JPS62139084A - Picture processor - Google Patents

Picture processor

Info

Publication number
JPS62139084A
JPS62139084A JP60281624A JP28162485A JPS62139084A JP S62139084 A JPS62139084 A JP S62139084A JP 60281624 A JP60281624 A JP 60281624A JP 28162485 A JP28162485 A JP 28162485A JP S62139084 A JPS62139084 A JP S62139084A
Authority
JP
Japan
Prior art keywords
address
picture
pixel
image
picture element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60281624A
Other languages
Japanese (ja)
Inventor
Miyuki Enokida
幸 榎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60281624A priority Critical patent/JPS62139084A/en
Priority to US06/902,320 priority patent/US4850028A/en
Priority to DE19863629984 priority patent/DE3629984A1/en
Publication of JPS62139084A publication Critical patent/JPS62139084A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high definition picture by adding a circuit which generates the address of an output start picture element in a picture processing device which performs the rotation of a picture accompanies by a magnification and a reduction. CONSTITUTION:An X address and a Y address of the output start picture element are set respectively at an X address register 50 and a Y address register 54. Also, at an increment register 51, tan theta (theta represents a rotating angle) is set. Next, by inputting a picture element clock to a synchronizing signal 56, an address centering each picture element in a line 21 to approximate the straight line of a result picture from the output start picture element in a main scanning direction can be found. The address centering the output picture element is found one by one, and simultaneously, a dot in an original picture corresponding to each address of the output picture element is found, and a picture element data is found from the dot. In this way, the high definition picture can be obtained.

Description

【発明の詳細な説明】 (分野〉 本発明はデジタル画像処理装置、特に画像の拡大・縮小
を伴う回転を行う画像処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field) The present invention relates to a digital image processing device, and particularly to an image processing device that rotates an image while enlarging and reducing the image.

〈従来技術〉 従来、この種の装置は第2図に示すように元画像を原点
を中心として30’の回転を行った場合、結果画像の出
力画素の開始点は元画像の副走査方向の直線15上の画
素中心であり、結果画像の副走査方向の直線14までは
元画像の画素データとし、直線14から直線17まで結
果画像の画素データを書くとか、結果画像の出力開始点
の画素中心12.13のアドレスを複雑な計算式を使っ
て求めていた。従ってカラー画像処理等の高い画質や高
速性が要求されるような処理装置に適用すると、複雑な
計算を行うと時間がかかったり、/\−ドウエアで実現
すると、ハードウェアの規模が大きくなったり、ある領
域には同じ画素データを害〈と画質が劣化するという欠
点があった。
<Prior art> Conventionally, in this type of device, when the original image is rotated by 30' around the origin as shown in Fig. 2, the starting point of the output pixel of the resultant image is at the sub-scanning direction of the original image. It is the pixel center on the straight line 15, and the pixel data of the original image is used up to the straight line 14 in the sub-scanning direction of the result image, and the pixel data of the result image is written from the straight line 14 to the straight line 17, or the pixel at the output start point of the result image is written. The address of center 12.13 was calculated using a complicated calculation formula. Therefore, if it is applied to a processing device that requires high image quality and high speed, such as color image processing, it will take time to perform complex calculations, and if it is implemented using hardware, the scale of the hardware will increase. However, there was a drawback that the same pixel data was damaged in certain areas, resulting in deterioration of image quality.

〈目的〉 本発明は前述従来例の欠点を除去すると同時に、任意倍
率の拡大・縮小を伴う任意角の回転の操作を入力画像の
副走査同期させながら処理できると同時に画質の劣化を
起こさない画像処理装置を提供することを目的としてい
る。
<Objective> The present invention eliminates the drawbacks of the conventional example described above, and at the same time, it is possible to process rotation operations at arbitrary angles accompanied by enlargement/reduction at arbitrary magnifications while synchronizing the sub-scanning of the input image, and at the same time, to produce an image that does not cause deterioration in image quality. The purpose is to provide processing equipment.

