JPS62137879A - Junction type semiconductor light emitting element - Google Patents

Junction type semiconductor light emitting element

Info

Publication number
JPS62137879A
JPS62137879A JP60278514A JP27851485A JPS62137879A JP S62137879 A JPS62137879 A JP S62137879A JP 60278514 A JP60278514 A JP 60278514A JP 27851485 A JP27851485 A JP 27851485A JP S62137879 A JPS62137879 A JP S62137879A
Authority
JP
Japan
Prior art keywords
flat plate
junction
layer
light emitting
columnar protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60278514A
Other languages
Japanese (ja)
Inventor
Fumio Inaba
稲場 文男
Hiromasa Ito
弘昌 伊藤
Shiro Sato
史朗 佐藤
Hirotaka Ito
伊藤 弘孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60278514A priority Critical patent/JPS62137879A/en
Publication of JPS62137879A publication Critical patent/JPS62137879A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]

Abstract

PURPOSE:To use the specified light in the vertical direction absorbing said light effectively by a method wherein a P-N junction only actually extending in vertical direction to a flat plate part is formed. CONSTITUTION:A heterowafer comprising an N-type AlxGa1-xAs layer A epitaxially grown to form a columnar protrusion P and an upper layer B1 is produced on an N-type GaAs substrate B3 and then said N-type AlGaAs layer A is ion-etched to form the columnar protrusion P. Next, with a masking layer 1 left as it is, another masking layer 2 is formed using the known masking agent of masking layer 1 on the surface of said columnar protrusion P and the upper layer B1. At this time, if the side periphery of columnar protrusion P is not in a state of no-masking, said periphery is formed into the state of no-masking by soft-etching process and then zinc is diffused in the impurity-fit P-type regions to form a P<+> type region R1 and P-type region R2 so that a cylindrical P-N junction PN1 only may be formed on the interface between a no-impurity region and the P-type region R2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発光ダイオードや半導体レーザとして使用し
得る半導体発光素子に関し、特に基板(平板部)に対し
て水平方向に延在するpn接合を実質的に形成せず、基
板に対して垂直方向に形成したpn接合が効率的に発光
するようにした接合型半導体発光素子に関するものであ
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor light emitting device that can be used as a light emitting diode or a semiconductor laser, and in particular, to a semiconductor light emitting device that can be used as a light emitting diode or a semiconductor laser. The present invention relates to a junction type semiconductor light emitting device in which a pn junction is formed in a direction perpendicular to a substrate without substantially forming a pn junction and efficiently emits light.

(従来の技術〕 基板に対して垂直方向に光を放出する発光素子は、光フ
ァイバとの結合が容易であり、また、面発光体として一
次元或いは二次元のアレイ構造を形成することによりO
A情報機器等の種々の用途が期待されることから、半導
体レーザや発光ダイオードの研究分野において開発が進
められてきており、近年、多種類のものが実用されてい
る。
(Prior art) A light emitting element that emits light in a direction perpendicular to a substrate can be easily coupled with an optical fiber, and can also be used as a surface emitter to form a one-dimensional or two-dimensional array structure.
A: Since they are expected to be used in various applications such as information equipment, development has been progressing in the research field of semiconductor lasers and light emitting diodes, and in recent years, a wide variety of products have been put into practical use.

たとえば、伊藤等によるエレクトロニクス・レターズ、
1984年、vol、20、No、14 、第577〜
579頁に、基仮に対して垂直方向に形成した柱状突起
内に延在する基板に対して垂直方向のpn接合を発光部
とし、この発光部により光を柱状突起の先端から基板に
対して垂直に放出する化合物半導体発光素子を用いた発
光装置が開示されている。
For example, Electronics Letters by Ito et al.
1984, vol. 20, No. 14, No. 577~
On page 579, a pn junction perpendicular to the substrate extending within a columnar projection formed perpendicular to the base is used as a light emitting portion, and this light emitting portion directs light from the tip of the columnar projection perpendicular to the substrate. A light emitting device using a compound semiconductor light emitting element that emits light is disclosed.

