JPS62138323A - New method for purifying caustic potash - Google Patents

New method for purifying caustic potash

Info

Publication number
JPS62138323A
JPS62138323A JP27787785A JP27787785A JPS62138323A JP S62138323 A JPS62138323 A JP S62138323A JP 27787785 A JP27787785 A JP 27787785A JP 27787785 A JP27787785 A JP 27787785A JP S62138323 A JPS62138323 A JP S62138323A
Authority
JP
Japan
Prior art keywords
glycol
complex
koh
caustic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27787785A
Other languages
Japanese (ja)
Inventor
Yasunoshin Fukuma
福間 康之臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP27787785A priority Critical patent/JPS62138323A/en
Publication of JPS62138323A publication Critical patent/JPS62138323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To easily collect a KOH aq. soln. purified in high purity from an under phase by bringing glycol into contact with a high-concn. KOH aq. soln. and separating a complex incorporated with KOH and water and adding water to this complex to phase-separate the mixture. CONSTITUTION:Glycol especially preferably 1,6-hexanediol or hexylene glycol is brought into contact with 40-60wt% especially 45-57wt% high-concn. KOH aq. soln. This contact is performed at 15-70 deg.C and when m.p. of glycol is higher than room temp., it is performed at m.p. and above. Thereby a complex incorporated with glycol series complex wherein KOH and water are incorporated therein is deposited as crystal. Then after separating this complex by an ordinary solid-liquid separation operation, this complex is decomposed by adding water of proper amount thereto and, if necessary, heating it at about 40-100 deg.C. A purified KOH aq. soln. of an under phase is separated from glycol of an upper phase and recovered. As a result, high-purity KOH can be collected by a process of less energy consumption unnecessitating energy used is distillation or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、苛性カリの精製法に関する。さらに詳しくは
、グリコールが苛性カリと水とを取り込んでなるグリコ
ール系苛性カリ取り込み錯体を生成する現象を利用した
苛性カリの精製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for purifying caustic potash. More specifically, the present invention relates to a method for purifying caustic potash that utilizes a phenomenon in which glycol incorporates caustic potash and water to form a glycol-based caustic potash uptake complex.

例えば、塩化カリの電気分解によって得られる苛性カリ
水溶液を対象とした場合、苛性カリのみを選択的に取り
込ゐ、塩化カリ、鉄、炭酸カリウム等は取り込まれない
ので、苛性カリの精製に利用できる。
For example, when using a caustic potassium aqueous solution obtained by electrolysis of potassium chloride, only caustic potassium is selectively taken in, and potassium chloride, iron, potassium carbonate, etc. are not taken in, so it can be used to purify caustic potassium.

(従来の技術) 化学工業において重要な苛性カリは1、一般に塩化カリ
の電気分解によって製造される。これには、水銀法、隔
膜法の2通りがある。水銀法は排水系の微量水銀が環境
上問題となっているが、苛性カリは、反応触媒等の分野
で高純度を要求されるため、高純度品が得易い水銀法が
主流である。しかしながら、水銀法における苛性カリと
いえども、純度的に満足できるものではない。従来、石
灰乳を用いたり、低級アルコールを用いたりして、不純
分を沈殿させて除くことが検討されているが、その効果
は十分なものとけ言えない。いまだ苛性カリの工業的な
超高純度化技術は確立されていない。
(Prior Art) Caustic potash, which is important in the chemical industry, is generally produced by electrolysis of potassium chloride. There are two methods for this: the mercury method and the diaphragm method. In the mercury method, trace amounts of mercury in the wastewater system pose an environmental problem, but caustic potash requires high purity in fields such as reaction catalysts, so the mercury method is the mainstream because it is easy to obtain high-purity products. However, even the caustic potash used in the mercury method is not satisfactory in terms of purity. Conventionally, attempts have been made to use milk of lime or lower alcohols to precipitate and remove impurities, but these methods cannot be said to be sufficiently effective. Industrial ultra-high purification technology for caustic potash has not yet been established.

(発明が解決しようとする問題点) 上記のように、苛性カリニ業において、高純度の苛性カ
リが容易に製造できるならば、その意義は極めて大きい
ものとなる。
(Problems to be Solved by the Invention) As mentioned above, in the caustic potash industry, if high purity caustic potash could be easily produced, it would be extremely significant.