〈実施例〉 本発明の主題は、結果デジタル画像の出力画素の座標が
小数点を含む無理数になる場合、すなわち元デジタル画
像の任意倍率の拡大・縮小を伴う任、?!角の回転処理
における結果デジタル画像の出力画素のアドレスを元デ
ジタル画像の入力タイミングに合わせる、すなわち、元
デジタル画像の入力における副走査方向の同期に合わせ
て求めることにある。結果デジタル画像の出力画素のア
ドレスを求める方法はいくつも考えられるが、実施例で
は、まずデジタル微分解析法を用いて、結果デジタル画
像の副走査方向の直線から出力画素のアドレスまでの距
離を最小とする出力画素のアドレスを求め、ここで求め
た出力画素のアドレスを初期値とするデジタル微分解析
法を用いて、結果デジタル画像の主走査方向の直線のア
ドレスを求める。以下図を用いて説明するが、説明のた
めの実施例では筒中なために平面の等倍な原点を中心と
する角度30’の回転を考える。第3図は第2図の原点
の回りを拡大したものである0図中の丸印は画素中心を
、二屯丸印23,24.25はそれぞれのラスタ20.
21.22の開始画素中心を示している。
<Embodiment> The subject matter of the present invention is when the coordinates of the output pixel of the resulting digital image become an irrational number including a decimal point, that is, when the coordinates of the output pixel of the resultant digital image become an irrational number including a decimal point. ! The aim is to match the address of the output pixel of the resulting digital image in corner rotation processing with the input timing of the original digital image, that is, to find it in synchronization with the synchronization in the sub-scanning direction of the input of the original digital image. There are many ways to determine the address of the output pixel of the resulting digital image, but in this example, we first use digital differential analysis to minimize the distance from the straight line in the sub-scanning direction of the resulting digital image to the address of the output pixel. The address of the output pixel is determined, and the address of the straight line in the main scanning direction of the resulting digital image is determined using the digital differential analysis method using the address of the output pixel determined here as the initial value. As will be explained below with reference to the drawings, since the explanatory embodiment is in a cylinder, rotation by an angle of 30' around the origin of the same size of the plane will be considered. FIG. 3 is an enlarged view of the area around the origin of FIG. 2. The circles in FIG.
The starting pixel center of 21.22 is shown.

開始画素中心のアドレスを求める概念図を第4図に示す
0図中の36は第3図の結果画像の副走査方向の直線を
表わしている。また図中のθは今回の実施例が30°の
回転であるので30″である。また33.34はそれぞ
れ画素中心が30から31、あるいは32へ移動した時
の直線36からの距離を示している。この距離を加減算
しながら、第3図の直線26に一番近い、それぞれのラ
スク上での画素中心のアドレスが第3図の線27であり
、これらアドレスを求める実施例を第1因に示す。
A conceptual diagram for determining the address of the center of the starting pixel is shown in FIG. 4. Reference numeral 36 in FIG. 0 represents a straight line in the sub-scanning direction of the resultant image shown in FIG. Also, θ in the figure is 30'' because the rotation is 30 degrees in this example. Also, 33 and 34 indicate the distance from the straight line 36 when the pixel center moves from 30 to 31 or 32, respectively. While adding and subtracting this distance, the address of the pixel center on each rask that is closest to the straight line 26 in FIG. 3 is the line 27 in FIG. The reason is shown below.

