流で排除して供給し
、あるいは供給先の受器壁に吐出口を接触させ該受器壁
をつたわらして供給したり、あるいは吐出口を供給先の
受器内部液に浸して供給する手段が従来とられてきた。
Furthermore, if the specified supply amount of liquid is extremely small and the liquid is discharged as droplets from the discharge port, even if the liquid is supplied from the supply section with high precision and at a constant flow rate, only a single droplet may be delivered to the supply destination. Due to the intermittent stepwise supply of an integral multiple of the number of droplets, the phenomenon that the last droplet is too large to drop by itself and remains unsupplied often occurs, and the amount of liquid in the supply section must be mixed at the supply destination. This causes the inconvenience that accuracy cannot be maintained. In order to avoid this inconvenient drop in liquid volume accuracy due to intermittent stepwise supply, the irregular amount remaining around the discharge port is
As in Japanese Patent No. 127853, the supply is carried out by blowing air out, or the discharge port is brought into contact with the wall of the receiver to be supplied, and the outlet is supplied along the wall of the receiver, or the outlet is connected to the inside of the receiver to be supplied. Conventionally, a method of supplying the material by immersing it in liquid has been used.

しかしながらかかる液切り手段を少量の液体の高精度な
混合が要求される分野に採用した場合には2次の供いは
、複数種の液体を供給するために単一の受器に複数の搬
送管を集中させた場合においては、供給を意図としない
液体の拡散などにより受器内部液が汚染するなどの問題
が生じる。
However, if such a liquid draining means is adopted in a field where highly accurate mixing of small amounts of liquid is required, the secondary liquid may be transferred to a single receiver in order to supply multiple types of liquid. If the tubes are concentrated, problems such as contamination of the liquid inside the receiver may occur due to diffusion of liquid that is not intended to be supplied.

本発明は、液だれ、の恐れがなく、2種以上の液体試料
の計量、混合、殊に、液体試料の検査装置に 好適な液
体の計重、混合方法を提供するものである。
The present invention provides a method for weighing and mixing two or more liquid samples, which is free from the fear of dripping and is particularly suitable for a liquid sample testing device.

(二〉問題点を解決するための手段 本発明による液体の計量混合方法は第1図に示している
ように、水平方向において内部液体が定常的に最小面積
の気・液界面を形成する程度の内径の搬送管(10)の
1部に、該搬送管(10)よりも小径の細管(11)を
設けるとともに該細管(11)の出口位置に送気管(1
2)を開口させ、該搬送管(10)の給液側に供給液量
の制御部5例えば定量ポンプ(13)を備えた液体計量
供給装置(14)を少なくとも2組使用してそれぞれの
供給装置(14XI4A)の送液側の搬送管(IOXI
OA)を切替コック(15)に連結し。
(2) Means for Solving Problems As shown in FIG. 1, the liquid metering and mixing method according to the present invention is such that the internal liquid constantly forms a gas-liquid interface with a minimum area in the horizontal direction. A thin tube (11) having a smaller diameter than the conveying tube (10) is provided in a part of the conveying tube (10) having an inner diameter of
2) is opened, and at least two sets of liquid metering and supplying devices (14) each equipped with a supply liquid amount control unit 5, for example, a metering pump (13) are used on the liquid supply side of the conveying pipe (10). Transfer pipe (IOXI) on the liquid sending side of the device (14XI4A)
OA) to the switching cock (15).

定量ポンプ(13)により計量された液体試料を搬送管
(10)に送給するとともに該液体の送給停止時に上記
細管出口に搬送用気体を圧送し、この気体により該細管
出口で液切りを行なうとともに該細管出口から送液方向
に延びる搬送管(10)内の液体を上記切替コック(1
5)を介して排出管(16)から任章の受器(17)に
供給し、切替コック(15)を切替え同様に他方の液体
計量供給装置(+4A)から供給された定量の液体試量
を該切替コック(15)を介して該排出管(16)から
受器(17)に供給し、かくして少なくとも2種の計量
された1α体試料を混合するようになしてものである。
A metered liquid sample is fed by a metering pump (13) to the conveying tube (10), and when the liquid supply is stopped, a conveying gas is force fed to the outlet of the capillary tube, and this gas drains the liquid at the outlet of the capillary tube. At the same time, the liquid in the conveying pipe (10) extending from the thin tube outlet in the liquid feeding direction is transferred to the switching cock (1
5) from the discharge pipe (16) to the designated receiver (17), switch the switching cock (15), and similarly supply the fixed amount of liquid supplied from the other liquid metering and supplying device (+4A). is supplied from the discharge pipe (16) to the receiver (17) via the switching cock (15), thus mixing at least two types of weighed 1α body samples.

