JPS621399A - Acoustic circuit for underwater acoustic transducer - Google Patents

Acoustic circuit for underwater acoustic transducer

Info

Publication number
JPS621399A
JPS621399A JP14098685A JP14098685A JPS621399A JP S621399 A JPS621399 A JP S621399A JP 14098685 A JP14098685 A JP 14098685A JP 14098685 A JP14098685 A JP 14098685A JP S621399 A JPS621399 A JP S621399A
Authority
JP
Japan
Prior art keywords
acoustic
circuit
hole
groove
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14098685A
Other languages
Japanese (ja)
Inventor
Akira Kameyama
亀山 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14098685A priority Critical patent/JPS621399A/en
Publication of JPS621399A publication Critical patent/JPS621399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To constitute a small-sized acoustic filter for low frequency with good processability by laminating elastic bodies having close grooves and through-holes while bringing closely them into contact with one another. CONSTITUTION:A narrow hole offering an acoustic inertance is constituted as a series of paths from a through-hole 2a of an enclosure 2 to grooves 3b of an acoustic circuit 3 and grooves 4b and a through-hole 4a of an acoustic circuit 4, and an acoustic oil 8 is packed from the inside of the enclosure 2 to that of a diaphragm 7. Discoid grooves acoustic circuits 3 and 4 are brought into contact with each other and are laminated and fixed, and a series of paths from the joint part including the through-hole 4a to the through-hole 2a function equivalently to a metallic narrow tube having length of these extended paths.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水中で使用する深深度用の電気音響変換器に低
周波用の音響フィルタ特性を付与するために利用する水
中音響変換器用音響回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an acoustic circuit for an underwater acoustic transducer used for imparting low-frequency acoustic filter characteristics to a deep-depth electroacoustic transducer used underwater. Regarding.

〔従来の技術〕[Conventional technology]

従来の技術としては、高周波数の深深度用の音響回路が
ある。
Conventional technology includes high-frequency deep-depth acoustic circuits.

第6図は従来の高周波数・深深度用音響回路の一例を示
す断面図である。これは、第6図に示すように電気f4
#変換用の振動子24の内面を支柱25と7ランジ26
と28で覆い、7ランジ26に貫通孔26af設け、更
に貫通孔26aに金属管27を取シ付けた構造である。
FIG. 6 is a sectional view showing an example of a conventional high frequency/deep depth acoustic circuit. This is the electric f4 as shown in FIG.
# The inner surface of the transducer 24 for conversion is attached to the support 25 and 7 langes 26
28, a through hole 26af is provided in the seventh flange 26, and a metal tube 27 is further attached to the through hole 26a.

この種の音響回路では音響イナータンスを貫通孔26a
中金属管27の細孔で、また音響コンプライアンスは振
動子24.支柱25及び7ランジ26と28で囲われた
空洞で形成し、基本的には高域周波数ヲ逍断し、低域周
波数全通過させる音響フィルターを構成する◎ すなわち、たとえば貫通孔26aの断面積をS。
In this type of acoustic circuit, the acoustic inertance is determined by the through hole 26a.
The pores of the medium metal tube 27 and the acoustic compliance of the vibrator 24. It is formed by a cavity surrounded by the struts 25 and 7 and the flange 26 and 28, and basically constitutes an acoustic filter that cuts off high frequencies and passes all low frequencies. In other words, for example, the cross-sectional area of the through hole 26a S.

長さ24.空洞の容積を■とし、夫々の内部に充てんさ
れる音波の伝搬媒体、一般的には音響油の比重をp、音
速をCとすると音響イナータンスLAと音響コンプライ
アンスCAは次(7)11) 、 (2)弐〇ように表
わさ扛る。
Length 24. If the volume of the cavity is ■, the specific gravity of the sound wave propagation medium filled inside each cavity, generally acoustic oil, is p, and the speed of sound is C, then the acoustic inertance LA and acoustic compliance CA are as follows (7) 11) (2) Expressed like 2〇.

音響系の音圧と、粒子速度とを夫々、電気系の電圧と電
流に対応させるとき、音響イナータンスLAと音響コン
プライアンスCAは夫々電気系の誘導インダクタンスと
静電容量とに対応し、電気系と同様の等価回路で表わす
と第7図のようになる。
When the sound pressure and particle velocity of the acoustic system correspond to the voltage and current of the electric system, respectively, the acoustic inertance LA and the acoustic compliance CA correspond to the inductive inductance and capacitance of the electric system, respectively. A similar equivalent circuit is shown in FIG.