(問題点を解決するための手段および作用)本発明者は
、従来の技術で純度的に困難であった苛性カリの工業的
精製法につき鋭意研究し、特に高濃度の苛性カリとグリ
コールの挙動を鋭意研究の結果、グリコールが苛性カリ
と水とを取り込んだ結晶である新しいグリコール系苛性
カリ取り込み錯体に、適量の水を加え、場合により加熱
することにより、グリコールと苛性カリ水浴液に相分離
し、下相から容易に精製された苛性カリを取得すること
ができることを知見した。これらの知見に基き、本発明
はなされたものである。
(Means and effects for solving the problem) The present inventor has conducted extensive research into industrial purification methods for caustic potash, which has been difficult to achieve purity using conventional techniques, and has particularly focused on the behavior of high concentrations of caustic potash and glycol. As a result of research, it was found that by adding an appropriate amount of water to a new glycol-based caustic potassium uptake complex, which is a crystal in which glycol incorporates caustic potassium and water, and optionally heating, the glycol and caustic potassium water bath liquid phase separate, and the lower phase It has been found that purified caustic potash can be easily obtained. The present invention has been made based on these findings.

すなわち、本発明によれば、グリコールを単に高濃度の
苛性カリ水溶液と接触させるだけで、グリコールが苛性
カリと水とを取り込んでなるグリコール系苛性カリ取り
込み錯体が生成する。この時、苛性カリ水溶液中の不純
物は錯体に取り込まれないので、精製が行なわれる。本
発明者は、高濃度の苛性カリ水溶液と反応して、苛性カ
リを取り込む物質について研究した結果、特定のグリコ
ールが苛性カリを取り込むことを知見した。例えハ、1
.2−フロピレンゲリコール、ネオペンチルクリコール
、1.6−ヘキサンジオール、ヘキシレングリコールが
挙げられる。この中で特に好ましいのu、1.6−ヘキ
サンジオールとヘキシレングリコールである。
That is, according to the present invention, simply by bringing glycol into contact with a highly concentrated caustic potassium aqueous solution, a glycol-based caustic potassium uptake complex in which glycol incorporates caustic potassium and water is generated. At this time, impurities in the caustic potassium aqueous solution are not incorporated into the complex, so purification is performed. As a result of research into substances that react with a highly concentrated caustic potassium aqueous solution and take in caustic potash, the present inventor found that certain glycols take in caustic potash. For example, 1
.. Examples include 2-furopylene gelicol, neopentyl glycol, 1,6-hexanediol, and hexylene glycol. Among these, particularly preferred are u, 1,6-hexanediol and hexylene glycol.

本発明に使用する苛性カリ水溶液の@度は40〜60重
量係、特に好ましくは45〜57重量係である。グリコ
ールと高濃度苛性カリ水浴液の接触方法は、通常の攪拌
で十分である。反応温度は臨界的ではなく、15〜70
Cでよいが、グリコールの融点が室温よりも高い時はス
応は融点以上で行なう。反応時間は1分〜数時間位、圧
力は大気圧でよい。
The degree of caustic potassium aqueous solution used in the present invention is 40 to 60% by weight, particularly preferably 45 to 57% by weight. As for the contact method of the glycol and the high concentration caustic potassium water bath, normal stirring is sufficient. The reaction temperature is not critical, 15-70
C may be used, but when the melting point of the glycol is higher than room temperature, the reaction is carried out above the melting point. The reaction time may be about 1 minute to several hours, and the pressure may be atmospheric pressure.

上記のように苛性カリの取り込み反応を行うと、本発明
の苛性カリと水とを取り込んだグリコール系苛性カリ取
り込み錯体が結晶として析出してくる。この際、苛性カ
リ水溶液中の不純物である食塩、炭酸カリ等は、該錯体
には取り込まれない。
When the caustic potassium uptake reaction is carried out as described above, the glycol-based caustic potassium uptake complex of the present invention incorporating caustic potassium and water is precipitated as crystals. At this time, impurities such as common salt and potassium carbonate in the caustic potassium aqueous solution are not incorporated into the complex.

かくして、グリコールを高濃度の苛性カリ水溶液と接触
させ、苛性カリと水とを取り込んでなるグリコール系苛
性カリ取り込み錯体が生成する。
In this way, glycol is brought into contact with a highly concentrated aqueous solution of caustic potassium, and a glycol-based caustic potassium uptake complex that incorporates caustic potassium and water is produced.