上記した本発明の液体の計量混合方法に適用される液体
の供給手段としては、定量ポンプや電動ビューレットが
・挙げられ、液量制御は往復運動回数、稼働時間あるい
は変位置なとの数値因子を制御することによってなされ
、また上記細管部は液体の供給部に近い位置に設けるこ
とが望ましい。
The liquid supply means applied to the liquid metering and mixing method of the present invention include a metering pump and an electric burette, and the liquid volume is controlled by numerical factors such as the number of reciprocating movements, operating time, or variable position. It is desirable that the thin tube section is provided at a position close to the liquid supply section.

また液体供給装置の接液部、搬送管、細管および送気管
は液体によって侵蝕あるいは変質されない材料9例えば
カラス、ステンレススチールおよびふっ素樹脂やポリエ
チレン樹脂やアクリル樹脂なとのプラスチック等によっ
て形成され、搬送管はその内部を液体で満たしたのち一
端の開口を閉し、もう一端の開口を大気に開放したとし
ても。
In addition, the wetted parts, conveyance pipes, thin tubes, and air supply pipes of the liquid supply device are made of materials that are not corroded or altered by liquids, such as glass, stainless steel, and plastics such as fluororesin, polyethylene resin, and acrylic resin. Even if you fill the inside with liquid, close the opening at one end, and open the opening at the other end to the atmosphere.

液体と内周壁との間および液体と空気などの気体との間
に働く表面張力の作用によって内部液体が開放された開
口から流出しない程度の内径1例tばガラス管において
は、おおむね5 mmφ以下の内径、好ましくは1.5
〜4 mmφ程度の小さな内径のものが適用され、細管
は、少なくとも上記搬送管よりも小径の内径であって、
好ましくは搬送管内径の1/2以下の内径1通常数10
μm〜1 mm程度の細い内径のものが適用される。ま
た送気管は上記搬送管の内径よりも小さく、好ましくは
数1O−R100μm程度の内径のものが適用される。
For example, in a glass tube, the inner diameter is approximately 5 mmφ or less so that the internal liquid does not flow out from the open opening due to the action of surface tension between the liquid and the inner circumferential wall and between the liquid and gas such as air. internal diameter, preferably 1.5
A tube with a small inner diameter of about 4 mmφ is applied, and the thin tube has an inner diameter smaller than at least the above-mentioned conveying tube,
Preferably an inner diameter of 1/2 or less of the inner diameter of the conveying pipe 1 Usually number 10
A thin inner diameter of approximately μm to 1 mm is applicable. Further, the air supply pipe has an inner diameter smaller than the above-mentioned conveyance pipe, and preferably has an inner diameter of about 100 μm.

これ;こ代えて3〜5φmm程度の小径のステンレスポ
ールなどを用いた逆上弁あるいは9回転式コックや導通
方向以外の方向に導通穴をスライドさせるスライドバル
ブなとの作動によって容積変化を生しない遮断具を用い
る場合には、上記細管およてノ送気管の径を若干大きく
なしても本発明の目的を達成できる。
Instead, the volume does not change by operating a reverse valve using a stainless steel pole with a small diameter of about 3 to 5 mm, a 9-turn cock, or a slide valve that slides the conduction hole in a direction other than the conduction direction. In the case of using a blocking device, the object of the present invention can be achieved even if the diameters of the thin tube and the air supply tube are made slightly larger.

供給部には定量ポンプや電動シリンジを用いるが、混合
などのデジタル供給が許されるにおいてはパルスモータ
なとのデジタル信号によって作動する形式のものが制御
の簡易化に好都合であり。
A metering pump or an electric syringe is used for the supply section, but in cases where digital supply is permitted, such as for mixing, a type operated by digital signals, such as a pulse motor, is convenient for simplifying control.

