JPS6213941B2 - - Google Patents

Info

Publication number
JPS6213941B2
JPS6213941B2 JP15543981A JP15543981A JPS6213941B2 JP S6213941 B2 JPS6213941 B2 JP S6213941B2 JP 15543981 A JP15543981 A JP 15543981A JP 15543981 A JP15543981 A JP 15543981A JP S6213941 B2 JPS6213941 B2 JP S6213941B2
Authority
JP
Japan
Prior art keywords
alcohol
quaternary ammonium
enolate
polar solvent
tertiary amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15543981A
Other languages
Japanese (ja)
Other versions
JPS5857340A (en
Inventor
Nobuo Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP15543981A priority Critical patent/JPS5857340A/en
Publication of JPS5857340A publication Critical patent/JPS5857340A/en
Publication of JPS6213941B2 publication Critical patent/JPS6213941B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はフルオロアルキルマロン酸エステルの
製造方法に関するものである。 フルオロアルキル基のうち特にトリフルオロメ
チル基を有する化合物には、生物活性を示すもの
がいくつか知られている。例えば、トリフルオロ
メチルマロン酸エステルは、トリフルオロメチル
基含有生物活性物質の合成中間体として有用であ
ると考えられる。このエステルの合成法として
は、(1)オクタフルオロイソブデン−メタノール付
加体(以下、OFIB−MeOH付加体と略す。)を硫
酸でヘキサフルオロイソ酪酸エステルとした後に
メタノリシスを行なう方法、(2)OFIB−MeOH付
加体の脱フツ化水素反応によつて得られるヘプタ
フルオロイソブテニルメチルエーテルをトリエチ
ルアミンにより四級アミノエノラートとし、これ
のメタノリシスを行なう方法などが知られてい
る。しかしながら、上記(1)の方法は反応を2段階
に分けて行なう必要があつて操作が面倒である。
また上記(2)の方法は操作が容易ではあるが目的物
の収率が低いことが分つている。 本発明者は、上記(2)の方法を改良することによ
つて、容易にかつ収率良くトリフルオロメチルマ
ロン酸ジメチル等のフルオロアルキルマロン酸エ
ステルを一段階で合成する方法を見出し、本発明
に到達したものである。 即ち、本発明による方法は、 一般式: (但、Rfはフルオロアルキル基、Rはアルキル基
を示す。) で表わされる含フツ素脂肪族化合物−アルコール
付加体に所定量の非プロトン性極性溶媒中で第三
級アミンを作用させることにより四級アンモニウ
ムエノラートを生成させ、次いでこの四級アンモ
ニウムエノラートにアルコールを徐々に作用させ
て加アルコール分解を行なうことによりそのアル
コール付加体から誘導されるモノエステルを生成
させ、次いでこのエステルを更にアルコールと反
応させてから鉱酸で処理することにより、 一般式: RfCH(COOR)2 (但、Rf及びRは前記したものと同じ。) で表わされるフルオロアルキルマロン酸エステル
を得ることを特徴としている。 本発明による方法で注目すべきことは、上記四
級アンモニウムエノラートにアルコールを作用さ
せるに際し、非プロトン性極性溶媒を用いるこ
と、およびそのアルコールを上記(2)の方法のよう
