JPS62139874A - Formation of thin boron nitride film for x-ray mask - Google Patents
Formation of thin boron nitride film for x-ray maskInfo
- Publication number
- JPS62139874A JPS62139874A JP27992985A JP27992985A JPS62139874A JP S62139874 A JPS62139874 A JP S62139874A JP 27992985 A JP27992985 A JP 27992985A JP 27992985 A JP27992985 A JP 27992985A JP S62139874 A JPS62139874 A JP S62139874A
- Authority
- JP
- Japan
- Prior art keywords
- film
- org
- boron nitride
- substrate
- diborane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、X線リングラフィ用マスクのX線透過性基板
となる窒化ホウ素薄膜(以下BNII2という)の形成
方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for forming a boron nitride thin film (hereinafter referred to as BNII2) which becomes an X-ray transparent substrate of a mask for X-ray phosphorography.
(従来の技術と問題点)
前記のX線マスク用BN膜は可視光およびX線に対して
透明であり、かっ1耐薬品性、耐引張強度を有するセラ
ミックj漠である点から非常に優れた材料として認めら
れている。(Prior art and problems) The above-mentioned BN film for X-ray masks is transparent to visible light and X-rays, and has excellent chemical resistance and tensile strength as a ceramic material. It is recognized as a suitable material.
xvjリソグラフィ用マスクの作成方法は、Siウェハ
ー上にfipm厚のBN膜を形成し、これにポリイミド
フィルムを積層した後、si大基板バックエツチングす
るのが一般的方法であるが、ある程度の強度を有し、V
−面性の非常に優れたBNIIQを得るには、Si基板
上に作成したBN膜が1xlo タイン/ c m’程
度の引張応力をもつようにすることが重要である。The general method for creating a mask for have, V
- In order to obtain BNIIQ with extremely excellent planarity, it is important that the BN film formed on the Si substrate has a tensile stress of about 1xlo tine/cm'.
しかしながら従来の方法では、これがきわめて困難であ
って、はとんどの場合圧縮応力のかかった膜が基板上に
堆積される結果となっていた。However, with conventional methods this is extremely difficult and often results in compressively stressed films being deposited on the substrate.
これはSiとBNとの熱膨張係数の差に起因するもので
ある(熱膨張係数S i =2.3 X 10’/ °
C,BN=1.OX 10’/ ”C)。This is due to the difference in thermal expansion coefficient between Si and BN (thermal expansion coefficient S i =2.3 x 10'/°
C, BN=1. OX 10'/"C).
高温でSi基板上にBN膜を形成した後、室温にもどせ
ば、熱膨張係数の大きいSi基板の方がより強く収縮す
るので、熱111張係数の小さいBN膜の残留応力は圧
縮応力となり、基板上に歪みを生じる。After forming a BN film on a Si substrate at high temperature, if the temperature is returned to room temperature, the Si substrate with a large thermal expansion coefficient will contract more strongly, so the residual stress in the BN film with a small thermal 111 tensile coefficient becomes compressive stress. This causes distortion on the substrate.
したがって、X線マスク材料として非常に優れたBN膜
をうるためには、この圧縮応力を引張応力に変化させる
必要がある。Therefore, in order to obtain a BN film that is excellent as an X-ray mask material, it is necessary to convert this compressive stress into tensile stress.
(問題を解決するための手段)
これについては各種の提案がなされてきた−が、その代
表例を挙げると以下の3つの方法に要約される。(Means for solving the problem) Various proposals have been made regarding this, but the representative examples can be summarized into the following three methods.
(イ)ジボランとアンモニアの比を、NH3/82H6
=0.13〜0.25とする
(特許出願公表昭55−500707) 。(a) The ratio of diborane and ammonia is NH3/82H6
= 0.13 to 0.25 (Patent application published 1982-500707).
(ロ)ジボランに対し、SiH4を7〜12%の範囲で
添加する。 (同上)
(ハ)360〜440℃でアニールする(米国特λ乍第
4.552.842号)
しかしながら(イ)の方法は生成するBN:’J膜の可
視光線透過率が悪い、(ロ)の方法はS i H4の添
加聞が多いためx1a透過率の悪いSi3N、が多量に
生成する、(ハ)の方法は応力制御できるBNII!2
の組成がきわめて限られた範囲であるなどの難点がある
ためX線用マスクの膜としては必ずしも好適とは言い難
いものである。(b) Add SiH4 to diborane in a range of 7 to 12%. (Same as above) (C) Annealing at 360 to 440°C (US Pat. Method (c) generates a large amount of Si3N, which has poor x1a transmittance, due to the large amount of Si H4 added, and method (c) allows stress control. 2
However, it is difficult to say that it is suitable as a film for an X-ray mask because of its drawbacks such as the extremely limited composition range.