微少な一定容量の液体を1パルス毎に吐出する例えij
i;7μノ/ Putsあるいはo、sm7 / Pu
 Isのパルス定量ポンプを用い、積算パルス数によっ
て制御すると特に好都合である。分注などのアナログ供
給においては、供給部として定速流量で液体を供給する
チューブポンプなどの定量ポンプあるいは電動シリンジ
を用い、稼動時間制御やピストン変位量制御によって、
あるいは液量計を付属させた液体用ポンプな用い該液量
計を通過する液量を把握して制御することによって、あ
るいは、ダイヤフラムポンプなとの吸排動作を交互に行
う定量ポンプを用い排出動作時のみ積算した稼動時間制
御によって2本発明方法を自動的に遂行することができ
る。
Example of discharging a small constant volume of liquid every pulse ij
i;7μノ/Puts or o, sm7/Pu
It is particularly advantageous to use a pulsed metering pump of Is, controlled by the cumulative number of pulses. In analog supply such as dispensing, a metering pump such as a tube pump or an electric syringe that supplies liquid at a constant flow rate is used as the supply unit, and the operation time and piston displacement are controlled.
Alternatively, a liquid pump with a liquid volume meter attached may be used to grasp and control the amount of liquid passing through the liquid volume meter, or a metering pump such as a diaphragm pump that alternates suction and discharge operations may be used to discharge the liquid. The two methods of the present invention can be performed automatically by controlling the operating time by integrating only the time.

(ネ)作 用 第1図および第2図にもとづき本発明による液体の計量
混合方法の作用の概要を述べると、支ず第1図に示して
いるように左側の供給装置の液体容器(18)内の液体
(19)を吸い上げ管(2o)を経て定量供給ポンプ(
Is)によって汲み上げると、該液体(19)は搬送管
(10)内を通って目的位置まで移送で、れ、排出管(
16)から受器(17)内に排出される。そして定量ポ
ンプ(13)の停止と同期して該搬送管(0)の一部に
設けた細管(11)の出口位置に任意の送気源(21)
から送気管(12)を経て気体を噴出させると、細管出
口(22)以降の液体は噴出気体己こよって排出管(1
6)側に向かって積極的に排出され、同時に細管出口(
22)によって液切れされて第1図の右側の供給装置(
+4A)の状態となる。したがって以後の送液はすべて
この状態からスタートし、この状態において送液が停止
されるから、定量ポンプ(13)の作動によるlα体(
19)の搬送量は該定量パルプ(13)の作動時間や変
位量などによって数値的に正確に決定され、また細管部
において液切れされているからポンプ(13)と細管出
口(22)との開に残留する液体は切替コック(15)
側に流動することなく滞留する。
(v) Function The operation of the liquid measuring and mixing method according to the present invention will be summarized based on FIGS. 1 and 2. As shown in FIG. 1, the liquid container (18 ) in the liquid (19) through the suction pipe (2o) and the metered supply pump (
When pumped up by the liquid (19), the liquid (19) passes through the conveying pipe (10) and is transferred to the destination position, and is discharged through the discharge pipe (10).
16) into the receiver (17). Then, in synchronization with the stoppage of the metering pump (13), an arbitrary air supply source (21) is placed at the outlet position of the thin tube (11) provided in a part of the conveying tube (0).
When gas is jetted out through the air supply pipe (12), the liquid after the thin tube outlet (22) is blown out by itself and flows into the discharge pipe (12).
6) is actively discharged toward the side, and at the same time the tubule exit (
22), the liquid is drained by the supply device (
+4A). Therefore, all subsequent liquid feeding starts from this state, and since liquid feeding is stopped in this state, the lα form (
The conveyance amount of 19) is determined numerically and accurately based on the operating time and displacement amount of the metering pulp (13), and since the liquid is drained at the capillary part, the flow rate between the pump (13) and the capillary outlet (22) is For liquid remaining in the open position, use the switching cock (15)
Remains without flowing to the side.