従来の垂直発光型半導体素子の1つの基本的な構造例は
、第3図に示す如く、平板部(B)と、その片面上に設
けた柱状突起(P)と、柱状突起(P)の側周面及び平
板部(B)の上面に設けたn側電極(El)と、平板部
(B)の下面に設けたn側電極(B2)とからなるもの
である、柱状突起(P)内には平板部(B)に対して垂
直方向に延在するpn接合PNIが、また平板部CB)
内には該平板部(B)に対して平行方向に延在するpn
接合PN2が存在している。
As shown in FIG. 3, one basic structural example of a conventional vertical light-emitting type semiconductor device is as follows: A columnar projection (P) consisting of an n-side electrode (El) provided on the side peripheral surface and the upper surface of the flat plate portion (B), and an n-side electrode (B2) provided on the lower surface of the flat plate portion (B). Inside, there is a pn junction PNI extending perpendicularly to the flat plate part (B), and also in the flat plate part CB).
There is a pn extending in a direction parallel to the flat plate part (B).
Junction PN2 is present.

平板部(B)はn型GaAs基板(B3)と、バリア層
であるn型A I GaAs層(B2)と、n型GaA
s[(B1)とからなり、柱状突起(P)はn型GaA
s1i(B1)と同一の材料で構成されている。平板部
(B)内及び柱状突起(P)内には、不純物(例えば亜
鉛)の熱拡散によってp9型GaAsまたはA 12 
GaAs領域(R1)とp型GaAsまたはA I G
aAs領域(R2)が存在し、これにより柱状突起(P
)内には不純物の拡散していない領域と領域(R2)と
の界「1に円筒状のpn接合PNIが、また平板部(B
)のバリア層(B2)内には不純物の拡散していない領
域と領域(R2)との界面にpn接合PN2がそれぞれ
形成されている。
The flat plate part (B) includes an n-type GaAs substrate (B3), an n-type AI GaAs layer (B2) which is a barrier layer, and an n-type GaAs substrate (B3).
s[(B1), and the columnar projections (P) are n-type GaA
It is made of the same material as s1i (B1). In the flat plate part (B) and in the columnar projection (P), p9 type GaAs or A12 is formed by thermal diffusion of impurities (e.g. zinc).
GaAs region (R1) and p-type GaAs or AIG
There is an aAs region (R2), which forms a columnar process (P
), there is a cylindrical pn junction PNI at the boundary between the region (R2) and the region (R2) where impurities are not diffused, and there is also a flat plate portion (B
In the barrier layer (B2) of ), a pn junction PN2 is formed at the interface between the region (R2) and the region where impurities are not diffused.

そして電極(El)、(B2)間に電流を流して、光を
柱状突起(P)の先端から上方向に放出する。
Then, a current is passed between the electrodes (El) and (B2), and light is emitted upward from the tip of the columnar projection (P).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような構造の半導体発光素子では電極(lit)、
(B2)間に電流を流すと、電流はpn接合PNIを貫
通する回路C1に流れるだけでなく、pn接合PN2を
貫通する回路C2にも流れる。
In a semiconductor light emitting device with such a structure, an electrode (lit),
When a current is passed between (B2), the current not only flows through the circuit C1 that passes through the pn junction PNI, but also flows into the circuit C2 that passes through the pn junction PN2.

ところで、このような半導体発光素子では平板部に対し
て垂直方向に発光させることが目的であり、上記2種類
のpn接合のうちpnn接合PN1垂直発光をもたらし
、pn接合PN2は水平発光をもたらすため、pn接合
PNIのみが有用であり、pn接合PN2は本来忌むべ
きものである。
By the way, the purpose of such a semiconductor light emitting device is to emit light in a direction perpendicular to the flat plate part, and of the above two types of pn junctions, pnn junction PN1 causes vertical light emission, and pn junction PN2 causes horizontal light emission. , pn junction PNI is useful, pn junction PN2 is inherently abhorrent.