第7図の等価回路からこの音響フィルターは(3)式に
示すfc なる遮断周波数をもち、遮断周波数より高い周波数の音
波はこの音響回路で遮断され、遮断周波数より低い周波
数の音波はこの音響回路を通過する。
From the equivalent circuit in Figure 7, this acoustic filter has a cutoff frequency fc shown in equation (3), and sound waves with frequencies higher than the cutoff frequency are blocked by this acoustic circuit, and sound waves with frequencies lower than the cutoff frequency are blocked by this acoustic circuit. pass through.

遮断周波数fCにおいて゛は音響イナータンスLAと音
響コ/プライアンスC人とによる共振系を構成し、この
共振の振幅拡大率、すなわち音響的Qは音波の伝搬媒体
の粘性抵抗等による音響抵抗をRAとして次の(4部式
に示すような関係にある。
At cutoff frequency fC, ゛ constitutes a resonant system with acoustic inertance LA and acoustic co/preliance C, and the amplitude expansion rate of this resonance, that is, acoustic Q, is expressed as follows, where RA is the acoustic resistance due to the viscous resistance of the sound wave propagation medium, etc. (The relationship is as shown in the four-part equation.

・・・・・・・・・・・・ (4) 以上のような音響回路の外部音圧P、と内部音圧P、の
伝達比P z / P 1は第図a)図のようになり、
音響的Qが高いと実録のように共振特性が急峻となり、
音響的Qが低いと点線のように共振特性が緩慢となる。
・・・・・・・・・・・・ (4) The transmission ratio P z / P 1 of the external sound pressure P and internal sound pressure P of the above-mentioned acoustic circuit is as shown in Figure a). Become,
When the acoustic Q is high, the resonance characteristics become steep as in real records,
When the acoustic Q is low, the resonance characteristics become slow as shown by the dotted line.

振動子24は外部から直接受ける音圧P、と音響回路を
経て内部に伝わる音圧P、との音圧差によって信号電圧
v8を出力するので第81b)図のような特性となり、
遮断周波数付近での信号電圧は音響的Qが高いと笑線の
ように変化が大きく、音響的Qが低いと点線のように変
化が小さい。
The vibrator 24 outputs a signal voltage v8 due to the sound pressure difference between the sound pressure P directly received from the outside and the sound pressure P transmitted inside through the acoustic circuit, so it has characteristics as shown in Fig. 81b),
When the acoustic Q is high, the signal voltage near the cutoff frequency changes largely as shown by the dotted line, and when the acoustic Q is low, the change is small as shown by the dotted line.

このように音響回路を用いると、使用周波数帯域を遮断
周波数fcより高くすることによって、外部音圧P、に
比例した信号電圧を得ると共に、遮断周波数fcより十
分に低い周波数の静水圧を含む各種動圧に対しては、振
動子22の内部と外部の圧力が等しくなり、振動子24
の機械的破損を防止する。
When an acoustic circuit is used in this way, by setting the operating frequency band higher than the cutoff frequency fc, a signal voltage proportional to the external sound pressure P can be obtained, and various signals including hydrostatic pressure at a frequency sufficiently lower than the cutoff frequency fc can be obtained. For dynamic pressure, the internal and external pressures of the vibrator 22 are equal, and the vibrator 24
prevent mechanical damage.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこの種の音響回路には次のような問題点が
基本的に存在する。
However, this type of acoustic circuit basically has the following problems.

仮に遮断周波数がI KHz(D高周波用音響回路を考
えるに、空洞の容積をたとえば1ooCrn3.砿管2
5の断面積11mm  とすると、この中に音響油を満
たした場合の金属管の長さは約α57 mmとなり、7
ランジの貫通孔で作り得る。しかし上記の諸元で遮断周
波数だけを10Hzに下げた低周波用音響回路の金属管
の長さは約5.7mという極めて長いものとなる。
Suppose that the cutoff frequency is I KHz (D) Considering a high frequency acoustic circuit, the volume of the cavity is, for example, 1ooCrn3.
Assuming that the cross-sectional area of 5 is 11 mm, the length of the metal tube when filled with acoustic oil is approximately α57 mm, and 7
Can be made with a through hole in the lunge. However, with the above specifications, the length of the metal tube of a low frequency acoustic circuit with only the cutoff frequency lowered to 10 Hz is approximately 5.7 m, which is extremely long.

このような長い金属管では螺施状に巻くにしても、内径
のつぶれ防止から小さな曲率では巻けず、大きな巻き上
、り寸法となっ友り、加工性が悪いという欠点がある。
Even if such long metal tubes are wound in a spiral manner, they cannot be wound with a small curvature in order to prevent the inner diameter from collapsing, resulting in large winding dimensions and poor workability.