上記の様に本発明の計重性は、送液ポンプの近くに設け
られた細管出口(22)を基準とする。すなわち第4図
に示すように計量開始前および計量終7後では液体の先
端(23)が該細管出口(22)位置に保持される。今
送気管(12)より噴出する気体量をG、上記細管出口
(23)以降排出管(16)までの搬送経路の体積をV
とすると、V<Gである上記噴出気体を用いて計量吐出
された液体を一気に搬送管(IQ)を経て排出管(16
)まで搬送吐出するものであり、液体の計量停止中は上
記細管出口(23)以降排出管り16)までの搬送管経
路内には液が存在しない。続いて切替コック(15)を
切替えた右側の供給装置(14A)を上記と同様に動作
させて容器(18A)内の異種の液体(19A)の定量
供給を行なうと、その液体(+9A)は排出管(16)
から受器(17)内に供給され、該受器(17)内にお
いて両液体(19)(19A)は混合される。
As described above, the weighability of the present invention is based on the thin tube outlet (22) provided near the liquid pump. That is, as shown in FIG. 4, before the start of metering and after the end of metering, the tip (23) of the liquid is held at the narrow tube outlet (22) position. The amount of gas now ejected from the air supply pipe (12) is G, and the volume of the conveyance path from the thin tube outlet (23) to the discharge pipe (16) is V.
Then, the liquid metered and discharged using the above-mentioned ejected gas where V
), and while liquid measurement is stopped, there is no liquid in the transport pipe path from the capillary outlet (23) to the discharge pipe 16). Next, when the right supply device (14A) with the switching cock (15) switched is operated in the same manner as above to supply a fixed amount of the different type of liquid (19A) in the container (18A), the liquid (+9A) is Discharge pipe (16)
The two liquids (19) (19A) are mixed in the receiver (17).