実施例の説明では第3図の開始画素24のアドレスを求
める時の処理を示す、第1図のラッチ42には1本前の
ラスタ第2図ではラスタ20の開始画素23の次の画素
中心28のY軸方向のアドレスの増分値Oが、増分レジ
スタl、45には第4図の33すなわちco530°=
 o、 8660が、増分レジスタ2.43には第4図
の34すなわち一5in30’=−0,5が結果レジス
タ48には、1つ前のラスタの開始画素から結果画像の
副走査方向の直線、第3図では開始画素23から直線2
6までの距SOが、第1図には図示していない装置によ
って、ハードウェア的に、またはソフトウェア的に計算
されてセットされているものとする。40の比較器1で
は、48の結果レジスタが0以下か否かを判断する。そ
の時の結果を41の比較器2に渡し、41では結果レジ
スタ48の値がO以下の時にラッチ42がOか否かを判
断する。これらの信号を選択器46へ渡し、46では4
8の値がOより大きな値の時は4ρの増分レジスタ2の
値、−〇、5を48の値が0以下でかつ、42の値が1
の時は45の増分レジスタlの値0.8660を、48
の値がO以下でかつ42の値が0の時は43と45の和
、0.366を選択し結果レジスタ48に足しこむと同
時に上記3種の状態を49から信号で出し、第4図には
図示されていない装・置によって、48の値が0よりも
大きい時は開始画素のY軸のアドレスから1を引き、4
8の値がO以下でかつ42の値が1のときは開始画素の
X軸のアドレスに1を加え、48の値がO以下でかつ4
2の値がOの時は開始画素のX軸のアドレスに1を加え
、Y軸のアドレスから1を引くという処理をハードウェ
ア的にまたはソフトウェア的に行うことによって、それ
ぞれのラスク上での開始画素のアドレスを求めるもので
ある。
In the explanation of the embodiment, the process for determining the address of the start pixel 24 in FIG. 3 will be described. The latch 42 in FIG. The increment value O of the address in the Y-axis direction of 28 is stored in the increment register l, 45 as 33 in FIG. 4, that is, co530°=
o, 8660 is stored in the increment register 2.43, and 34 in FIG. , in Figure 3, the straight line 2 starts from the starting pixel 23.
It is assumed that the distance SO up to 6 has been calculated and set by a device not shown in FIG. 1 using hardware or software. The comparator 1 at 40 determines whether the result register at 48 is less than or equal to 0. The result at that time is passed to the comparator 2 at 41, and when the value in the result register 48 is less than or equal to O, it is determined whether the latch 42 is at O or not. These signals are passed to the selector 46, which passes the 4
When the value of 8 is greater than O, the value of increment register 2 of 4ρ is -0, 5, and the value of 48 is less than 0 and the value of 42 is 1.
In this case, the value of the increment register l of 45 is 0.8660, and the value of 48
When the value of is less than O and the value of 42 is 0, the sum of 43 and 45, 0.366, is selected and added to the result register 48, and at the same time, the above three states are sent out as a signal from 49, as shown in FIG. When the value of 48 is greater than 0, 1 is subtracted from the Y-axis address of the starting pixel and
If the value of 8 is below O and the value of 42 is 1, add 1 to the X-axis address of the start pixel, and if the value of 48 is below O and 4
When the value of 2 is O, the start pixel on each raster can be set by adding 1 to the X-axis address of the start pixel and subtracting 1 from the Y-axis address using hardware or software. This is to find the pixel address.

この回路は加算器、比較器と選択器で構成されているた
め1回路コストの低下と充分に速いスピードを得ること
出来る。
Since this circuit is composed of an adder, a comparator, and a selector, it is possible to reduce the cost per circuit and achieve sufficiently high speed.

次に上記で求めた出力開始画素のX、Yアドレスをそれ
ぞれ第5図のXアドレスレジスタ50とYアドレスレジ
スタ54に、増分レジスタ51にはj an30°=0
.57735という値を、第5図には図示していない装
置により。
Next, the X and Y addresses of the output start pixel determined above are respectively stored in the X address register 50 and Y address register 54 in FIG. 5, and j an30°=0 is stored in the increment register 51.
.. 57735 by a device not shown in FIG.

ハードウェア的に、あるいはソフトウェア的にセットさ
れた後、同期信号56に画素クロックを入れることによ
り、第3図に示しであるように出力開始画素からの結果
画像の主走査方向の直線を近似するための線、21のそ
れぞれの画素中心のアドレスを求めることが出来る。
After being set by hardware or software, by inputting a pixel clock to the synchronization signal 56, a straight line in the main scanning direction of the resultant image from the output start pixel is approximated as shown in FIG. The address of each pixel center of the line 21 can be found.