また、空洞の容積を一定にして、遮断周波数を低くする
と(4)式から明らかなように音響的Qが高くなり、信
号電圧の周波数特性、すなわち、音響変換器の受波感度
−周波数特性に急峻な変化な与えるとい′う欠点もめる
。上記の例で言えは遮断周波数10Hzにおける音響的
Qは遮断周波数IKHzにおける音響的QO100倍と
なる。
Furthermore, if the volume of the cavity is kept constant and the cutoff frequency is lowered, the acoustic Q will increase as is clear from equation (4), and the frequency characteristics of the signal voltage, that is, the reception sensitivity - frequency characteristics of the acoustic transducer will change. It also has the drawback of giving abrupt changes. In the above example, the acoustic Q at a cut-off frequency of 10 Hz is 100 times the acoustic QO at a cut-off frequency of IKHz.

本発明の目的も上述した欠点を除去し長大な金属管を必
要としない水中音響変換器用音響回路を提供することに
ある。
Another object of the present invention is to provide an acoustic circuit for an underwater acoustic transducer that eliminates the above-mentioned drawbacks and does not require a long metal tube.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の音響回路は、水中音響変換器の振動子の密閉内
側から音場に突出するように設けた開口金属管によって
めらかしめ設定する音響フィルタ特性を前記水中音響変
換器に付与する水中音響変換器用音響回路において、め
らがじめ設定する形状の連続線形と長さとを有する溝を
設は次複数の弾性体を直接もしくは支持構造を介して前
記溝が接続されるように結合するとともにこの場合この
結合によって前記開口金属管の音響パスと等価な音響パ
スを形成せしめ所定の音響フィルタ特性を付与する音響
フィルタ特性付与手段を備えて構成される。
The acoustic circuit of the present invention provides an underwater acoustic circuit that imparts an acoustic filter characteristic to the underwater acoustic transducer that is smoothed and set by an open metal tube that is provided so as to protrude into the sound field from the sealed inside of the transducer of the underwater acoustic transducer. In an acoustic circuit for a transducer, a groove having a continuous linear shape and length of a predetermined shape is provided, and then a plurality of elastic bodies are connected directly or through a support structure so that the grooves are connected. In this case, the device is configured to include acoustic filter characteristic imparting means for forming an acoustic path equivalent to the acoustic path of the open metal tube through this coupling and imparting predetermined acoustic filter characteristics.

〔笑施例〕[LOL example]

次に、本発明について図面を参照して詳細に説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の音響回路を利用する水中音響で、又、
音響回路3と音響回路4及びダイヤフラム7が固定具6
できよう体2の上下に取り付けられている。
Figure 1 shows underwater acoustics using the acoustic circuit of the present invention, and
The acoustic circuit 3, the acoustic circuit 4, and the diaphragm 7 are connected to the fixture 6.
They are attached to the top and bottom of the body 2.

音響イナータンスを提供する細孔はきよう体2の貫通孔
2aから音響回路3の溝3bと貫通孔3a及び音響回路
4の溝4bと貫通孔4aまでの一連のパスとして構成さ
n、ま几、きよう体2の内部カラダイヤフラム7の内側
に至るまで音響油8が充てんされている。
The pores providing acoustic inertance are configured as a series of paths from the through hole 2a of the membrane body 2 to the groove 3b and the through hole 3a of the acoustic circuit 3, and the groove 4b and the through hole 4a of the acoustic circuit 4. , the acoustic oil 8 is filled up to the inside of the internal color diaphragm 7 of the body 2.

音響回路3お工び4は円板その他あらかじめ設定する形
状の弾性体に設けた連続的な溝を有するもので、その形
状は、たとえば正弦波形であれ渦巻き形でメ扛その他任
意のものを選択利用することができる。この溝の目的は
、この溝を何等かの手段で密閉して金属管の細管と同じ
ような音響パスとして利用することにあり、従ってその
断面積と長さとが利用目的に合致する前提で任意の形状
のものを利用することができる。′M1図の場合はこの
ような溝を有する円板状の音響回路3と4と・を密着、
積層状に固定して貫通孔2aとの接合部から貫通孔42
を含む一連のパスがこれ+<長じた長さの金属管細管と
等価に機能することとなる。
The acoustic circuit 3 has a continuous groove formed in an elastic body of a predetermined shape such as a disk, and the shape can be selected from, for example, a sinusoidal waveform, a spiral shape, a spiral shape, or any other arbitrary shape. can be used. The purpose of this groove is to seal it by some means and use it as an acoustic path similar to a thin metal tube, so the cross-sectional area and length can be changed as desired as long as they match the purpose of use. It is possible to use a shape of . 'In the case of figure M1, the disc-shaped acoustic circuits 3 and 4 with such grooves are closely connected,
The through hole 42 is fixed in a laminated manner from the joint with the through hole 2a.
A series of paths including this will function equivalently to a metal tubular tube having a length greater than or equal to this.