(へ)実施例 以下本発明の実施例を示している図面にもとづいて説明
すると、第1図、第2図は同一機能を有する2つの液体
計量供給装置(14XI4A)を使用して2種の液体を
計量して混合する態様を示しているものであって2両供
給装置(14)(14A)には、液体容器(18)(1
8A)、定量ポンプ(13)(13A)、該定量ポンプ
(13)(+3A)の吸い込み側に連なる汲み上げ管(
20)(2OA)、該定量ポンプ(13)(+3A) 
ノ排出側から延びる液体搬送管(10)(IOA)、該
搬送管(10)(IOA)の経路の1部に設けられた細
管(II)(IIA)、該細管(IIXIIA)の出口
ぐ22)(22A)に開口させた送気管(+2)(+2
A)、および送気源(2+)(2+A)をそれぞれ備え
ている。そして上記両供給装置(14)(14A)の搬
送管(10)(IOA)の末端は1個の切替コック(1
5)に結合され、該切替コック(15)の可動ブラッグ
(25)の操作により1選択的に一方または他方の搬送
管(10)または(10A)が受器くlマ)に指向した
排出管(16)に連通されるようになっている。本実施
例においては上記搬送管(10)(IOA)は内径4m
/m、全長が約100印のガラス管によって構成され、
細管<11)(IIA)は内径0.3m/m長さ30m
/mであり、また送気管(12)(12A)の吐出部の
内径は1 m/mに形成されている。両液体(19X1
9A)を混合するに先立ってまず両供給装置(+4)(
+4A)を交互に操作し、定量ポンプ(+3)(+3A
)によって2omlの液体(19)(19A)を搬送管
(10)(IOA)内に送り入れたのち該ポンプ(+3
)(+3A)を停止し、送気管(+2)(12A)から
該搬送管(10)(IOA)内に5oJ’の空気を送入
して細管(11)(ILA)の出口(22)(22A)
で液切れを行なうとともに該出口(22)(22A)以
降の液体を切替コック(15)、排出管(16)を介し
て受器(17)に排出し、試料液体でもって搬送流路の
洗浄を行なう。第4図は細管出口における液切れ状態を
示し、液体の先端は僅かに中窪みした垂直面を保持して
いる。両液体(+9)(19A)の計量混合はこの状態
から開始される。即ち予め設定された自動プログラムに
もとづき、まず一方の供給装置(14)の定量ポンプ(
13)が作動して所望量の液体(+9)、例えば5ml
の液体(19)が搬送管(10)内に送入され、該ポン
プ(13)が停止すると同時に送気源(21)が作動さ
れて送気管(12)から例えば50rnlの空気が搬送
管(1o)内に送入され、この空気によって上記した液
切りが行われるとともに細管出口(22)以降に存在し
ている5mlの液体(19)は切替コック(15)およ
び排出管(16)を経て受器(17)内に注入される。
(F) Example Below, the embodiment of the present invention will be explained based on the drawings. Figures 1 and 2 show two types of liquid metering and supplying devices (14XI4A) having the same function. This shows a mode of measuring and mixing liquid, and the two-car supply device (14) (14A) includes a liquid container (18) (1
8A), metering pump (13) (13A), pumping pipe connected to the suction side of the metering pump (13) (+3A) (
20) (2OA), the metering pump (13) (+3A)
A liquid transport pipe (10) (IOA) extending from the discharge side, a capillary (II) (IIA) provided in a part of the route of the transport pipe (10) (IOA), and an outlet of the capillary (IIXIIA) 22 ) (22A) (+2) (+2
A), and an air supply source (2+) (2+A). The ends of the conveying pipes (10) (IOA) of both the supply devices (14) (14A) are connected to one switching cock (1
5), and one or the other of the conveying pipes (10) or (10A) is selectively directed to the receiving tank by operating the movable Bragg (25) of the switching cock (15). (16). In this embodiment, the conveying pipe (10) (IOA) has an inner diameter of 4 m.
/m, consisting of a glass tube with a total length of about 100 marks,
Tube <11) (IIA) has an inner diameter of 0.3 m/m and a length of 30 m.
/m, and the inner diameter of the discharge portion of the air pipe (12) (12A) is 1 m/m. Both liquids (19X1
9A), first mix both supply devices (+4) (
+4A) alternately, and metering pump (+3) (+3A
) into the conveying pipe (10) (IOA), and then the pump (+3
) (+3A), and feed 5 oJ' of air from the air supply pipe (+2) (12A) into the conveyance pipe (10) (IOA) to exit the narrow tube (11) (ILA) (22) ( 22A)
At the same time, the liquid from the outlet (22) (22A) is discharged to the receiver (17) via the switching cock (15) and the discharge pipe (16), and the transport channel is cleaned with the sample liquid. Do this. FIG. 4 shows a state in which the liquid runs out at the outlet of the thin tube, and the tip of the liquid maintains a slightly concave vertical surface. Measuring and mixing of both liquids (+9) (19A) is started from this state. That is, based on a preset automatic program, first the metering pump (
13) is activated to dispense the desired amount of liquid (+9), e.g. 5ml.
of liquid (19) is fed into the conveying pipe (10), and at the same time as the pump (13) is stopped, the air supply source (21) is activated and, for example, 50 rnl of air is pumped from the air supply pipe (12) into the conveying pipe (10). 1o), the above-mentioned liquid is drained by this air, and 5 ml of liquid (19) existing after the capillary outlet (22) passes through the switching cock (15) and the discharge pipe (16). It is injected into the receiver (17).

次に切替コック(15)を切替え他方の供給装置(14
A)を動作させ、上記と同様の手順によって液体容器(
18A)内の液体(+9A)を所定量例えば+oJ受器
(17)内に注入すると、該受器(17)内において両
液体(+9)(+9A)が所定の混合率に混合される。
Next, switch the switching cock (15) to the other supply device (14).
A) and then remove the liquid container (
When a predetermined amount of the liquid (+9A) in 18A) is injected into, for example, the +oJ receiver (17), both liquids (+9) (+9A) are mixed at a predetermined mixing ratio in the receiver (17).

第3図は多数の液体試料を培養液なとて希釈混合する場
合の実施例を示しているものであり、一方の計量供給装
置(14)側に多数の液体試料の容器(18B)(18
C)(+8D)を配置し、該各容器(18B)(18c
)(180)から延びる吸い上げ管(20B)(20C
)(20D)と定量ポンプ(13)の吸い込み側の導管
(26)との間に多分岐コック(27)を介装し、上記
排出管(16)の下方にマグネチックスターラーを備え
た攪拌器(29)開閉バルブ(30)を備えた排水導管
(3I)を具備した混合受器(17)を配置している。
FIG. 3 shows an embodiment in which a large number of liquid samples are diluted and mixed using a culture solution, and a large number of liquid sample containers (18B) (18
C) (+8D) and each container (18B) (18c
) (180) suction pipes (20B) (20C
) (20D) and the suction side conduit (26) of the metering pump (13), a multi-branch cock (27) is interposed, and a stirrer equipped with a magnetic stirrer below the discharge pipe (16). (29) A mixing receiver (17) equipped with a drainage conduit (3I) equipped with an on-off valve (30) is arranged.