上述のようにして得られる本発明のグリコール系苛性カ
リ取り込み錯体の組成は、次式で表わせる。
The composition of the glycol-based caustic potassium uptake complex of the present invention obtained as described above can be expressed by the following formula.

グリ:l−ルー (KOH)x・(HtO)yここで、
x 、 yFiモル比を示し、反応条件により変るが、
一般に0.5≦X≦10.1≦Y≦15である。
Gri: l-ru (KOH)x・(HtO)y where,
x, yFi molar ratio is shown, which varies depending on the reaction conditions,
Generally, 0.5≦X≦10.1≦Y≦15.

本発明によれば、グリコールを高濃度の苛性カリ水溶液
と接触させ、生成したグリコール系苛性カリ取り込み錯
体を水溶液系から分離し、分離した錯体に水を加え、グ
リコールと苛性カリ水浴液とに相分離させ、下相から精
製された苛性カリ水溶液を取得することを特徴とする苛
性カリの精製法が提供される。錯体の水溶液系からの分
離は、通常の固液分離操作、例えば、濾過とか遠心分離
により充分目的は達せられる。
According to the present invention, glycol is brought into contact with a highly concentrated caustic potassium aqueous solution, the generated glycol-based caustic potassium uptake complex is separated from the aqueous solution system, water is added to the separated complex, and the glycol and the caustic potassium water bath liquid are phase-separated, A method for purifying caustic potash is provided, which is characterized in that a purified aqueous caustic potash solution is obtained from the lower phase. The purpose of separating the complex from the aqueous solution system can be sufficiently achieved by conventional solid-liquid separation operations such as filtration and centrifugation.

水溶液系から分離取得した錯体は、適量の水を加えるこ
とで容易に分解する。もし、水の量が不足であれば、必
要に応じ40〜1000位に加熱することにより、該錯
体は分解する。分解した該錯体は、2相に分かれる。上
相にはグリコールが、下相には精製された苛性カリ水溶
液が移行する。
The complex separated and obtained from an aqueous solution is easily decomposed by adding an appropriate amount of water. If the amount of water is insufficient, the complex is decomposed by heating to about 40 to 1,000 degrees Celsius, if necessary. The decomposed complex separates into two phases. Glycol is transferred to the upper phase, and purified aqueous caustic potassium solution is transferred to the lower phase.

上相のグリコールは再使用に付され、下相から精製され
た苛性カリ水溶液が取得される。水を加えて錯体を分解
する方法においては、1.6−ヘキサンジオールおよび
ヘキシレングリコールより低級のグリコールは、水を加
えても相分離を起こさず、均一な浴液になり、苛性カリ
との分離ができない。
The glycol in the upper phase is reused, and the purified aqueous caustic potassium solution is obtained from the lower phase. In the method of decomposing the complex by adding water, glycols lower than 1,6-hexanediol and hexylene glycol do not cause phase separation even when water is added, forming a homogeneous bath liquid, and separating them from caustic potash. I can't.

このような低級グリコールの場合は、減圧加熱処理でグ
リコールを除くのが望ましい。
In the case of such lower glycols, it is desirable to remove the glycol by heat treatment under reduced pressure.

(発明の効果) 上記のようだ、本発明の新規な苛性ソーダ取り込み錯体
を生成することにより、苛性カリ水溶液から苛性カリを
選択的に取り込むことができ、この際、苛性カリの精製
を行うことができる。また、この錯体ば、水を加えるこ
とにより簡単に分解でき、蒸留等のエネルギーを必要と
しない省エネルギープロセスで、高純度の苛性カリを取
得できる。
(Effects of the Invention) As described above, by producing the novel caustic soda uptake complex of the present invention, caustic potash can be selectively taken in from a caustic potash aqueous solution, and at this time, caustic potash can be purified. Furthermore, this complex can be easily decomposed by adding water, and highly pure caustic potash can be obtained through an energy-saving process that does not require energy such as distillation.

(実施例) 実施例1 3tのガラス製フラスコに54%KOH水溶液1000
S’を入れ、約50Cに加温する。これに、あらかじめ
加熱溶融した1、6−ヘキサンジオール2002を攪拌
しながら添加した。添加終了後3時間してから、反応液
全部を遠心分離機にかけ、析出した結晶を取得し友。取
得量は462)であった。この結晶およびP液の組成を
表1に示す。
(Example) Example 1 54% KOH aqueous solution 1000ml in a 3t glass flask
Add S' and heat to about 50C. To this, 1,6-hexanediol 2002, which had been heated and melted in advance, was added while stirring. Three hours after the addition was completed, the entire reaction solution was centrifuged to collect the precipitated crystals. The amount obtained was 462). Table 1 shows the compositions of this crystal and P solution.