それら、出力画素中心の1つ1つのアドレスを求めると
同時に第5図には図示していない装置によって、それら
出力画素の1つ1つのアドレスに対応する元画像での点
を求め、その点から出力画素の画素データを求めるとい
う処理をハードウェア的に、あるいはソフトウェア的に
行う。
At the same time as calculating the addresses of each of the output pixel centers, the points in the original image corresponding to the addresses of each of these output pixels are calculated using a device not shown in FIG. The process of obtaining pixel data of output pixels is performed using hardware or software.

前記実施例では結果画像の出力開始画素のアドレスを求
めるために2つの増分値を選択して足し込みながら結果
画像の副走査方向の直線からの距離を計算し、その距離
を最小とするように開始画素のアドレスを求めたが。
In the above embodiment, in order to obtain the address of the output start pixel of the result image, the distance from the straight line in the sub-scanning direction of the result image is calculated by selecting and adding two increment values, and the distance is minimized. I asked for the address of the starting pixel.

j an(+=÷十省十告+−−−−−−−a、b、c
は整数 −−−−−−(2)というようにtanOの値
が分母を整数1分子を1とする分数の和で表わされるこ
とを利用して、たとえばθ=300の時は tan30・−111 −7丁1 Y丁τ了 −(1) と表わされる。この式を用いて開始画素のアドレスを求
める時の概念図を第6図に示す、第6図は結果画像の4
本目のラスタの開始画素のアドレスを求める時のもので
ある。垂線64の原点から4番目の点61と原点60か
らの65の角度が30’の三角形を考え頂点62のX軸
のアドレスを式(1)の分母の値から L4/2J + L4/13J + L4/2341J =2 L 」は切りすての記号 次に61.62を頂点とじ66の角度が30’となる頂
点63のY軸のアドレスを同様に求めると、 L2/2J  +  L2/13J +  L2/2341J  =  1 となり開始画素63のX、Yアドレスを求めることが出
来る。この方式で求めた開始画素の例を第7図に示す0
図中の丸印がそれぞれのラスタでの開始画素である。
j an(+= ÷ 10 min.
is an integer ------- (2) Using the fact that the value of tanO is expressed as the sum of fractions where the denominator is an integer and the numerator is 1, for example, when θ = 300, tan30・-111 It is expressed as -7-cho 1 Y-cho τryo -(1). Figure 6 shows a conceptual diagram when calculating the address of the starting pixel using this formula.
This is used to find the address of the start pixel of the main raster. Considering a triangle where the angle between the fourth point 61 from the origin of the perpendicular line 64 and the angle 65 from the origin 60 is 30', calculate the address of the X axis of the vertex 62 from the denominator value of equation (1) as L4/2J + L4/13J + L4/2341J = 2 L'' is the symbol to be cut off. Next, 61.62 is closed at the apex and the Y-axis address of the apex 63 where the angle of 66 is 30' is found in the same manner as L2/2J + L2/13J + L2/2341J = 1, and the X and Y addresses of the starting pixel 63 can be found. An example of the starting pixel obtained using this method is shown in Figure 7.
The circles in the figure are the starting pixels of each raster.

よって任意の角度に対する式(2)の分母の値a、b、
c・・・をメモリ上に覚えておくことによって、任意の
角度の回転に対応することができる。また分数の精度す
なわち分母の値は回転を許す大きさによって決めること
ができる。たとえばA4の用紙L6Pelに対応するも
のであれば、分母の値は4752までで良い。
Therefore, the denominator values of equation (2) for any angle are a, b,
By memorizing c... in memory, rotation of any angle can be handled. Furthermore, the precision of the fraction, that is, the value of the denominator, can be determined by the amount of rotation allowed. For example, if it corresponds to A4 paper L6Pel, the denominator value may be up to 4752.