この実施態様によれば、該多分岐コック(27)を操作
し、上記同様に装置(14)を動作することによって各
液体試料(19B)(19C)(+9D)を成分とし、
必要により液体(+9A)が混入された所望の混合率の
各種の混合液を得ることができる。
According to this embodiment, each liquid sample (19B) (19C) (+9D) is made into a component by operating the multi-branch cock (27) and operating the device (14) in the same manner as described above;
It is possible to obtain various liquid mixtures with desired mixing ratios, in which liquid (+9A) is mixed as necessary.

第6図は、′a数の液体試料の検査装置1例えばBOD
測定装置の検査液を作る機器に本発明を適用した例を略
示しているものである。即ち、上記したごとき、細管部
有する搬送管(10) 、送気管(12)、定量ポンプ
(13)等を備えた液体計量供給装置(14)の複数組
を、その各搬送管(10)を多分岐切替コック(15)
を連結して該コック(15)の操作により各搬送管(1
0)の1つが排出管(16)に連通せしめ。
FIG. 6 shows an inspection apparatus 1 for liquid samples with a number of 'a', for example, BOD.
This diagram schematically shows an example in which the present invention is applied to a device that makes a test liquid for a measuring device. That is, as described above, a plurality of sets of liquid metering and supplying devices (14) each equipped with a transport pipe (10) having a narrow tube portion, an air supply pipe (12), a metering pump (13), etc., each transport pipe (10). Multi-branch switching cock (15)
are connected and each conveying pipe (1) is connected by operating the cock (15).
0) is connected to the discharge pipe (16).

更に該排出管(16)を多分岐切替コック(30)に連
結して該コック(30)の操作により該排出管(16)
を分岐管(31A)(318)(31CX31D)の1
つに連通されるようになすとともに各分岐管(31A)
(318)(31C)の吐出側に攪拌機能を備えた混合
容器(32A)(32B)(32C)(32D)を配置
し、該各混合容器(32A)(32B032C)(32
D)の導管(33A)(33B>(33C)(33D)
をそれぞれ検査容器(図示せず)に導入し得るように構
成している。このように液体試料の検査装置に本発明を
適用すると、各計量供給装置(14)(+4)を所定の
ブラグムにもとづいて選択的に動作させることによって
、各計量供給装置(+4)(14)の吸い上げ管(20
)(20)側の容器(+8)(+8)内の液体の所定量
が順次混合容器(32A)(32B)(32C)(32
D)に供給され、検査に供するための2種または数種の
液体の所定の混合液(34A)(34B>(34C)(
34D)を能率よく作成することができる。
Further, the discharge pipe (16) is connected to a multi-branch switching cock (30), and the discharge pipe (16) is switched by operating the cock (30).
1 of branch pipe (31A) (318) (31CX31D)
Each branch pipe (31A)
(318) (31C) A mixing container (32A) (32B) (32C) (32D) equipped with a stirring function is arranged on the discharge side of (31C), and each mixing container (32A) (32B032C) (32
D) Conduit (33A) (33B>(33C) (33D)
The structure is such that each can be introduced into a test container (not shown). When the present invention is applied to a liquid sample testing device in this way, each metering and feeding device (14) (+4) is selectively operated based on a predetermined program. Suction pipe (20
) (20) The predetermined amount of liquid in the containers (+8) (+8) is sequentially mixed in the mixing containers (32A) (32B) (32C) (32
A predetermined mixture of two or more liquids (34A) (34B>(34C)(
34D) can be created efficiently.

なお計量供給装置(14)の計量ポンプ(13)の排出
側および送気管(12)に第5図に賂示しているように
逆止弁(35)を設けると細管の内径を大きくすること
ができる。
Furthermore, if a check valve (35) is provided on the discharge side of the metering pump (13) of the metering supply device (14) and on the air supply pipe (12) as shown in Fig. 5, the inner diameter of the thin tube can be increased. can.