(発明の構成)
本発明者らはこの点にかんがみ、BN膜の平面性を4泣
する目的のもとに、Siウェハー上に形成したBN膜の
応力制御法を開発すへく種々検討を重ねた結果、BN膜
形成の際に有機金属化合物からなるドーピング剤を用い
ることにより、上記目的が達成されることを見出し、本
発明に至った。(Structure of the Invention) In view of this point, the present inventors conducted various studies to develop a stress control method for a BN film formed on a Si wafer, with the aim of improving the flatness of the BN film. As a result of repeated efforts, the inventors discovered that the above object can be achieved by using a doping agent made of an organometallic compound when forming a BN film, leading to the present invention.
すなわち、本発明は、ジボランとアンモニアをCVD法
により反応させて、Si基板上にBN膜を形成させる際
に、有機金属化合物をドーピング剤としてジボランに対
し5z以下添加する方法であって、これによりBNl1
3の応力制御が可能となり、圧縮応力から引張応力に変
化させうるという効果が得られる。That is, the present invention is a method in which 5z or less of an organometallic compound is added to diborane as a doping agent when forming a BN film on a Si substrate by reacting diborane and ammonia by the CVD method. BNl1
3 stress control becomes possible, and the effect of being able to change from compressive stress to tensile stress is obtained.
引張応力にする必然性は、作成するBN膜の平面性を考
える際に明らかになってくる、すなわちX線マスクでは
、その平面性は±0.14m以内の精度が要求されるが
この程度の平面度をもっているSi基板は、通常得られ
ない、しかしながら±1ルm程度の平面度を有するSi
基板上に形成したBN膜でもSi基板をバックエッチし
た時に、引張応力のかかったBN膜を太鼓の皮を引っ張
る様にビンと張る事ができれば、もとのSi基板の平面
性よりも優れたBNj1!ll!を作成できるはずであ
る。The necessity of using tensile stress becomes clear when considering the flatness of the BN film to be created.In other words, for an X-ray mask, the flatness is required to have an accuracy of within ±0.14 m, but this degree of flatness is not possible. However, Si substrates with flatness of about ±1 lumen are not normally available.
Even with the BN film formed on the substrate, when back-etching the Si substrate, if the BN film under tensile stress can be stretched like the skin of a drum, the flatness will be superior to that of the original Si substrate. BNj1! ll! You should be able to create .
本発明はこの見地からなされたものであって、ドーピン
グ剤がジボランに対して少量であるため、X線透過率を
損なうことが少ないこともその効果の一つである。この
ように、少量の有機金属化合物でBN膜の応力を制御で
きる理由は、はっきりしないが、成膜中にM−C(Mは
Siおよび/またはAM)という単位でBN膜にとり込
まれ準安定状態のままで膜が堆積されていくために1本
来のBN膜とは違った応力になるものと思われる。The present invention was made from this viewpoint, and one of its effects is that since the amount of doping agent is small relative to diborane, there is little loss of X-ray transmittance. The reason why the stress in the BN film can be controlled with a small amount of organometallic compound is not clear, but it is incorporated into the BN film in units of M-C (M is Si and/or AM) during film formation, making it metastable. Since the film is deposited in that state, it is thought that the stress will be different from that of the original BN film.
本発明ではCVD法を特に規定しないが、Si基板とB
N膜の熱膨張係数の差を考えた場合に、BN膜の応力を
減少させる効果がある点からすると低温プラズマ法が有
利である。Although the CVD method is not particularly defined in the present invention, the Si substrate and B
Considering the difference in thermal expansion coefficient of the N film, the low temperature plasma method is advantageous in terms of its effect of reducing stress in the BN film.
この場合に用いるジボランやアンモニアは、もちろん希
釈ガスやキャリアガスとして水素。The diborane and ammonia used in this case are of course hydrogen as the diluent gas and carrier gas.
ヘリウム、窒素、アルゴン等を併用してもよい、有機金
属化合物としては、原子番号の若いA見、St等の有機
金属化合物が良好なX線透過率をもつ点で好適であり、
下記構造の有機シラン類(I)および有機アルミニウム
類(rr)があげられる。As the organometallic compound that may be used in combination with helium, nitrogen, argon, etc., organometallic compounds such as A, St, etc. with a small atomic number are suitable because they have good X-ray transmittance,
Examples include organic silanes (I) and organic aluminums (rr) having the following structures.