に一挙に加えるのではなく、徐々に時間をかけて
加える(特に滴下する)ことである。これによつ
て、目的とするマロン酸エステルに転化されるべ
き中間生成物を充分に生成させることができるの
で、目的物の収率を大幅に向上させることが可能
となる。 この本発明による方法は、出発原料として上述
のOFIB−MeOH付加体を用いる場合、例えば次
の反応式で表わすことができる。 この反応は例えば次の条件で行わせてよい。 まずOFIB−MeOH付加体に対し、ジメチルホ
ルムアミドのような非プロトン性極性溶媒中で二
当量のトリエチルアミンを作用させ、ヘプタフル
オロイソブチルメチルエーテル(上記)を経て
四級アンモニウムエノラート(上記)をin
situ(溶媒をそのまま除去することなく)生成さ
せ、次に氷浴中でメタノールをゆつくりと滴下さ
せる。そしてその滴下後に室温で例えば1時間撹
拌することにより、少量のモノエステル(上記
)を含むケテンアセタール(上記)を生成さ
せる。 このケテンアセタールはメタノール中で更に長
時間撹拌するとオルソエステルになるが、この段
階で水にあけて油層を分離し、この油層を濃硫酸
で処理すると、モノエステル(上記及び)が
同時に加水分解され、目的とするトリフルオロメ
チルマロン酸ジメチル(上記)に高収率で転化
される。 本発明において、出発原料として使用可能なア
ルコール付加体としては、上記のOFIB−MeOH
付加体がトリフルオロメチル基の生物活性が優れ
ている点で特に望ましいが、このOFIB−MeOH
付加体を含む一般式:【式】で表わ されるものであれば使用することができる。Rf
としては、CF3(CF2)n−又は(CF32CF
(CF2)n−で表わされるペルフルオロアルキル
基、例えばCF3−、CF3CF2−、CF3(CF22−、
CF3(CF23−、CF3(CF24−、CF3(CF25
−、(CF32CF−、(CF32CFCF2−、(CF32CF
(CF22−、(CF32CF(CF23−を選択してよ
い。更に、芳香族基置換フルオロアルキル基、例
えばC6H5CF2−、C6H5(CF22−を選択してもよ
い。また、上記のRとしては、CH3−以外にも
C2H5−、CH3(CH22−、(CH32CH−、CH3
(CH23−、CH3(CH24−等の如く、炭素原子数
5以下のアルキル基としてよい。 また、本発明で使用可能な上記第三級アミンは
出発原料の脱フツ化水素及び四級アンモニウムエ
ノラートの生成のために必要なものであつて、例
えばトリエチルアミンの他、トリメチルアミン、
トリイソプロピルアミン、ピリジン、N・N−ジ
メチルアニリンの如く、炭素原子数12以下のもの
が望ましい。この炭素原子数は、第三級アミンを
R3N(Rはアルキル基)と表わした場合、各Rに
ついて4以下とするのがよい。なお、第三級アミ
ンに代えてそれより低級のアミンを使用した場合
には、反応が全く進行しないことが確認されてい
る。 また、この第三級アミンによる配位化合物(四
級アンモニウムエノラート)の生成には、非プロ
トン性極性溶媒を使用する。例えばジメチルホル
ムアミド、アセトニトリル、テトラヒドロフラ
ン、ジメチルスルホキシド、ジメチルアセトアミ
ド、N−メチルピロリドン、ヘキサメチルホスホ
アミドを使用するのが望ましい。この極性溶媒
は、陽イオンに対する溶媒和エネルギーが大き
く、陰イオン試剤の反応速度を高める作用があ
る。 また、この四級アンモニウムエノラートを加ア
ルコール分解するために使用するアルコールとし
ては、上記のメタノール以外に、エタノール、プ
ロパノール、イソプロパノール、ブタノール、ペ
ンタノール等の如き脂肪族アルコールが挙げられ
る。 また、目的物である含フツ素脂肪族マロン酸エ
ステルを得るために中間生成物を脱アルコール化
すべき鉱酸としては、H2SO4、HCl、HNO3
H3PO4等が使用可能である。 上記した如く、本発明の方法によれば、第三級
アミンを非プロトン性極性溶媒中で作用させると
共に、加アルコール分解の段階でアルコールを
徐々に作用させているので、目的物に転化される