(ト)発明の効果 このように本発明による液体の計量混合方法は、水平方
向において内部液体が定常的に最小面積の気・液界面を
形成する程度の内径の搬送管(10)の1部に、該搬送
管(10)よりも小径の細管(11)を設けるとともに
該細管(11)の出口位置に送気管(12)を開口させ
、該搬送管(10)の給液側に供給液量の制御部を備え
た液体計量供給装置(14)を少なくとも2組使用して
それぞれの供給装置(14)の送液側の搬送管(10)
を切替コック(15)に連結し、供給液料の制御部によ
り計量された液体試料を搬送管(10)に送給するとと
もに該液体の送給停止時に上記細管出口に搬送用気体を
圧送し、この気体により該細管出口で液切りを行なうと
ともに該細管出口から送液方向に延びる搬送管(10)
内の液体を上記切替コック(+5)、排出管(16)を
介して任意の受器(17)に注入して複数の上記液体計
量供給装置(14〉からの定量液体を受器(17)にお
いて混合するものであるから、少量の液体であっても搬
送距離の長短に関係なく、確実に搬送され混合すること
ができる。更に混合受器への搬送注入後は、その送液経
路には液体の残留がなく、液だれや汚染変質が生しるこ
とがない。しかも計量された液体試料は空気によって速
やかに搬送されるため、混合動作が円滑迅速に達成され
る。
(g) Effects of the Invention As described above, the method for measuring and mixing liquids according to the present invention provides a method for measuring and mixing liquids in a portion of a conveying pipe (10) having an inner diameter such that the internal liquid constantly forms a gas-liquid interface with a minimum area in the horizontal direction. A thin tube (11) having a smaller diameter than the conveying tube (10) is provided, and an air supply tube (12) is opened at the outlet position of the thin tube (11), and the supply liquid is connected to the liquid supply side of the conveying tube (10). At least two sets of liquid metering and supplying devices (14) equipped with a quantity control unit are used, and a conveying pipe (10) on the liquid feeding side of each supplying device (14) is used.
is connected to the switching cock (15), and the liquid sample measured by the supply liquid control unit is fed to the transport pipe (10), and when the liquid supply is stopped, the transport gas is force-fed to the outlet of the thin tube. , This gas drains the liquid at the outlet of the capillary tube, and a conveying tube (10) extends from the outlet of the capillary tube in the liquid feeding direction.
The liquid inside is injected into any receiver (17) via the switching cock (+5) and the discharge pipe (16), and the fixed amount of liquid from the plurality of liquid metering and supplying devices (14) is fed into the receiver (17). Since it mixes at There is no residual liquid, so there is no dripping or contamination.Furthermore, the measured liquid sample is quickly conveyed by air, so the mixing operation is achieved smoothly and quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の基本的な混合方法を例示
した説明図、第3図は他の実施例を示した説明図、第4
図は液切り状態を示した拡大図。 第5図は逆止弁を設けた例を示す賂示図、第6図は2部
体の検査装置に本発明を適用した説明図、そして第7図
は従来の電動ビューレットの概略図である。 (10)は搬送管、 (11)は細管、 (+2)は送
気管、 (13)は定量ポンプ、 (+4)は液体計量
供給装置、 (+5)は切替コック、 (+6)は排出
管、 (IT)は混合受器。
1 and 2 are explanatory diagrams illustrating the basic mixing method of the present invention, FIG. 3 is an explanatory diagram illustrating another embodiment, and FIG.
The figure is an enlarged view showing the drained state. Fig. 5 is a diagram showing an example of a check valve, Fig. 6 is an explanatory drawing of the present invention applied to a two-part inspection device, and Fig. 7 is a schematic diagram of a conventional electric burette. be. (10) is a conveying pipe, (11) is a thin tube, (+2) is an air supply pipe, (13) is a metering pump, (+4) is a liquid metering and supplying device, (+5) is a switching cock, (+6) is a discharge pipe, (IT) is a mixed receiver.