第1図に示す水中音響変換器を音場に入nると音波は振
動子1の外面を駆動すると同時に腹側のダイヤフラム7
を介して音響回路4.3の各貫通孔4a、3aと各溝4
b、3b及びきよう体2の貫通孔2af通ってくるが遮
断周波数以上の音波は振動子lの背面に達する以前に細
孔による音響イナータンスと筐体内の音響コンプライア
ンスで構成される音響フィルターによって減衰し、振動
子lの外面からの駆動力に対し影響を与えなくなり、そ
の結果振動子lは外面からの振動力のみに対応する音響
電気変換を行なう。
When the underwater acoustic transducer shown in FIG.
Through each through hole 4a, 3a of the acoustic circuit 4.3 and each groove 4
b, 3b and the through hole 2af of the transparent body 2, but the sound waves above the cutoff frequency are attenuated by an acoustic filter made up of the acoustic inertance due to the pores and the acoustic compliance inside the housing before reaching the back surface of the transducer l. However, it does not affect the driving force from the outer surface of the vibrator l, and as a result, the vibrator l performs acousto-electrical conversion corresponding only to the vibration force from the outer surface.

また、連断周波数より十分低い静水圧の変化等は、音響
フィルターの減衰がなく、従って振動子lの外面と背面
に同、じ圧力変化が加わる結果、振動子lが機械的に保
護される。
Also, changes in hydrostatic pressure that are sufficiently lower than the continuous frequency are not attenuated by the acoustic filter, so the same pressure changes are applied to the outer and back surfaces of the transducer l, resulting in mechanical protection of the transducer l. .

第1図の音響回路は、音響回路3が第1の弾性体でるり
、また音響回路4が第2の弾性体であり、これら2つの
弾性体が互いに密着、積層して構成される本発明第2の
実施例も含むものである。
In the acoustic circuit shown in FIG. 1, the acoustic circuit 3 is a first elastic body, and the acoustic circuit 4 is a second elastic body, and these two elastic bodies are in close contact with each other and are laminated. The second embodiment is also included.

第2図は本発明の第3の実施例と第4の実施例とを併記
して示す断面図でめる。
FIG. 2 is a sectional view showing both a third embodiment and a fourth embodiment of the present invention.

円筒状の振動子9が支柱10と音響回路11と7′)ン
ジ12及び13によって支持され、2ランジ13には更
に音響回路14が設けられている0第2図の音響回路1
1及び14は円筒の円周上に螺施状の溝を設けた本発明
第4の実施例の音響回路を利用し、この溝に蓋tする几
めの支柱10゜フランジ12と13との間並びにフラン
ジ12とキャップ16との間に密着性tよくするための
金属パッキy17a、17b、17c、17d。
A cylindrical vibrator 9 is supported by a column 10 and an acoustic circuit 11, 7'), and 12 and 13, and the two flange 13 is further provided with an acoustic circuit 14.Acoustic circuit 1 of FIG.
1 and 14 utilize the acoustic circuit according to the fourth embodiment of the present invention in which a screw-shaped groove is provided on the circumference of a cylinder, and a diagonal column 10° flanges 12 and 13 are used to cover this groove. metal gaskets 17a, 17b, 17c, 17d for improving adhesion between the flange 12 and the cap 16;

176が鋏み込まれている。176 is embedded.

音響回路14の内側には大きなくぼみが設けられていて
、音響コンプライアンスとしての特性を与えている。
A large depression is provided inside the acoustic circuit 14 to provide acoustic compliance characteristics.

第2図の構成では振動子9と支柱lOとの間で音響コン
プライアンスを作り、支柱の貫通孔10aと音響回路の
溝11b及び貫通孔11aの細孔によって提供される音
響イナータンスに接続され、7ランジ120貫通孔12
at″介してフランジ12とキャップ16との間で作ら
れる音響コンプライアンスに接続される。
In the configuration of FIG. 2, an acoustic compliance is created between the vibrator 9 and the column lO, and the acoustic inertance provided by the through hole 10a of the column, the groove 11b of the acoustic circuit, and the pore of the through hole 11a is connected to the acoustic inertance 7. Lunge 120 through hole 12
at'' to the acoustic compliance created between the flange 12 and the cap 16.