べき所望の中間生成物を効率良く生成させること
ができ、このために公知の方法に比べてフルオロ
アルキルマロン酸エステルを高収率でしかも容易
に合成することができる。 なお、この合成されたマロン酸エステルについ
て本発明者が検討を加えた結果、そのα水素と共
にβフツ素が脱離し易いためにアルキル化が困難
であるが、アルキル化時に特定の塩基を用いると
アルキル化が可能であることが判明した。 即ち、例えば上記のエステルは、次式で示す
ように酸性度の高いα水素が塩基により容易に脱
離されてカルボアニオンとなるが、このカルボ
アニオンは、CF3基からフツ化物イオンを脱離し
て末端ジフルオロメチレンマロン酸エステル
なる。 この場合、求核性のある溶媒(メタノール、水
等)中では、溶媒の付加、フツ化物イオンの脱離
を繰返し、CF3基が消失してしまう。他方、求核
性のない溶媒、塩基(例えばNaH/ジメチルホル
ムアミド)を用いた場合、カルボアニオンと末
端ジフルオロメチレンマロン酸エステルとがミ
ハエル(Michael)付加、フツ化物イオンの脱離
を生じ、次のような縮合物を生成させる。 従つてこのことから、含フツ素脂肪族マロン酸
エステルのアルキル化を行なうためには、カル
ボアニオンと末端ジフルオロメチレンマロン酸
エステルとの平衡がカルボアニオン側に存在
することが必要となる。本発明者は検討を重ねた
ところ、塩基である上に良好なフツ化物イオン供
給源であるフツ化セシウムを過剰に用いることに
よつて、上記平衡をアニオン側にし、そのアルキ
ル化が可能になることを見出した。この反応は次
のように表わせる。 ここで使用するRXは反応性の高いハロゲン化
アルキル(下記表に例示した)であることが必要
であり、反応性の低いハロゲン化アルキルを用い
るとアルキル化物は殆んど得られず、上記した縮
合物しか得られない。なお、ジグリムはジエチ
レングライコールジメチルエーテルである。 上記アルキル化反応では、CsFの使用によつて
カルボアニオン側へ平衡がずれているためにそ
のアニオンに対してRが攻撃し易くなり、アル
キル化物が容易に生成すると考えられる。 【表】 なお、上記アルキル化反応においては、CsFに
代えてKFを用いても同様にアルキル化を行なう
ことができ、また使用するRXは炭素原子数5以
下の他のアルキルハライド(例えばC2H5I)であ
つても差支えない。 次に、本発明の実施例を詳細に説明するが、以
下の実施例は本発明を限定するものではなく、そ
の技術的思想に基いて種々変形が可能である。 実施例 1 1の三ツ口フラスコにOFIB−MeOH付加体
116g(500mmol)とアセトニトリル100c.c.を入
れ、トリエチルアミン101.2g(1mol)を10〜20
℃で滴下した。約40分、室温で1時間撹拌し、四
級アミノエノラートの生成を19F NMRで確認
後、メタノール100c.c.を発熱に注意しながら氷浴
中で滴下した(約40分)。10℃前後で1時間10分
かきまぜ19F NMRでの生成が認められた
ので、水にあけ、油層を分離し、水層をジエチル
エーテルで抽出した。油層とエーテル層を一緒に
し、水による洗浄を2回行ない、硫酸マグネシウ
ムで乾燥した。エーテルを減圧下で留去後、濃硫
酸10c.c.を加え、一晩撹拌して氷の上にあけた。油
層を分離し、水層をエーテルで抽出した後、水、
飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し
た。減圧でエーテル留去後、減圧蒸留を行い、沸
点65〜66℃/10mmHgのトリフルオロメチルマロ
ン酸ジメチルCF3CH(COOCH3267.52gを収率
68%で得た。この生成物は、次の各スペクトル分
析で確認された。 IR:1755cm-1(C=O)19 F NMR:−11.1ppm(d、J=8.0Hz)1 H NMR(CCl4):4.11ppm(q、CF3−C
−)、3.83ppm(S、−OMe) 実施例 2 100mlのナス型フラスコにフツ化セシウム9.11
g(60mmol)を入れ、減圧下、200℃で2時間
乾燥した。室温に戻した後、手早くジグリム40c.c.