〈効果〉 以上説明したように、出力開始画素のアドレスを生成す
る回路を持つ画像処理装置を付加することにより、高品
位な画像を入力画像データに同期させて処理することを
容易にする効果がある。
<Effect> As explained above, by adding an image processing device that has a circuit that generates the address of the output start pixel, it is possible to easily process high-quality images in synchronization with input image data. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は開始画素のアドレスを求める実施例の回路図、
第2図は平面の原点を中心とする30’の回転の説明図
、第3図は開始画素の軌跡の拡大図、第4図は開始画素
のアドレスを求める概念図、第5図は結果画像の主走査
方向の直線を求める実施例の回路図、第6図は開始画素
のアドレスを求める概念図、第7図は第6図の概念によ
って求めた開始画素の軌跡を示す図である。 躬2図
FIG. 1 is a circuit diagram of an embodiment for determining the address of a starting pixel;
Figure 2 is an explanatory diagram of a rotation of 30' around the origin of the plane, Figure 3 is an enlarged view of the locus of the starting pixel, Figure 4 is a conceptual diagram for determining the address of the starting pixel, and Figure 5 is the resulting image. FIG. 6 is a conceptual diagram of determining the address of the starting pixel, and FIG. 7 is a diagram showing the locus of the starting pixel determined based on the concept of FIG. 6. 2 drawings

Claims (3)

【特許請求の範囲】[Claims] (1)拡大・縮小を伴う画像の回転を行う画像処理装置
において、回転する角度によって一意に決まるような、
回転後の画像の主走査方向の直線を求める手段を有する
画像処理装置。
(1) In an image processing device that rotates an image while enlarging/reducing it, an image that is uniquely determined by the rotation angle,
An image processing device having means for determining a straight line in the main scanning direction of an image after rotation.
(2)第1項において求められた直線上の画素中心のア
ドレスの中からその直線上での出力開始画素を入力画像
の副走査に同期して求めることを特徴とする画像処理装
置。
(2) An image processing apparatus characterized in that an output start pixel on a straight line is determined from among the addresses of the centers of pixels on the straight line determined in the first item in synchronization with sub-scanning of the input image.
(3)第1項において求められた直線上の1つ1つの画
素中心の画素データを入力画像から求めることを特徴と
する画像処理装置。
(3) An image processing device characterized in that pixel data at the center of each pixel on the straight line determined in the first item is determined from an input image.
JP60281624A 1985-09-04 1985-12-13 Picture processor Pending JPS62139084A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60281624A JPS62139084A (en) 1985-12-13 1985-12-13 Picture processor
US06/902,320 US4850028A (en) 1985-09-04 1986-08-29 Image processing method and apparatus therefor
DE19863629984 DE3629984A1 (en) 1985-09-04 1986-09-03 IMAGE PROCESSING METHOD AND DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60281624A JPS62139084A (en) 1985-12-13 1985-12-13 Picture processor

Publications (1)

Publication Number Publication Date
JPS62139084A true JPS62139084A (en) 1987-06-22

Family

ID=17641714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60281624A Pending JPS62139084A (en) 1985-09-04 1985-12-13 Picture processor

Country Status (1)

Country Link
JP (1) JPS62139084A (en)

Similar Documents

Publication Publication Date Title
US5694486A (en) Image processing apparatus and method for designating one of a plurality of operating modes
US6996290B2 (en) Binding curvature correction
US4837847A (en) Image processing apparatus
US5293235A (en) Method and device for bordering, in digital optical image formation, a subject incrusted on a background
CN114355467A (en) Detection model establishment and multi-image-based track foreign matter detection method
JPS62139084A (en) Picture processor
JPH08237486A (en) Method for smoothing character in scanner/printer
JPH09120450A (en) Image processor
JPH09135331A (en) Image processor
JPS62139085A (en) Picture processor
JP2000298729A (en) Two-dimensional image generation device
JPH03148773A (en) Monochromatic brush-type color mixing processing system
JPS61117668A (en) System for picture data transfer processing
JPS63104187A (en) Area specification system
JPS6366678A (en) Image processor
JPS62128374A (en) Picture processing method
JP2957050B2 (en) Image data enlarger
JPS63241625A (en) Line drawing input device
JP2532596B2 (en) Fluoroscopic image display device
JPS6248869A (en) Picture signal processor
JPS63126077A (en) Information processor
JPS6177985A (en) Image information recording system
JP2002271633A (en) Image processor
JPH08107493A (en) Image processing unit
JPS62139082A (en) Image processing device