さらに、この結晶に水55fを加え、約8DCに加熱し
て、結晶を溶解、相分離を起こさせ念。下相を分液漏斗
で取得することにより、濃度50%のKOH水醇液28
42″IC得た。取得した50%KOH水尋液中のKC
tけ22p−1K、Co、は0.59重量%であった。
Furthermore, 55 f of water was added to the crystals and heated to about 8 DC to dissolve the crystals and cause phase separation. A KOH aqueous solution with a concentration of 50% was obtained by obtaining the lower phase in a separatory funnel.
42″IC was obtained. KC in the obtained 50% KOH aqueous solution
The content of Co22p-1K was 0.59% by weight.

なお、最初の54%KOH水溶液中には、KClが95
卿、K2Co、が1.5重量%含まれていた。
Note that KCl is 95% in the initial 54% KOH aqueous solution.
It contained 1.5% by weight of K2Co.

実施例2 3tのガラス製フラスコに54%KOH水溶液taoo
yを入れ、これにヘキシレングリコール2002を攪拌
しながら添加した。添加終了後5時間してから、反応液
全部を遠心分離機にかけ、析出した結晶4251を取得
した。この結晶およびP液の組成を表1に示す。さらに
、この結晶に水53S’を加え、約80Cに加熱して、
結晶を溶解、相分離を起こさせた。下相を分液漏斗で取
得することにより、m変47%のKOH水溶液2772
を得た。この47%KOI(水溶液中のKClば26p
p、K、Co、け0.36重量幅であった。使用した5
4係KOH水溶液は、実施例1と同じものである。
Example 2 54% KOH aqueous solution taoo in a 3t glass flask
y was added thereto, and hexylene glycol 2002 was added thereto with stirring. Five hours after the completion of the addition, the entire reaction solution was centrifuged to obtain precipitated crystals 4251. Table 1 shows the compositions of this crystal and P solution. Furthermore, water 53S' was added to this crystal, heated to about 80C,
The crystals were dissolved and phase separation occurred. By obtaining the lower phase in a separatory funnel, m change 47% aqueous KOH solution 2772
I got it. This 47% KOI (KCl in aqueous solution is 26p
The weight range of p, K, and Co was 0.36. 5 used
The 4th grade KOH aqueous solution is the same as in Example 1.

実施例5 ヘキシレングリコール100fi用いる以外、実施例2
と同様の操作で、結晶2811を取得した。この結晶お
よびp液の組成を表1に示す。さらに、この結晶に水2
9?を加え、約80Cに加熱して、結晶を溶解、相分離
を起こさせた。下相を分液漏斗で取得することにより、
濃度47%のKOH水溶液2072を得た。この47%
KOH水浴液中のKClは28 ppl、 K、Co、
は0.41重量%であった。
Example 5 Example 2 except for using hexylene glycol 100fi
Crystal 2811 was obtained in the same manner as above. Table 1 shows the composition of this crystal and p-liquid. Furthermore, this crystal has 2 parts of water.
9? was added and heated to about 80C to dissolve the crystals and cause phase separation. By obtaining the lower phase in a separatory funnel,
A KOH aqueous solution 2072 with a concentration of 47% was obtained. This 47%
KCl in the KOH water bath solution is 28 ppl, K, Co,
was 0.41% by weight.

実施例4 3tのガラス製フラスコに50%KOH水溶液1000
fを入れ、これにヘキシレングリコール2001を攪拌
しながら添加した。添加終了後3時間してから、反応液
全部を遠心分離機にかけ、析出した結晶396tを取得
した。この結晶およびP液の組成を表1に示す。さらに
、この結晶に水451を加え、約80Cに加゛熱して、
結晶を溶解、相分Waを起こさせた。下相を分液漏斗で
取得することにより、濃度47%のKOH水溶液241
?を得た。この47%KOH水溶液中のKClはllp
pm、K、Co、は0.22重量%であった。なお、最
初の50%KOH水浴液中には、KClが25−5K、
Co、が0.89重i−壬含まれていた。
Example 4 50% KOH aqueous solution 1000ml in a 3t glass flask
f, and hexylene glycol 2001 was added thereto with stirring. Three hours after the completion of the addition, the entire reaction solution was centrifuged to obtain 396 tons of precipitated crystals. Table 1 shows the compositions of this crystal and P solution. Furthermore, water 451 was added to this crystal, heated to about 80C,
The crystals were dissolved and phase separation Wa was caused. By obtaining the lower phase in a separatory funnel, a 47% concentration KOH aqueous solution 241
? I got it. KCl in this 47% KOH aqueous solution is llp
pm, K, and Co were 0.22% by weight. In addition, in the initial 50% KOH water bath solution, KCl is 25-5K,
It contained 0.89 times of Co.