Claims (1)

【特許請求の範囲】[Claims] 水平方向において内部液体が定常的に最小面積の気・液
界面を形成する程度の内径の搬送管(10)の1部に、
該搬送管(10)よりも小径の細管(11)を設けると
ともに該細管(11)の出口位置に送気管(12)を開
口させ、該搬送管(10)の給液側の供給液量の制御部
を備えた液体計量供給装置(14)を少なくとも2組使
用してそれぞれの供給装置(14)の送液側の搬送管(
10)を切替コック(15)に連結し、供給液量の制御
部により計量された液体試料を搬送管(10)に送給す
るとともに該液体の送給停止時に上記細管出口に搬送用
気体を圧送し、この気体により該細管出口で液切りを行
なうとともに該細管出口から送液方向に延びる搬送管(
10)内の液体を上記切替コック(15)、排出管(1
6)を介して任意の受器(17)に注入して複数の上記
液体計量供給装置(14)からの定量液体を受器(17
)において混合することを特徴とする液体試料の計量混
合方法。
A part of the conveying pipe (10) has an inner diameter such that the internal liquid constantly forms a gas-liquid interface with a minimum area in the horizontal direction,
A thin tube (11) having a smaller diameter than the conveying tube (10) is provided, and an air supply tube (12) is opened at the outlet position of the thin tube (11) to control the amount of liquid to be supplied on the liquid supply side of the conveying tube (10). At least two sets of liquid metering and supplying devices (14) each equipped with a control unit are used, and a conveying pipe (
10) is connected to the switching cock (15), and the liquid sample measured by the supply liquid amount control unit is fed to the transport pipe (10), and when the liquid supply is stopped, the transport gas is supplied to the outlet of the thin tube. The gas is used to drain the liquid at the outlet of the capillary tube, and a conveying tube (
10) through the switching cock (15) and the discharge pipe (1).
6) into any receiver (17) to receive the fixed amount of liquid from the plurality of liquid metering and supplying devices (14).
) A method for measuring and mixing a liquid sample, characterized by mixing the sample at
JP60282438A 1985-12-16 1985-12-16 Method for weighing and mixing liquid specimen Pending JPS62140044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60282438A JPS62140044A (en) 1985-12-16 1985-12-16 Method for weighing and mixing liquid specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60282438A JPS62140044A (en) 1985-12-16 1985-12-16 Method for weighing and mixing liquid specimen

Publications (1)

Publication Number Publication Date
JPS62140044A true JPS62140044A (en) 1987-06-23

Family

ID=17652414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60282438A Pending JPS62140044A (en) 1985-12-16 1985-12-16 Method for weighing and mixing liquid specimen

Country Status (1)

Country Link
JP (1) JPS62140044A (en)

Similar Documents

Publication Publication Date Title
US5679575A (en) Particle measuring apparatus and method
US5773305A (en) Sample dilution module
US4526046A (en) Method and apparatus for transferring a liquid sample
US20060104827A1 (en) Method and apparatus for pumping and diluting a sample
US4610170A (en) Method for the dilution of liquid samples
WO2007148485A1 (en) Dispenser unit and analytical instrument
US4245509A (en) Sampling apparatus
US6096274A (en) Analysis device
JPS6366466A (en) Discrete type automatic analyzer
JPS62140044A (en) Method for weighing and mixing liquid specimen
JPH11230970A (en) Method for dispensing sample and automatic analyzer
JP2008241508A (en) Liquid stirring method
JP7141207B2 (en) Dispensing syringe pump and automatic analyzer equipped with the same
US6740529B2 (en) Dispensing apparatus
JPH0341775B2 (en)
JP7459135B2 (en) electrolyte analyzer
CN220932707U (en) In-situ on-line testing device for wide-angle laser light scattering instrument
JP2006258743A (en) Liquid dispenser
JP2007187474A (en) Spectrophotometer measuring system and spectrophotometer measuring method
EP0490592A1 (en) Stirring means
JP2874372B2 (en) Flow injection analysis method and analysis control device therefor
JP3168134B2 (en) Method of stirring sample liquid in automatic water quality measurement device
FI70806C (en) FOERFARANDE OCH ANORDNING FOER UTSPAEDNING AV VAETSKEPROV
JPH08240553A (en) Electrolyte solution analyzing device and method
JPH04256859A (en) Chemical-distribution controlling method