を加え、ガラス棒で固まつたフツ化セシウムを粉
状にし、トリフルオロメチルマロン酸ジメチル4
g(20mmol)とヨウ化メチル3.12g(22m
mol)を加えた。室温で一晩撹拌した後、水にあ
け、エーテル抽出を3回行なつた。ジグリムがエ
ーテル層から消失するまで水で4、5回洗浄し、
硫酸マグネシウムで乾燥した。減圧下でエーテル
蒸留後、減圧蒸留を行ない、沸点63〜65℃/10mm
Hgのメチル−トリフルオロメチルマロン酸ジメ
チルCF3(CH3)C(COOCH322.56gを収率60
%で得た。この生成物は、次の各スペクトル分析
で確認された。 IR:1750cm-1(C=O)19 F NMR:−7.5ppm(S)1 H NMR(CCl4):1.66ppm(S、CH3−)、
3.81ppm(S、−OMe) 実施例 3 50c.c.の三ツ口フラスコにフツ化セシウム9.11g
(60mmol)を入れ、減下、200℃で2時間乾燥し
た。室温に戻した後、手早くジグリム16c.c.を加
え、ガラス棒で固まつたフツ化セシウムを粉状に
し、臭化ベンジル3.76g(22mmol)を加えた。
三ツ口フラスコを油浴に入れ、70〜75℃でトリフ
ルオロメチルマロン酸ジメチル4g(20mmol)
とジグリム20c.c.の溶液をゆつくり滴下した。1時
間10分滴下後、1時間撹拌した後、水にあけ、前
述と同様に処理した。減圧蒸留を行ない、沸点
115〜120℃/2mmHgのベンジル−トリフルオロ
メチルマロン酸ジメチル
【式】を2.77g(収率48 %)得た。この生成物は、次のスペクトル分析で
確認された。 IR:1745cm-1(C=O)19 F NMR:−12.2ppm(S)1 H NMR(CCl4):7.29ppm(S、芳香族5H)、 3.50ppm(S、Ph−C −)、 3.73ppm(S、−OMe)
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fluoroalkyl malonic acid ester. Some compounds having a trifluoromethyl group among fluoroalkyl groups are known to exhibit biological activity. For example, trifluoromethyl malonic acid ester is believed to be useful as an intermediate in the synthesis of trifluoromethyl group-containing biologically active substances. Methods for synthesizing this ester include (1) a method in which octafluoroisobutene-methanol adduct (hereinafter referred to as OFIB-MeOH adduct) is converted into hexafluoroisobutyric acid ester with sulfuric acid, and then methanolysis is performed; (2) A known method is to convert heptafluoroisobutenyl methyl ether obtained by dehydrofluorination of an OFIB-MeOH adduct into a quaternary amino enolate using triethylamine, and then perform methanolysis. However, the above method (1) requires the reaction to be carried out in two stages and is complicated to operate.
Furthermore, although the method (2) above is easy to operate, it is known that the yield of the target product is low. The present inventors have discovered a method for easily and efficiently synthesizing fluoroalkylmalonic acid esters such as dimethyl trifluoromethylmalonate in one step by improving the method (2) above, and have invented the present invention. has been reached. That is, the method according to the invention has the general formula: (However, Rf represents a fluoroalkyl group and R represents an alkyl group.) By reacting the fluorine-containing aliphatic compound-alcohol adduct represented by the formula with a tertiary amine in a predetermined amount of an aprotic polar solvent. A quaternary ammonium enolate is produced, and then an alcohol is gradually applied to the quaternary ammonium enolate to perform alcoholysis to produce a monoester derived from the alcohol adduct, and then this ester is further converted to an alcohol. It is characterized in that a fluoroalkylmalonic acid ester represented by the general formula: RfCH(COOR) 2 (where Rf and R are the same as those described above) is obtained by reacting and then treating with a mineral acid. What should be noted in the method of the present invention is that an aprotic polar solvent is used when the alcohol acts on the quaternary ammonium enolate, and that the alcohol is not added all at once as in method (2) above. Instead, it should be added gradually over time (particularly by dropping). This makes it possible to sufficiently generate the intermediate product to be converted into the target malonic acid ester, thereby making it possible to significantly improve the yield of the target product. This method according to the present invention can be expressed, for example, by the following reaction formula when the above-mentioned OFIB-MeOH adduct is used as a starting material. This reaction may be carried out, for example, under the following conditions. First, the OFIB-MeOH adduct is treated with 2 equivalents of triethylamine in an aprotic polar solvent such as dimethylformamide, and the quaternary ammonium enolate ( 2 ) is added via heptafluoroisobutyl methyl ether ( 1 ) above.
generated in situ (without removing the solvent) and then slowly added dropwise with methanol in an ice bath. After the dropwise addition, a small amount of the monoester (as described above) is stirred at room temperature for one hour.