RnS il、lH2ffi+ 2−n(I)RA交H
(II)
p q
(ただしRは炭素数6以下の飽和および/または不飽和
の有機基で、m=1.2;n=1゜2.3,4.p=2
.3.q=o、1)これらの有機金属化合物は例えばM
eSiH3゜(Meはメチル基以下同じ)CH=CH−
S iHM e 2 S i H2、(E tはエチル
基以下同じ)CHS i H1M e A l 、
E t 3A 41などである。有機基は炭素a6以下
の飽和、不飽和のメチル基、エチル基、プロピル基、エ
チニル基、ビニル基、フェニル基等であることが好まし
い、その理由は反応時のガス化が容易であるからである
。RnS il, lH2ffi+ 2-n(I) RA exchange H
(II) p q (where R is a saturated and/or unsaturated organic group having 6 or less carbon atoms, m = 1.2; n = 1 ° 2.3, 4. p = 2
.. 3. q=o, 1) These organometallic compounds are e.g.
eSiH3゜ (Me is a methyl group and below) CH=CH-
S iHM e 2 S i H2, (E t is the same below the ethyl group) CHS i H1M e A l,
E t 3A 41, etc. The organic group is preferably a saturated or unsaturated methyl group, ethyl group, propyl group, ethynyl group, vinyl group, phenyl group, etc. having carbon a6 or less, because gasification during the reaction is easy. be.
つぎに本発明を実施例、比較例をあげて説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.
300+nφの平行平板型電極を有するプラズマCVD
装置を用い、13.56 MH2(73周波数で、チャ
ンバー内に水素lO%で希釈したジボランと窒素10%
で希釈したアンモニアヲ導入し反応をおこなった。用い
たSi基板は1両面研摩した軸<100>厚み(t s
) 33 Q pbm、平面度(そりδ)3gm以内
であった。Plasma CVD with parallel plate electrodes of 300+nφ
Using an apparatus, diborane diluted with 10% hydrogen and 10% nitrogen in the chamber at 13.56 MH2 (73% frequency).
Ammonia diluted with water was introduced and a reaction was carried out. The Si substrate used has an axis <100> thickness (t s
) 33 Q pbm, and the flatness (warpage δ) was within 3 gm.
(実施例1〜8)
上記装置を用い、Si基板上にBMW2を形成した。使
用したドーパントとして(A ) M e 3S i
HI
(B)CH=CH=S i3H,(C)Me2−SfH
、(D)CHSiH、(E)
Me3An 、CF)EL3Anを用いた。(Examples 1 to 8) BMW 2 was formed on a Si substrate using the above-mentioned apparatus. As the dopant used (A) M e 3S i
HI (B) CH=CH=S i3H, (C) Me2-SfH
, (D) CHSiH, (E) Me3An, CF) EL3An were used.
実施条件および結果は表−1に示すとおりであった。The implementation conditions and results were as shown in Table-1.
(比較例1〜8)
上記装置を用いドーパントの添加なしにSi基板上にB
N膜を作成した。(Comparative Examples 1 to 8) Using the above apparatus, B was deposited on a Si substrate without adding a dopant.
A N film was created.
実験条件および結果は表−2に示すとおりであった。The experimental conditions and results are as shown in Table-2.
表−1および表−2における試験方法は次のとおりであ
る。The test methods in Tables 1 and 2 are as follows.
(イ)ウェハーのそり(δJLm)
2インチSiウェハーのそり(凹また凸状)の高さをI
Lmで示す。(a) Wafer warpage (δJLm) The height of warpage (concave or convex) of a 2-inch Si wafer is I
Indicated by Lm.
(ロ)ウェハー上の膜厚(tf)は、同一ロット中に別
途形成されたマスク付Siウェハー片の段差を触針式膜
厚計で測定した値である。(b) The film thickness (tf) on the wafer is a value measured by using a stylus-type film thickness meter to measure the difference in level of a masked Si wafer piece separately formed in the same lot.
(ハ)BNにかかっている応力(σ)は次式により算出
した。(c) The stress (σ) applied to BN was calculated using the following formula.
δ=ウェハーのそり、ts=シリコン基板の厚みρ=ウ
ェハーの半径
シスポアソン比、 E=ヤングモジュール。δ=wafer warpage, ts=silicon substrate thickness, ρ=wafer radius, cis-Poisson's ratio, E=Young module.
E/ (I−y) =2.3 X 1012fイア/
Crn’(ニ)所見
実施例、比較例で作成したサンプルを
Si基板側より硝フッ酢酸
(HNO3:HF: CH3CO0H=4:1:1 )
でバックエツチングしたところ、実施例1〜8は全て平
滑な無色透明膜として
残ったのに対し、比較例1〜8の膜は全てたるみが生じ
エツチング後の水洗で簡単に破壊される膜であった。E/ (I-y) =2.3 x 1012fia/
Crn'(d) Findings Samples prepared in Examples and Comparative Examples were treated with nitric fluoroacetic acid (HNO3:HF: CH3CO0H=4:1:1) from the Si substrate side.
When back-etched with water, Examples 1 to 8 all remained as smooth, colorless and transparent films, whereas the films of Comparative Examples 1 to 8 all sagged and were easily destroyed by washing with water after etching. Ta.