Claims (2)

【特許請求の範囲】[Claims] (1)グリコールを高濃度の苛性カリ水溶液と接触させ
、苛性カリと水とを取り込んでなるグリコール系苛性カ
リ取り込み錯体を生成せしめ、しかる後、上記錯体を水
溶液系から分離し、分離した錯体に水を加え、グリコー
ルと苛性カリ水溶液とに相分離させ、下相から精製され
た苛性カリ水溶液を取得することを特徴とする苛性カリ
の精製法。
(1) Glycol is brought into contact with a highly concentrated caustic potassium aqueous solution to form a glycol-based caustic potassium uptake complex that incorporates caustic potassium and water, and then the above complex is separated from the aqueous solution system and water is added to the separated complex. A method for purifying caustic potash, which comprises phase-separating glycol and a caustic potash aqueous solution, and obtaining a purified caustic potash aqueous solution from the lower phase.
(2)グリコールが1,6−ヘキサンジオールまたはヘ
キシレングリコールである特許請求の範囲第1項記載の
苛性カリの精製法。
(2) The method for purifying caustic potash according to claim 1, wherein the glycol is 1,6-hexanediol or hexylene glycol.
JP27787785A 1985-12-12 1985-12-12 New method for purifying caustic potash Pending JPS62138323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27787785A JPS62138323A (en) 1985-12-12 1985-12-12 New method for purifying caustic potash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27787785A JPS62138323A (en) 1985-12-12 1985-12-12 New method for purifying caustic potash

Publications (1)

Publication Number Publication Date
JPS62138323A true JPS62138323A (en) 1987-06-22

Family

ID=17589531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27787785A Pending JPS62138323A (en) 1985-12-12 1985-12-12 New method for purifying caustic potash

Country Status (1)

Country Link
JP (1) JPS62138323A (en)

Similar Documents

Publication Publication Date Title
JPH0131435B2 (en)
WO2017181759A1 (en) Method for manufacturing anhydrous lithium chloride using lithium-containing wastewater
CN103663506A (en) Preparation method for refined beryllium hydroxide and preparation method for reactor-quality metallic beryllium bead from refined beryllium hydroxide
US3983224A (en) Anhydrous magnesium chloride process
US2224814A (en) Electrolytic production of metals
JPS62138323A (en) New method for purifying caustic potash
JPS6041006B2 (en) Recovery method of sodium thiocyanate
WO2012137813A1 (en) Method for producing bis(perfluoroalkanesulfone)imide salt
JP4322122B2 (en) Method for purifying high-purity niobium compound and / or tantalum compound
ATE343653T1 (en) METHOD FOR RECOVERING NICKEL FROM USED CATALYSTS
JPS5858239A (en) Manufacture of metallic gallium
JPS62138322A (en) Method for purifying caustic soda
JP3024396B2 (en) In recovery method
JP2020132503A (en) Purification method of lithium carbonate
CN108862382A (en) A method of extracting high purity vanadic anhydride from lead navajoite
JPS5920665B2 (en) Purification method of phenylhydrazine
JPS6354641B2 (en)
JP3001097B1 (en) Method for producing sorbic acid
US2167238A (en) Process for the manufacture of very pure aluminum compounds
JPS62108834A (en) Novel alcohol complex uptaking potassium hydroxide, production thereof and purification of potassium hydroxide
JPS6296316A (en) Purification of caustic soda
JPS5919048B2 (en) How to separate thallium from thallium-containing substances
JP2003096588A (en) Method of manufacturing high-purity metal magnesium and method of manufacturing high-purity titanium
JPS62132835A (en) Novel glycol-based complex including sodium hydroxide and production thereof
JPH04275275A (en) Recovery of isoquinoline and quinaldine