そこで、回路C2に流れる電流を少なくするために、n
型GaAs基板(B3)上に、pn接合PNIを有する
柱状突起(P)のGaAs層よりも禁制帯幅の広いA 
I GaAs層(B2)を10〜20i、−と厚くエピ
タキシャル成長させて該A I GaAs層(B2)を
電流ブロック層とし、このA I GaAs電流ブロッ
ク層内にpn接合PN2を設けているが、それでも回路
C2に流れる電流は無視できる程小さな値ではなく、結
果としてpn接合PN2が発光に寄与し、回路C1への
電流の注入効率が低下することになる。また、n型A 
I GaAs層を均一組成で結晶性良くかつ厚く積むこ
とは技術的困難さを伴い、コストの上昇を招く。
Therefore, in order to reduce the current flowing through the circuit C2, n
type GaAs substrate (B3), A having a wider forbidden band width than the GaAs layer of the columnar protrusion (P) having a pn junction PNI is formed.
The AI GaAs layer (B2) is epitaxially grown to a thickness of 10 to 20 μm, and the AI GaAs layer (B2) is used as a current blocking layer, and a pn junction PN2 is provided within this AI GaAs current blocking layer. The current flowing through the circuit C2 is not negligibly small, and as a result, the pn junction PN2 contributes to light emission, and the efficiency of current injection into the circuit C1 decreases. Also, n-type A
It is technically difficult to stack a thick I GaAs layer with uniform composition, good crystallinity, and an increase in cost.

従って本発明の目的は、柱状突起を構成する半導体層よ
りも禁制帯幅の広い電流ブロック層として作用する厚い
半導体層を有しなくても実質的に基板に対して垂直方向
の光のみを放出し、かつ技術的困難さのないコストの安
い半導体発光素子を提供することにある。
Therefore, an object of the present invention is to emit light only in a direction substantially perpendicular to the substrate without having a thick semiconductor layer that acts as a current blocking layer with a wider forbidden band width than the semiconductor layer constituting the columnar protrusion. The object of the present invention is to provide a low-cost semiconductor light-emitting device that is free from technical difficulties.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的は、平板部と、該平板部の片面上に設けた柱状
突起と、平板部及び柱状突起の任意の個所に設けたii
iとからなり、柱状突起内に平板部に対して垂直方向に
延在するpn接合を有し、平板部内に該平板部に対して
平行方向に延在するpn接合を実質的に有しない接合型
半導体発光素子により達成される。本発明の接合型半導
体発光素子は具体的には、たとえば柱状突起の頂上面及
び平板部の表面をマスク状態にし、かつ柱状突起の側周
面を非マスク状態にして不純物の拡散を行って、柱状突
起内に実質的に平板部に対して垂直方向に延在するpn
接合のみを形成せしめてなるものである。
The purpose is to provide a flat plate portion, a columnar protrusion provided on one side of the flat plate portion, and a columnar protrusion provided at any location on the flat plate portion and the columnar protrusion.
i, which has a pn junction extending perpendicularly to the flat plate part in the columnar protrusion, and has substantially no pn junction extending parallel to the flat plate part in the flat plate part This is achieved by a type semiconductor light emitting device. Specifically, in the junction type semiconductor light emitting device of the present invention, for example, the top surface of the columnar projection and the surface of the flat plate portion are in a masked state, and the side peripheral surface of the columnar projection is in an unmasked state to diffuse impurities, pn extending substantially perpendicularly to the flat plate portion within the columnar projection;
It is formed by forming only a bond.

〔作用〕[Effect]

本発明の接合型半導体発光素子は、実質的に平板部に対
して垂直方向に延在するpn接合PNIのみを有してい
るので、垂直方向のみに発光する。
Since the junction type semiconductor light emitting device of the present invention has only the pn junction PNI extending substantially perpendicularly to the flat plate portion, it emits light only in the vertical direction.

〔実施例〕〔Example〕

以下、本発明の接合型半導体発光素子の実施例を図面に
基づいて説明する。
Embodiments of the junction type semiconductor light emitting device of the present invention will be described below based on the drawings.

本発明の発光素子は、基本的には第1図に示すように、
平板部(B)と、その平板部(B)の片面上に設けた円
柱状突起(P)と、円柱状突起(P)の側周面及びモ仮
部(B)のト面に設けたp側電極(El)と、平板部(
B)の下面に設けたn側電極(B2)と、平板部(B)
の上面と電極(F、l)との間に介在させた絶縁膜(2
)とで構成されている。円柱状突起CP)内には、p゛
型領領域R1)及びp型領域(R2)と、平板部(B)
に対して垂直方向に延在する円筒状のpn接合PNIが
形成されているが、平板部(B)内には、該平板部(B
)に対して平行方向に延在するpn接合PN2は形成さ
れていない。
Basically, the light emitting device of the present invention, as shown in FIG.
A flat plate part (B), a cylindrical projection (P) provided on one side of the flat plate part (B), and a cylindrical projection (P) provided on the side peripheral surface of the cylindrical projection (P) and the top surface of the mokari part (B). The p-side electrode (El) and the flat plate part (
B) n-side electrode (B2) provided on the lower surface and flat plate part (B)
An insulating film (2) interposed between the upper surface of the
). Inside the cylindrical projection CP), there are a p type region R1), a p type region (R2), and a flat plate part (B).
A cylindrical pn junction PNI extending perpendicularly to the flat plate part (B) is formed in the flat plate part (B).
) is not formed.