A ketene acetal containing 4 ) ( 3 ) above is produced. When this ketene acetal is stirred in methanol for a longer period of time, it becomes an orthoester. At this stage, it is poured into water to separate the oil layer, and when this oil layer is treated with concentrated sulfuric acid, the monoester ( 3 and 4 above) is simultaneously hydrated. It is decomposed and converted into the target dimethyl trifluoromethylmalonate ( 5 above) in high yield. In the present invention, the alcohol adduct that can be used as a starting material includes the above OFIB-MeOH
This adduct is particularly desirable because of the excellent biological activity of the trifluoromethyl group, but this OFIB-MeOH
General formulas including adducts: Any formula represented by [Formula] can be used. Rf
as CF 3 (CF 2 ) n- or (CF 3 ) 2 CF
Perfluoroalkyl group represented by ( CF2 )n-, such as CF3- , CF3CF2- , CF3 ( CF2 ) 2- ,
CF 3 (CF 2 ) 3 −, CF 3 (CF 2 ) 4 −, CF 3 (CF 2 ) 5
−, (CF 3 ) 2 CF−, (CF 3 ) 2 CFCF 2 −, (CF 3 ) 2 CF
(CF 2 ) 2 −, (CF 3 ) 2 CF(CF 2 ) 3 − may be selected. Furthermore, aromatic group - substituted fluoroalkyl groups, such as C6H5CF2- , C6H5 ( CF2 ) 2- , may also be selected. In addition to CH 3 −, the above R may also be
C 2 H 5 −, CH 3 (CH 2 ) 2 −, (CH 3 ) 2 CH−, CH 3
It may be an alkyl group having 5 or less carbon atoms, such as (CH 2 ) 3 -, CH 3 (CH 2 ) 4 -, and the like. Further, the above-mentioned tertiary amines that can be used in the present invention are those necessary for dehydrofluorination and the production of quaternary ammonium enolate as starting materials, and include, for example, trimethylamine, trimethylamine, etc. in addition to triethylamine.
Those having 12 or less carbon atoms are preferred, such as triisopropylamine, pyridine, and N.N-dimethylaniline. This number of carbon atoms defines the tertiary amine.
When expressed as R 3 N (R is an alkyl group), each R is preferably 4 or less. It has been confirmed that when a lower amine is used in place of a tertiary amine, the reaction does not proceed at all. Furthermore, an aprotic polar solvent is used to generate the coordination compound (quaternary ammonium enolate) using the tertiary amine. Preference is given to using, for example, dimethylformamide, acetonitrile, tetrahydrofuran, dimethylsulfoxide, dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoamide. This polar solvent has a large solvation energy for cations and has the effect of increasing the reaction rate of anionic reagents. In addition to the above-mentioned methanol, examples of the alcohol used to alcoholyze the quaternary ammonium enolate include aliphatic alcohols such as ethanol, propanol, isopropanol, butanol, and pentanol. In addition, mineral acids to be used to dealcoholize the intermediate product in order to obtain the target fluorine-containing aliphatic malonic acid ester include H 2 SO 4 , HCl, HNO 3 ,
H 3 PO 4 etc. can be used. As described above, according to the method of the present invention, the tertiary amine is reacted in an aprotic polar solvent and the alcohol is gradually reacted in the alcoholysis stage, so that it is converted into the target product. The desired intermediate product can be efficiently produced, and therefore, fluoroalkyl malonic acid ester can be synthesized in higher yield and more easily than in known methods. As a result of the inventor's study of this synthesized malonic acid ester, it was found that alkylation is difficult because β-fluorine is easily eliminated along with its α-hydrogen, but if a specific base is used during alkylation, It