更に音響回路11(DX通孔11 a’ と7ランジ1
3の貫通孔13aによる音響イナータンスを介して音響
回路14とフランジ13との間の音響コンプライアンス
を経て音響回路14の溝14bと貫通孔14aの音響イ
ナータンスによって外部の音場と接続さnる〇 固定具15で固定されているダイヤフラム19の内部か
ら、振動子9に至るまでの経路には音響油8が充てんさ
れている。
Furthermore, the acoustic circuit 11 (DX through hole 11 a' and 7 lunges 1
Through the acoustic inertance of the through hole 13a of No. 3, the acoustic compliance between the acoustic circuit 14 and the flange 13, and the acoustic inertance of the groove 14b of the acoustic circuit 14 and the through hole 14a, the connection is made to the external sound field. A path from the inside of the diaphragm 19 fixed by the fixture 15 to the vibrator 9 is filled with acoustic oil 8.

第2図で構成される音響コンプライアンス群と音響イナ
ータンス群も第1図と同様に音響フィルターとして作動
する@ 第3図は本発明の第4の実施例の構造を示す平面図、第
4図は本発明の第5の実施例の構造を示す平面図である
The acoustic compliance group and the acoustic inertance group shown in Fig. 2 also operate as an acoustic filter in the same way as in Fig. 1. It is a top view which shows the structure of the 5th Example of this invention.

第3図は円板状の弾性体20の平面上に渦巻状の溝20
bと、この溝の1端に貫通孔20mとを設けた音響回路
であり、また第4図は円板状の弾性体21の平面上に同
心円状かつ左右交互に旋回しながら1本でつながる溝2
1bと、この溝の1端に設けた貫通孔21aとを有する
音響回路でbるO これらの音響回路は特に第1図に併記して示す不発明第
2の実施例における音響回路3および4として同種もし
くは異種の組合せで効果的に利用できる・ 第5図は本発明の第70笑施例を示す部分構造図である
FIG. 3 shows a spiral groove 20 on the plane of a disc-shaped elastic body 20.
b, and a through hole 20m provided at one end of this groove, and FIG. Groove 2
1b and a through hole 21a provided at one end of this groove. Fig. 5 is a partial structural diagram showing the 70th embodiment of the present invention.

第5図に示す第7の実施例は第2図の7ランジ13の貫
通孔13aに磁性体の貫通部22t−設け、この貫通部
に磁性流体23t−充てんしたものでめるO 第5図のような構造とすることによって貫通部22と磁
性流体23との間の吸引力により、この部分の音響イナ
ータンスを大きくすると共に貫通部22に導電性の材料
管選ぶことにより、貫通部22内の渦流損による音響抵
抗を与えることができる。第5図のような構造にすると
音響イナータンスの音響的Qt下げることができ、音響
フィルターの高域遮断周波数における特性変化を緩慢に
する結果、音響変換器に滑らかな受波感匿−周波数特性
を与える。
In the seventh embodiment shown in FIG. 5, a magnetic material penetration part 22t is provided in the through hole 13a of the seven flange 13 shown in FIG. 2, and this penetration part is filled with a magnetic fluid 23t. By adopting such a structure, the acoustic inertance of this part is increased due to the attractive force between the penetration part 22 and the magnetic fluid 23, and by selecting a conductive material pipe for the penetration part 22, the inside of the penetration part 22 is increased. Acoustic resistance can be provided by eddy current loss. With the structure shown in Figure 5, it is possible to lower the acoustic Qt of the acoustic inertance, and as a result, the characteristics change at the high cutoff frequency of the acoustic filter is slowed down, and as a result, the acoustic transducer has a smooth receiving sensitivity-frequency characteristic. give.