本実施例の発光素子は、pn接合PNIのみを有しpn
接合PN2を有しない構造なので、電極(El)、(B
2)間に電流を注入した場合、pn接合PNIにより実
質的に平板部(B)に対して垂直方向のみに発光する。
The light emitting device of this example has only a pn junction PNI and pn
Since the structure does not have a junction PN2, the electrodes (El), (B
2) When a current is injected between them, the pn junction PNI emits light only in the direction substantially perpendicular to the flat plate portion (B).

さらに、電流は円柱状突起(P)の側周面からpn接合
PNIを貫通する回路C1に流れるが、回路CI以外の
部分には絶縁膜(2)によって流れないので、発光部へ
の電流の注入効率が向上し、その結果として光出力が増
大することになる。
Furthermore, current flows from the side peripheral surface of the cylindrical protrusion (P) to the circuit C1 that passes through the pn junction PNI, but since the current does not flow to parts other than the circuit CI due to the insulating film (2), the current flows to the light emitting part. The injection efficiency will be improved, resulting in increased light output.

また、基板(B3)上に電流ブロック層を成長させる必
要がなく、必要な発光波長に応じた材料を選択してその
材料からなる円柱状突起(■))を形成するための層の
みを基板(B3)上にエピタキシセル成長させればよく
、或いはエピタキシャル成長層の無い基板自身から円柱
状突起(P)を形成することも可能であるので、製造コ
ストの低下が図れる。
In addition, there is no need to grow a current blocking layer on the substrate (B3), and only the layer for forming the cylindrical protrusion (■) made of the material selected according to the required emission wavelength is grown on the substrate. It is sufficient to grow epitaxial cells on (B3), or it is also possible to form columnar protrusions (P) from the substrate itself without an epitaxial growth layer, so that manufacturing costs can be reduced.

上記の実施例において、基板(B3)の下面のうち円柱
状突起(P)の直下に当たる個所を円柱状突起(P)の
方向に削り取った構造も可能であり、この場合は回路C
1が短くなるので電流の注入効率を一段と向上させるこ
とができる。
In the above embodiment, it is also possible to have a structure in which the part of the lower surface of the substrate (B3) that is directly under the cylindrical projection (P) is shaved off in the direction of the cylindrical projection (P), and in this case, the circuit C
1 becomes shorter, the current injection efficiency can be further improved.

次に第1図に示した構造の発光素子の製造方法の一例を
、GaAsを基板としその基板上にA 7!GaAsを
エピタキシャル成長させて^l GaAsによる波長の
発光を得る場合について説明する。
Next, an example of a method for manufacturing a light emitting element having the structure shown in FIG. 1 will be described using a GaAs substrate and A7! A case where GaAs is grown epitaxially to obtain light emission with a wavelength of ^l will be described.