Claims (1)
、Si基板上に窒化ホウ素薄膜を形成させるに当り、ジ
ボランに対し5%以下の有機金属化合物を添加すること
を特徴とするX線マスク用窒化ホウ素薄膜の形成方法。 2、有機金属化合物として下記構造を有する有機シラン
類( I )および/または有機アルミニウム類(II) を用いる特許請求の範囲第1項記載のX線マスク用窒化
ホウ素薄膜の形成方法。 ( I )R_nSi_mH_2_m_+_2_−_n (II)R_pAlH_q (ただし、Rは炭素数6以下の飽和および/または不飽
和の有機基でm=1、2、n=1、2、3、4;p=2
、3;q=0、1の整数)[Claims] 1. In forming a boron nitride thin film on a Si substrate by reacting diborane and ammonia by a CVD method, it is characterized by adding 5% or less of an organometallic compound to diborane. A method for forming a boron nitride thin film for X-ray masks. 2. A method for forming a boron nitride thin film for an X-ray mask according to claim 1, using an organosilane (I) and/or an organoaluminum (II) having the following structure as the organometallic compound. (I) R_nSi_mH_2_m_+_2_-_n (II) R_pAlH_q (However, R is a saturated and/or unsaturated organic group having 6 or less carbon atoms, m = 1, 2, n = 1, 2, 3, 4; p = 2
, 3; q=0, 1 integer)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27992985A JPS62139874A (en) | 1985-12-12 | 1985-12-12 | Formation of thin boron nitride film for x-ray mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27992985A JPS62139874A (en) | 1985-12-12 | 1985-12-12 | Formation of thin boron nitride film for x-ray mask |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62139874A true JPS62139874A (en) | 1987-06-23 |
JPH0430468B2 JPH0430468B2 (en) | 1992-05-21 |
Family
ID=17617878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27992985A Granted JPS62139874A (en) | 1985-12-12 | 1985-12-12 | Formation of thin boron nitride film for x-ray mask |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62139874A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4939058B2 (en) * | 2004-02-16 | 2012-05-23 | 株式会社カネカ | Method for producing transparent conductive film and method for producing tandem-type thin film photoelectric conversion device |
-
1985
- 1985-12-12 JP JP27992985A patent/JPS62139874A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4939058B2 (en) * | 2004-02-16 | 2012-05-23 | 株式会社カネカ | Method for producing transparent conductive film and method for producing tandem-type thin film photoelectric conversion device |
Also Published As
Publication number | Publication date |
---|---|
JPH0430468B2 (en) | 1992-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3168002B2 (en) | Transition metal nitride chemical vapor deposition method | |
JP2019186562A5 (en) | ||
WO2005080628A2 (en) | Method for producing silicon nitride films and silicon oxynitride films by chemical vapor deposition | |
KR20150083021A (en) | Novel trisilyl amine derivative, method for manufacturing thereof and silicon-containing thin film use the same | |
KR20150123766A (en) | Novel amino-silyl amine compound, method for manufacturing thereof and silicon-containing thin film use the same | |
TWI817139B (en) | Vapor deposition precursor compounds and process of use | |
JPH04299515A (en) | X-ray transmission film for x-ray lithography mask and manufacture thereof | |
US5234609A (en) | X-ray permeable membrane for X-ray lithographic mask | |
JPS62139874A (en) | Formation of thin boron nitride film for x-ray mask | |
JPH03196149A (en) | Formation of sic/si3n4 film for x-ray lithography | |
JPH03139836A (en) | Method for piling silicon nitride layer on glass substrate | |
US20230094481A1 (en) | Amino-silane compound and composition for the silicon-containing thin film comprising the same | |
JPS60155508A (en) | Noncrystalline boron nitride having improved stability | |
JPH02262324A (en) | X-ray transmitting film and its manufacture | |
JP2790900B2 (en) | Method for manufacturing a composite film composed of SiC and Si <3> N <4> and method for manufacturing a mask for X-ray lithography | |
TWI848281B (en) | Method for producing organometallic compound, method for fabricating a thin film and tungsten metal thin film | |
JPH03183776A (en) | Production of amorphous bn film and amorphous bn film | |
US11267828B2 (en) | Silicon precursor and method of manufacturing silicon-containing thin film using the same | |
JP7065805B2 (en) | Halogenated aminosilane compounds, thin film forming compositions and silicon-containing thin films | |
JPS63145778A (en) | Production of drum-shaped hexagonal boron nitride film | |
JPH01116078A (en) | Manufacture of boron nitride film for x-ray lithography mask | |
JPH04171915A (en) | X-ray transmission film used for x-ray lithography mask | |
JPS62199770A (en) | Production of thin film for x-ray mask | |
JPH042767A (en) | Production of thin film | |
JPH03196147A (en) | Sic film for x-ray lithography and production thereof and mask for x-ray lithography |