この磁性流体21は信号の微小音波に対して上記のよう
な働きをするが、また磁性流体23のもつ封止力を越え
る圧力9例えば静水圧の変化や温度変化による音響油の
体積変化等に対しては、磁性流体21による封止が一旦
破られ、圧力がなくなると、磁性流体の性質により元の
状態に復帰するO なお、音響的抵抗を与える目的に対しては、磁性流体を
溝やくぼみの一部又は全部に使用しても効果がオシ、更
に導電性の微粉末や中空球状体を磁性流体に混ぜること
により音響抵抗を大きくすることができる。これらはそ
れぞれ本発明の第8および第9の実施例としていずれも
容易に実施しうるものでおる。
This magnetic fluid 21 acts as described above for the minute sound waves of the signal, but it also acts against pressure 9 that exceeds the sealing force of the magnetic fluid 23, such as changes in the volume of acoustic oil due to changes in hydrostatic pressure or changes in temperature. However, once the seal by the magnetic fluid 21 is broken and the pressure is removed, it returns to its original state due to the properties of the magnetic fluid. It is effective even when used in part or all of the recess, and the acoustic resistance can be increased by mixing conductive fine powder or hollow spheres with the magnetic fluid. These can be easily implemented as the eighth and ninth embodiments of the present invention, respectively.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、密集した溝と貫通
孔を有する弾性体を密着積層することにより、低周波用
の音響フィルターを小型でかつ加工性よく構成すること
ができる効果がめる。
As explained above, according to the present invention, by closely laminating elastic bodies having densely packed grooves and through holes, it is possible to construct a low frequency acoustic filter in a small size and with good workability.

更には音響コンプライアンス、音響イナータンス及び磁
性流体による音響抵抗等のいわゆる音響素子をもつ音響
回路を多数9層状に集積することにより、簡単に音響フ
ィルターの特性を調整する水中音変換器用音響回路が冥
現できるという効果がめる。
Furthermore, by integrating a large number of acoustic circuits with so-called acoustic elements such as acoustic compliance, acoustic inertance, and magnetic fluid acoustic resistance into nine layers, an acoustic circuit for an underwater sound transducer that easily adjusts the characteristics of an acoustic filter has been realized. I can see the effect of being able to do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1および第2の実施例を併記して示
す断面図、第2図は本発明の第3および第4の実施例を
併記して示す断面図、第3図は本発明の第5の実施例を
示す平面図、第4図は本発明のtX6の実施例を示す平
面図、第5図は本発明の第7の実施例を示す部分断面図
、第6図は従来の高周波数・深深度用音響回路の一例を
示す断面図、第7図は第6図に示す音響回路の電気的等
価回路、第8(a)図は第6図に示、す音響回路の共振
特性図、第8(b)図は第6図に示す音響回路の振動子
糸力信号電圧特性図でbる。 l・・・・・・振動子、2・・・・・・きよう体、2a
・・・・・・貫通孔、3・・・・・・音響回路、3a・
・・・・・貫通孔、3b・・・・・・溝、4・・・・・
・音響回路、4a・・・・・・貫通孔、4b・・・・・
・溝、5,6・・・・・・固定具、7・・・・・・ダイ
アフラム、8・・・・・・音響油、9・・・・・・振動
子、10・・・・・・支柱%1Oa・・・・・・貫通孔
、11・・・・・・音響回路、lla、iia’・・・
・・・貫通孔、11b・・・・・・溝、12.13・・
・・・・7ランジ、12a、13m・・・・・・貫通孔
、14・・・・・・音響回路、14a・・・・・・貫通
孔、14b・・・・・・溝、15・・・・・・固定具、
16・・・・・・キャップ、17a〜17e・・・・・
・金属パツキン、19・・・・・・くぼみ、19・・・
・・・ダイアフラム、20・・・・・・弾性体、20a
・・・・・・貫通孔、20b・・・・・・溝、21・・
・・・・弾性体、21a・・・・・・貫通孔、21b・
・・・・・溝、22・・・・・・貫通部、23・・・・
・・磁性流材、24・・・・・・振動子、25・・・・
・・支柱、26・・・・・・7ランジ、26a・・・・
・・貫通孔、27・・・・・・金属管、28・・・・・
・7ランジ〇 )““2.ノ′ 差 1 回 革3 図     茅4 図 $8 (L)TM
FIG. 1 is a cross-sectional view showing the first and second embodiments of the present invention, FIG. 2 is a cross-sectional view showing the third and fourth embodiments of the present invention, and FIG. FIG. 4 is a plan view showing the fifth embodiment of the present invention; FIG. 4 is a plan view showing the tX6 embodiment of the present invention; FIG. 5 is a partial sectional view showing the seventh embodiment of the present invention; FIG. 7 is a cross-sectional view showing an example of a conventional high-frequency/deep-depth acoustic circuit, FIG. 7 is an electrical equivalent circuit of the acoustic circuit shown in FIG. 6, and FIG. The resonance characteristic diagram of the circuit, FIG. 8(b), is the vibrator string force signal voltage characteristic diagram of the acoustic circuit shown in FIG. l... vibrator, 2... living body, 2a
...Through hole, 3...Acoustic circuit, 3a.
...Through hole, 3b...Groove, 4...
・Acoustic circuit, 4a...Through hole, 4b...
・Groove, 5, 6... Fixture, 7... Diaphragm, 8... Acoustic oil, 9... Vibrator, 10...・Strut %1Oa...Through hole, 11...Acoustic circuit, lla, iia'...
...Through hole, 11b...Groove, 12.13...
7 langes, 12a, 13m...through hole, 14...acoustic circuit, 14a...through hole, 14b...groove, 15. ·····Fixture,
16...Cap, 17a-17e...
・Metal packing, 19...Indentation, 19...
...Diaphragm, 20...Elastic body, 20a
...Through hole, 20b...Groove, 21...
...Elastic body, 21a...Through hole, 21b.
... Groove, 22 ... Penetration part, 23 ...
...Magnetic flow material, 24... Vibrator, 25...
...Strut, 26...7 lunge, 26a...
...Through hole, 27...Metal tube, 28...
・7 Lunge〇) ““2.ノ' Difference 1 Time leather 3 Fig. 4 Fig. $8 (L) TM