turned out that alkylation is possible. That is, for example, in the above ester 5 , the highly acidic α-hydrogen is easily eliminated by a base to form the carbanion 6 , as shown in the following formula, but this carbanion removes fluoride ions from the CF3 group. It is eliminated to form terminal difluoromethylene malonic acid ester 7 . In this case, in a nucleophilic solvent (methanol, water, etc.), addition of the solvent and desorption of fluoride ions are repeated, and the CF 3 group disappears. On the other hand, when a non-nucleophilic solvent or base (e.g. NaH/dimethylformamide) is used, the carbanion 6 and the terminal difluoromethylene malonic acid ester 7 undergo Michael addition, and the fluoride ion is eliminated. The following condensate 8 is produced. Therefore, from this, in order to alkylate the fluorine-containing aliphatic malonic ester 5 , it is necessary that an equilibrium between the carbanion 6 and the terminal difluoromethylene malonic ester 7 exists on the side of the carbanion 6 . Become. After repeated studies, the inventor of the present invention found that by using an excess of cesium fluoride, which is a base and a good source of fluoride ions, the above equilibrium is shifted to the anion side, making it possible to alkylate it. I discovered that. This reaction can be expressed as follows. The RX used here needs to be a highly reactive alkyl halide (examples shown in the table below); if a low-reactive alkyl halide is used, almost no alkylated product will be obtained, and the above-mentioned Only condensate 8 is obtained. Note that diglyme is diethylene glycol dimethyl ether. In the above alkylation reaction, the use of CsF shifts the equilibrium toward the carbanion 6 , making it easier for R to attack the anion, and it is thought that the alkylated product 9 is easily produced. [Table] In addition, in the above alkylation reaction, alkylation can be carried out in the same way by using KF instead of CsF, and RX used may be other alkyl halides having 5 or less carbon atoms (for example, C 2 H 5 I) is acceptable. Next, embodiments of the present invention will be described in detail, but the following embodiments do not limit the present invention, and various modifications can be made based on the technical idea thereof. Example 1 OFIB-MeOH adduct in the three-necked flask of 1
Add 116 g (500 mmol) and 100 c.c. of acetonitrile, and add 101.2 g (1 mol) of triethylamine for 10 to 20 minutes.
It was added dropwise at ℃. After stirring for about 40 minutes and 1 hour at room temperature, and confirming the formation of quaternary aminoenolate by 19 F NMR, 100 c.c. of methanol was added dropwise in an ice bath while being careful not to generate heat (about 40 minutes). The mixture was stirred at around 10°C for 1 hour and 10 minutes. Formation of 3 and 4 was observed by 19 F NMR, so the mixture was poured into water, the oil layer was separated, and the aqueous layer was extracted with diethyl ether. The oil and ether layers were combined, washed twice with water, and dried over magnesium sulfate. After distilling off the ether under reduced pressure, 10 c.c. of concentrated sulfuric acid was added, stirred overnight, and poured onto ice. After separating the oil layer and extracting the aqueous layer with ether, water,
It was washed with saturated brine and dried over magnesium sulfate. After distilling off the ether under reduced pressure, vacuum distillation was performed to yield 67.52 g of dimethyl trifluoromethylmalonate CF 3 CH (COOCH 3 ) 2 with a boiling point of 65-66°C/10 mmHg.