まず、n型GaAs基板(B3)上に、円柱状突起(P
)と、上部層(B1)とを形成するためのn型AlxG
a+−XAs層(A )をエピタキシャル成長させたヘ
テロウェハを製作する(第2図C参照)。上層のエピタ
キシャル成長層(A)の厚さは、たとえば2〜200戸
である。このヘテロウェハにつき、たとえば反応性イオ
ンエツチング法により上記n型AβGaAsJl (A
)をイオンエツチングし、円柱状突起(P)を形成する
(第2図す参照)。当該円柱状突起(P)を切り出した
上Ji (A)の残余部分が上部層(B1)となる。こ
の上部層(B1)は必ずしも必須ではな(、基板(B3
)に至るまで円柱状突起(P)を切り出しても構わない
、当該円柱状突起(P)の頂上面には、上記のエツチン
グ工程の際に施与したマスク層(1)が存在しているが
、該マスク層(1)を残存させた状態(残存させておく
ことが好ましい、第2図C参照)で当該円柱状突起(P
)の頂上面及び上部層(B1)の表面を自体既知のマス
キング剤(たとえば窒化ケイ素、酸化ケイ素等が例示さ
れ、これらは電子ビーム茎着、スパッタ、CVD法等に
よって適用される)でマスク層(2)を設ける。この際
、円柱状突起(P)の側周面が非マスク状態にならない
場合には通常の方法によりソフトエツチングを行い非マ
スク状態にした後に、p型の不純物(好適には亜鉛)の
拡散を行って、円柱状突起(P)内に第1図(b)に示
すp゛型領領域R1)及びp型領域(R2)を形成し、
これにより不純物の拡散していない領域と領域(R2)
との界面に円筒状のpn接合PNIのみを形成する(第
2図C参照)。
First, a cylindrical protrusion (P
) and n-type AlxG for forming the upper layer (B1).
A heterowafer on which an a+-XAs layer (A) is epitaxially grown is manufactured (see FIG. 2C). The thickness of the upper epitaxial growth layer (A) is, for example, 2 to 200 layers. For this hetero wafer, the above n-type AβGaAsJl (A
) is ion-etched to form a cylindrical protrusion (P) (see Figure 2). The remaining portion of the upper Ji (A) from which the cylindrical projection (P) is cut out becomes the upper layer (B1). This upper layer (B1) is not necessarily essential (the substrate (B3)
) The cylindrical protrusion (P) may be cut out until the cylindrical protrusion (P) has a mask layer (1) applied during the above etching process on the top surface of the cylindrical protrusion (P). However, the cylindrical protrusion (P
) and the surface of the upper layer (B1) are coated with a mask layer using a known masking agent (for example, silicon nitride, silicon oxide, etc., which can be applied by electron beam deposition, sputtering, CVD, etc.). (2) shall be provided. At this time, if the side peripheral surface of the cylindrical protrusion (P) does not become unmasked, soft etching is performed using a normal method to unmask it, and then the p-type impurity (preferably zinc) is diffused. to form a p-type region R1) and a p-type region (R2) shown in FIG. 1(b) in the cylindrical projection (P),
As a result, the region where impurities are not diffused and the region (R2)
Only a cylindrical pn junction PNI is formed at the interface with (see FIG. 2C).

拡散工程の後に、円柱状突起(P)の側周面及び頂上面
と上部IS (Bl)の上面にp側の電極材としてたと
えばCr−Auからなる電極(El)を、また基板(B
3)の下面にn側の電極材としてたとえばAu−Geか
らなる電極(B2)を真空蒸着等の手段によって設ける
(第2図C参照)。ここで電極(El)を上部層(B1
)の上面にも設けることは、以後の工程でこの−に部層
(81)の上面の電極(El)をfII用して容易にワ
イヤボンディングができるので都合がよい。その後、不
必要な電極材料及びマスク層をリフトオフ法により除去
する(第2図C参照)ことにより、第1図に示した如く
円柱状突起(P)内に基板(B3)に対して垂直方向に
延在するpn接合PNIのみを有し、かつ平板部(B)
内にpn接合pH2を有しない発光ダイオードとして使
用することのできる接合型半導体発光素子が製造される
After the diffusion process, an electrode (El) made of, for example, Cr-Au is placed as a p-side electrode material on the side peripheral surface and top surface of the cylindrical projection (P) and the top surface of the upper IS (Bl), and an electrode (El) made of, for example, Cr-Au is placed on the side circumferential surface and top surface of the cylindrical projection (P) and on the upper surface of the upper IS (Bl).
3) An electrode (B2) made of, for example, Au-Ge is provided as an n-side electrode material on the lower surface by means such as vacuum deposition (see FIG. 2C). Here, the electrode (El) is connected to the upper layer (B1
) is convenient because wire bonding can be easily performed using the electrode (El) on the upper surface of the sublayer (81) as fII in subsequent steps. Thereafter, by removing unnecessary electrode materials and mask layers by a lift-off method (see Figure 2C), the cylindrical protrusion (P) is formed in a direction perpendicular to the substrate (B3) as shown in Figure 1. has only a pn junction PNI extending to the flat plate part (B)
A junction type semiconductor light emitting device is manufactured that can be used as a light emitting diode without having a pn junction pH2 within it.