Claims (9)

【特許請求の範囲】[Claims] (1)水中音響変換器の振動子の密閉内側から音場に突
出するように設けた開口金属管によってあらかじめ設定
する音響フィルタ特性を前記水中音響変換器に付与する
水中音響変換器用音響回路において、あらかじめ設定す
る形状の連続線形と長さとを有する溝を設けた複数の弾
性体を直接もしくは支持構造を介して前記溝が接続され
るように結合するとともにこの場合この結合によって前
記開口金属管の音響パスと等価な音響パスを形成せしめ
所定の音響フィルタ特性を付与する音響フィルタ特性付
与手段を備えて成ることを特徴とする水中音響変換器用
音響回路。
(1) In an acoustic circuit for an underwater acoustic transducer, the underwater acoustic transducer is provided with acoustic filter characteristics set in advance by an open metal tube provided so as to protrude into the sound field from the sealed inside of the transducer of the underwater acoustic transducer, A plurality of elastic bodies provided with grooves having a continuous line shape and length of a predetermined shape are coupled directly or through a support structure such that the grooves are connected, and in this case, this coupling causes acoustic vibration of the open metal tube. 1. An acoustic circuit for an underwater acoustic transducer, comprising an acoustic filter characteristic imparting means for forming an acoustic path equivalent to the path and imparting predetermined acoustic filter characteristics.
(2)予め設定する長さの溝とこの溝の一端に設けた貫
通口とを有する第1の弾性体と、前記第1の弾性体と重
ね合せて前記溝に蓋をするとともに前記第1の弾性体と
重ね合せて前記溝に蓋をした状態で前記溝の1部に通す
る貫通口もしくはこの貫通口を設けた前記溝を有する第
2の弾性体とを有し前記第1の弾性体に前記第2の弾性
体を密着、積層して成ることを特徴とする水中音響変換
器用音響回路。
(2) a first elastic body having a groove having a predetermined length and a through hole provided at one end of the groove; the first elastic body being overlapped with the first elastic body to cover the groove; and a second elastic body having a through hole that passes through a part of the groove while overlapping the elastic body and covering the groove, or a second elastic body having the groove provided with the through hole. An acoustic circuit for an underwater acoustic transducer, characterized in that the second elastic body is laminated in close contact with the body.
(3)くぼみとこのくぼみの出入口として前記溝とこの
構の1端に設けた貫通口とを有する弾性体を前記第1も
しくは第2の弾性体として有することを特徴とする特許
請求範囲第(1)項記載の水中音響変換器用音響回路。
(3) The first or second elastic body includes an elastic body having a recess, the groove, and a through hole provided at one end of the structure as an entrance and exit of the recess. 1) The acoustic circuit for an underwater acoustic transducer according to item 1).
(4)前記第1および第2の弾性体に設ける溝が弾性体
円筒の円周上に螺施状の構造として形成したものである
ことを特徴とする特許請求範囲第(1)項記載の水中音
響変換器用音響回路。
(4) The groove provided in the first and second elastic bodies is formed as a screw-like structure on the circumference of the elastic cylinder. Acoustic circuit for underwater acoustic transducer.
(5)前記第1および第2の弾性体が弾性板の平面上に
渦巻き状の溝を設けたものであることを特徴とする特許
請求範囲第(1)項記載の水中音響変換器用音響回路。
(5) The acoustic circuit for an underwater acoustic transducer according to claim (1), wherein the first and second elastic bodies are elastic plates provided with spiral grooves on a plane. .
(6)前記第1および第2の弾性体が弾性板の平面上に
同心円状かつ左右交互に施回しながら1本でつながる構
造の溝を設けたものであることを特許請求範囲第(1)
項記載の水中音響変換器用音響回路。
(6) Claim (1) provides that the first and second elastic bodies are provided with grooves concentrically arranged on the plane of the elastic plate and connected to each other alternately from left to right.
Acoustic circuit for underwater acoustic transducer as described in .
(7)前記溝の1部と貫通口のうちの少なくとも一方を
磁性体とするとともにこの磁性体の部分に磁性流体を充
填したことを特徴とする特許請求範囲第(2)項記載の
水中音響変換器用音響回路。
(7) Underwater acoustics according to claim (2), characterized in that at least one of the groove and the through hole is made of a magnetic material, and the magnetic material portion is filled with a magnetic fluid. Acoustic circuit for transducer.
(8)前記くぼみとその出入口のうちの少なくとも一方
を磁性体とするとともにそのくぼみの中に磁性流体を充
填したことを特徴とする特許請求範囲第(3)項記載の
水中音響変換器用音響回路。
(8) An acoustic circuit for an underwater acoustic transducer according to claim (3), characterized in that at least one of the depression and its entrance/exit is made of a magnetic material, and the depression is filled with a magnetic fluid. .
(9)前記磁性流体の中に導電性の微粉末や中空球状体
を混入せしめたことを特徴とする特許請求範囲第(7)
項および(8)項記載の水中音響変換器用音響回路。
(9) Claim No. (7) characterized in that conductive fine powder or hollow spheres are mixed into the magnetic fluid.
The acoustic circuit for an underwater acoustic transducer as described in Sections and (8).
JP14098685A 1985-06-27 1985-06-27 Acoustic circuit for underwater acoustic transducer Pending JPS621399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14098685A JPS621399A (en) 1985-06-27 1985-06-27 Acoustic circuit for underwater acoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14098685A JPS621399A (en) 1985-06-27 1985-06-27 Acoustic circuit for underwater acoustic transducer