Got it at 68%. This product was confirmed by the following spectral analyses. IR: 1755cm -1 (C=O) 19 F NMR: -11.1ppm (d, J = 8.0Hz) 1 H NMR (CCl 4 ): 4.11ppm (q, CF 3 -C H
-), 3.83ppm (S, -OMe) Example 2 Cesium fluoride 9.11 in a 100ml eggplant flask
g (60 mmol) and dried under reduced pressure at 200°C for 2 hours. After returning to room temperature, quickly add 40c.c.
was added, powdered the hardened cesium fluoride with a glass rod, and dimethyl trifluoromethylmalonate 4
g (20 mmol) and 3.12 g (22 mmol) of methyl iodide
mol) was added. After stirring overnight at room temperature, the mixture was poured into water and extracted with ether three times. Wash with water 4 or 5 times until the diglyme disappears from the ether layer,
Dry with magnesium sulfate. After ether distillation under reduced pressure, vacuum distillation is performed to obtain a boiling point of 63-65℃/10mm.
Hg methyl-trifluoromethylmalonate dimethyl CF3 ( CH3 )C( COOCH3 ) 2 2.56g yield 60
Obtained in %. This product was confirmed by the following spectral analyses. IR: 1750 cm -1 (C=O) 19 F NMR: -7.5 ppm (S) 1 H NMR (CCl 4 ): 1.66 ppm (S, CH 3 -),
3.81ppm (S, -OMe) Example 3 9.11g of cesium fluoride in a 50c.c. three-necked flask
(60 mmol) was added and dried at 200°C for 2 hours under reduced pressure. After returning to room temperature, 16 c.c. of diglyme was quickly added, the solidified cesium fluoride was pulverized with a glass rod, and 3.76 g (22 mmol) of benzyl bromide was added.
Place the three-necked flask in an oil bath and add 4 g (20 mmol) of dimethyl trifluoromethylmalonate at 70-75°C.
and a solution of 20 c.c. of diglyme was slowly added dropwise. After dropping for 1 hour and 10 minutes, the mixture was stirred for 1 hour, poured into water, and treated in the same manner as described above. Perform vacuum distillation to determine the boiling point
2.77 g (yield: 48%) of dimethyl benzyl-trifluoromethylmalonate [formula] having a temperature of 115-120°C/2 mmHg was obtained. This product was confirmed by the following spectral analysis. IR: 1745 cm -1 (C=O) 19 F NMR: -12.2 ppm (S) 1 H NMR (CCl 4 ): 7.29 ppm (S, aromatic 5H), 3.50 ppm (S, Ph-C H 2 -) , 3.73ppm (S, -OMe)

Claims (1)

【特許請求の範囲】 1 一般式: (但、Rfはフルオロアルキル基、Rはアルキル基
を示す。) で表わされるフルオロアルキル化合物−アルコー
ル付加体に非プロトン性極性溶媒中で所定量の第
三級アミンを作用させることにより四級アンモニ
ウムエノラートを生成させ、次いでこの四級アン
モニウムエノラートにアルコールを徐々に作用さ
せ、加アルコール分解を行なうことによりそのア
ルコール付加体から誘導されるモノエステルを生
成させ、次いでこのエステルを更にアルコールと
反応させてから鉱酸で処理することにより、 一般式: RfCH(COOR)2 (但、Rf及びRは前記したものと同じ。) で表わされるフルオロアルキルマロン酸エステル
を得ることを特徴とするフルオロアルキルマロン
酸エステルの製造方法。 2 RfがCF3からなつている、特許請求の範囲の
第1項に記載した方法。 3 Rが炭素原子数5以下のアルキル基からなつ
ている、特許請求の範囲の第1項又は第2項に記
載した方法。 4 炭素原子数12以下の第三級アミンを二当量作
用させる、特許請求の範囲の第1項〜第3項のい
ずれか1項に記載した方法。 5 非プロトン性極性溶媒として、ジメチルホル
ムアミド、アセトニトリル、テトラヒドロフラ
ン、ジメチルスルホキシド、ジメチルアセトアミ
ド、N−メチルピロリドン、ヘキサメチルホスホ
アミド、を作用させる、特許請求の範囲の第1項
〜第4項のいずれか1項に記載した方法。
[Claims] 1. General formula: (However, Rf is a fluoroalkyl group, and R is an alkyl group.) By reacting the fluoroalkyl compound-alcohol adduct represented by the formula with a predetermined amount of tertiary amine in an aprotic polar solvent, quaternary ammonium An enolate is produced, and then this quaternary ammonium enolate is gradually treated with an alcohol to perform alcoholysis to produce a monoester derived from the alcohol adduct, and then this ester is further reacted with an alcohol. A fluoroalkylmalonic acid characterized in that a fluoroalkylmalonic acid ester represented by the general formula: RfCH(COOR) 2 (wherein Rf and R are the same as above) is obtained by treating with a mineral acid. Method for producing esters. 2. The method according to claim 1, wherein Rf consists of CF3 . 3. The method according to claim 1 or 2, wherein R is an alkyl group having 5 or less carbon atoms. 4. The method according to any one of claims 1 to 3, wherein two equivalents of a tertiary amine having 12 or less carbon atoms are applied. 5. Any one of claims 1 to 4, in which dimethylformamide, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoamide is allowed to act as the aprotic polar solvent. The method described in Section 1.