リフトオフの工程の際に、平板部(B)の上面のp側電
極(El)及びマスク層(2)を除去しても良い(第2
図g参照)。この場合は、電極(El)が円柱状突起(
P)の側周面にのみ存在するので、仮に上部層(Bl)
の上面にマスク層(2)を絶縁膜として残存させなくて
も、回路C1以外の部分には′@流は流れない。
During the lift-off process, the p-side electrode (El) and the mask layer (2) on the upper surface of the flat plate part (B) may be removed (second
(see Figure g). In this case, the electrode (El) has a cylindrical projection (
Since it exists only on the side circumferential surface of P), let us assume that the upper layer (Bl)
Even if the mask layer (2) is not left as an insulating film on the upper surface of the circuit C1, the '@ current does not flow to any part other than the circuit C1.

さらに、得られた半導体発光素子において、基板(B3
)の下面のうち円柱状突起(P)の直下に当たる個所に
反射鏡または反射膜を設け、かつ円柱状突起(P)の頂
上面に半透明の反射鏡または反射膜を被着形成して光共
振機構を具備せしめると半導体レーザとしても使用する
ことが出来る。
Furthermore, in the obtained semiconductor light emitting device, the substrate (B3
A reflective mirror or reflective film is provided on the lower surface of the columnar projection (P) directly below the cylindrical projection (P), and a translucent reflective mirror or reflective film is coated on the top surface of the cylindrical projection (P) to prevent light. When equipped with a resonance mechanism, it can also be used as a semiconductor laser.

この半導体レーザにおいては、pn接合PNIからの前
記した増幅された自然放出に光帰還が生じて誘導放出に
よりレーザ発振し、而して強力で指向性の良好な発光光
が上記した半透明反射鏡または反射膜を通して基板(B
3)に対して垂直方向に放出される。
In this semiconductor laser, optical feedback occurs in the above-mentioned amplified spontaneous emission from the pn junction PNI, and laser oscillation occurs due to stimulated emission, and the strong and well-directed emitted light is transmitted to the above-mentioned translucent reflector. or the substrate (B) through the reflective film.
3) is emitted in a direction perpendicular to.

上述の実施例の発光素子は、基板上に基板と同し材料の
エピタキシャル成長層を設けたものであるが、この場合
は基板の格子定数とエピタキシャル成長層の格子定数が
必然的に同一になるので、基板−Fにあえてエピタキシ
ャル成長層を設&−する必要はなく、基板のみでも発光
素子として使用できる。しかしながら、基板はインゴッ
トをil<切断したものであり、インゴットの製造上3
1iを構成する材料の結晶は乱雑状態になるが、エピタ
キシャル成長層の結晶は整然とした状態になるので、エ
ピタキシャル成長層を設けた発光素子の方が一層強力な
発光を得ることができる。基板の格子定数と異なる格子
定数を有する材料をエピタキシャル成長させる場合には
、通常は基板上に直接その材料のエピタキシャル成長j
iを設けないで、基板とエピタキシャル成長層との間に
傾斜層を設ける必要がある。傾斜層は、別の材料を用い
て基板の格子定数と同一の格子定数の層をまず基板上に
成長させ、その層上に徐々に格子定数を変化させた層を
順次成長させて、最後に発光層であるエピタキシャル成
長層の格子定数と同一の格子定数の層を成長させたもの
である。この例として、たとえばGaAs5板上に発光
材料のfnGaPをエピタキシャル成長させる場合は、
GaAsyP+□からなる傾斜層を設ける。すなわち、
このyの値を徐々に小さくした層(Pの含有量を徐々に
大きくした層)を基板上に順次に成長させたものを傾斜
層とすることにより、GaAsの格子定数と1nGaP
の格子定数との相違を緩和することができる。ここで傾
斜層の最上層(lnGaPの格子定数とGaAsyP+
□の格子定数が同一の層)を少し厚く成長させてバッフ
ァ層とすればより好ましい。
The light emitting device of the above embodiment has an epitaxial growth layer made of the same material as the substrate on the substrate, but in this case, the lattice constant of the substrate and the lattice constant of the epitaxial growth layer are necessarily the same. There is no need to intentionally provide an epitaxial growth layer on the substrate -F, and the substrate alone can be used as a light emitting element. However, the substrate is made by cutting an ingot with il
The crystals of the material constituting 1i are disordered, but the crystals of the epitaxial growth layer are orderly, so a light-emitting element provided with an epitaxial growth layer can emit more powerful light. When epitaxially growing a material that has a lattice constant different from that of the substrate, the material is usually epitaxially grown directly on the substrate.
It is necessary to provide a gradient layer between the substrate and the epitaxially grown layer without providing i. A graded layer is created by first growing a layer with the same lattice constant as that of the substrate on a substrate using another material, then sequentially growing layers with gradually changing lattice constants on top of that layer. A layer with the same lattice constant as that of the epitaxially grown layer that is the light emitting layer is grown. As an example of this, when growing fnGaP, a light emitting material, epitaxially on a GaAs5 plate,
A graded layer made of GaAsyP+□ is provided. That is,
The lattice constant of GaAs and the 1nGaP
The difference between the lattice constant and the lattice constant can be alleviated. Here, the top layer of the gradient layer (lattice constant of lnGaP and GaAsyP+
It is more preferable to grow a slightly thicker layer (with the same lattice constant of □) and use it as a buffer layer.