Publications (1)

Publication Number Publication Date
JPS621399A true JPS621399A (en) 1987-01-07

Family

ID=15281476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14098685A Pending JPS621399A (en) 1985-06-27 1985-06-27 Acoustic circuit for underwater acoustic transducer

Country Status (1)

Country Link
JP (1) JPS621399A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142998A (en) * 1981-02-27 1982-09-03 Fuji Kagaku Kogyo Kk Novel 5-fluorouridine derivative and its preparation
JP2008541640A (en) * 2005-05-21 2008-11-20 ソナプティック・リミテッド Small planar acoustic network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142998A (en) * 1981-02-27 1982-09-03 Fuji Kagaku Kogyo Kk Novel 5-fluorouridine derivative and its preparation
JP2008541640A (en) * 2005-05-21 2008-11-20 ソナプティック・リミテッド Small planar acoustic network

Similar Documents

Publication Publication Date Title
US4932003A (en) Acoustic quadrupole shear wave logging device
US5027331A (en) Acoustic quadrupole shear wave logging device
US5682075A (en) Porous gas reservoir electrostatic transducer
US5452267A (en) Midrange ultrasonic transducer
US3403234A (en) Acoustic transducer
JPH0511477B2 (en)
US3674945A (en) Acoustic impedance matching system
US4809811A (en) Ear pad construction for earphones
US3944757A (en) High-fidelity moving-coil loudspeaker
US3849679A (en) Electroacoustic transducer with controlled beam pattern
JPH0520959B2 (en)
DE69535555D1 (en) SOUND CONVERTER WITH IMPROVED LOW FREQUENCY
US4178577A (en) Low frequency hydrophone
US4945276A (en) Transducer for arranging in a fluid, particularly for the measurement of the flow-velocity of a fluid in a pipe, by transmitting/receiving sonic pulses
US5117403A (en) Above and below water sound transducer
US3859477A (en) Electrostatic transducer
US8384270B2 (en) Pressure-balanced electromechanical converter
US4544806A (en) Ribbon-type transducer with a multi-layer diaphragm
JPS621399A (en) Acoustic circuit for underwater acoustic transducer
US10139503B2 (en) Doubly resonant seismic source
WO2020016563A1 (en) Flexural ultrasonic transducer
JP5512107B2 (en) Sonic transmitter
JP3543820B2 (en) Ultrasonic flow meter
JPS6165600A (en) Piezo-electric oscillator
JPS60241399A (en) Underwater sound wave transmitter