JP15543981A 1981-09-30 1981-09-30 Preparation of fluoroalkylmalonic ester Granted JPS5857340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15543981A JPS5857340A (en) 1981-09-30 1981-09-30 Preparation of fluoroalkylmalonic ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15543981A JPS5857340A (en) 1981-09-30 1981-09-30 Preparation of fluoroalkylmalonic ester

Publications (2)

Publication Number Publication Date
JPS5857340A JPS5857340A (en) 1983-04-05
JPS6213941B2 true JPS6213941B2 (en) 1987-03-30

Family

ID=15606051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15543981A Granted JPS5857340A (en) 1981-09-30 1981-09-30 Preparation of fluoroalkylmalonic ester

Country Status (1)

Country Link
JP (1) JPS5857340A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849194B2 (en) 2000-11-17 2005-02-01 Pcbu Services, Inc. Methods for preparing ethers, ether compositions, fluoroether fire extinguishing systems, mixtures and methods

Also Published As

Publication number Publication date
JPS5857340A (en) 1983-04-05

Similar Documents

Publication Publication Date Title
EP0103233B1 (en) A method to trap the enolate ion of the malonic acid or its derivatives
KR20050044671A (en) Methods for preparing o-desmethylvenlafaxine
JPS6252731B2 (en)
JP5200464B2 (en) Process for producing fluorine-containing alkylsulfonylaminoethyl α-substituted acrylates
JP2014508725A (en) Preparation of perfluorovinyl ether sulfinic acid and its salts
US5532411A (en) Production of carboxylic acid halides and carboxylate salts
EP0645365B1 (en) Process for producing 2-fluoroisobutyric acid or ester thereof
JP2609480B2 (en) Method for producing α-fluoroacryloyl derivative
JPS6213941B2 (en)
JP2667022B2 (en) Process for producing 0-hydroxyalkylated derivative of 1,1-dihydroperfluoroalcohol
US4210611A (en) Halogenated hydrocarbons, useful as insecticide intermediates, and methods for their preparation
JP4467890B2 (en) Chloromethylation of thiophene
JPS60336B2 (en) Production method of ester
JPH083085A (en) Preparation of fluorinated alcohol
JP2663125B2 (en) Method for producing 2,3,5,6-tetrafluorobenzonitrile
CN106748670B (en) Ether bond-containing fluoroalcohol and preparation method thereof
JPH05155826A (en) Preparation of 1-alkoxy-2-dialkylaminoethane
EP0010856B1 (en) Halogenated hydrocarbons and a method for their preparation
CA1326042C (en) Esters of arylbisperfluoroalkylcarbinols, and a process for the preparation of these compounds and the underlying arylbisperfluoroalkylcarbinols
CN111333500A (en) Preparation method of fluorine-containing binary acyl fluoride
JP3142025B2 (en) Fluorination method
JP3149537B2 (en) Method for producing 1H-perfluoroalkane
JPS6034941B2 (en) Production method of fluoromalonate ester
WO2015177179A1 (en) Improved process for preparing substituted crotonic acids
JP2617017B2 (en) How to reduce sorbic acid