本発明において、電極(El) 、(E2)は、実施例
に示す位置および大きさに特定されるものではなく、本
発明の目的を達成しうる限り、任意の位置に任意の大き
さで設けることができる。また、pn接合の形成方法に
ついては、特に制限を要せず、例えば不純物の拡散法、
p (またはn)型半導体層とn(またはp)型半導体
層のエピタキシャル気相成長法(この場合は、異種接合
することも可能である)、或いはその他の方法であって
もよい。
In the present invention, the electrodes (El) and (E2) are not limited to the positions and sizes shown in the examples, but are provided at any position and with any size as long as the purpose of the present invention can be achieved. be able to. Further, there are no particular restrictions on the method of forming the pn junction, such as impurity diffusion method,
The epitaxial vapor phase growth method of p (or n) type semiconductor layer and n (or p) type semiconductor layer (in this case, heterojunction is also possible) or other methods may be used.

本発明においては、垂直発光に寄与するpn接合PNI
の長さは、柱状突起(P)の高さを大きくすることによ
り長くすることができるので、柱状突起(P)の高さは
少なくとも2N−1特に少なくとも10u、とすること
が好ましい。半導体ウェハの表面上に柱状突起(P)を
形成することは、たとえば反応性イオンエッチジグ法に
より可能であり、しかして高さ数十〜数百戸の柱状突起
(P)を有する本発明の発光素子が容易に製造できる。
In the present invention, a pn junction PNI that contributes to vertical light emission is used.
The length of can be increased by increasing the height of the columnar projection (P), so the height of the columnar projection (P) is preferably at least 2N-1, particularly at least 10u. It is possible to form columnar protrusions (P) on the surface of a semiconductor wafer, for example, by a reactive ion etching jig method, and the method of the present invention having columnar protrusions (P) with a height of several tens to hundreds of units. A light emitting device can be easily manufactured.

本発明に関して、柱状突起(P)における「垂直方向」
の意味は平板部(B)に対して角度90゜の直角方向の
みと限定的に解釈する必要はなく、基板に対して90゛
より多少大きい、または小さい傾斜角度を有する場合も
含まれる。たとえば、柱状突起CP)の全体、もしくは
その内部に形成された同軸円筒状pn接合PNIのみを
、下部の直径を大きくした円錐台状等に形成し、光ファ
イノ\に対して一層結合し易いように出力光を集束させ
るもよく、あるいは逆に」二記とは逆の円錐台状とし、
使用目的に応じ°ζ適度に発散させるもよい。
Regarding the present invention, the "vertical direction" in the columnar projection (P)
There is no need to limit the meaning of ``to'' to mean only a direction perpendicular to the flat plate part (B) at an angle of 90 degrees, and it also includes cases where the angle of inclination is slightly larger or smaller than 90 degrees with respect to the substrate. For example, the entire columnar protrusion CP) or only the coaxial cylindrical pn junction PNI formed inside it may be formed into a truncated conical shape with a larger diameter at the bottom to make it easier to connect to the optical fiber. It is also possible to focus the output light on a truncated cone, or conversely,
Depending on the purpose of use, the light may be dispersed appropriately.

本発明の接合型半導体発光素子に用いる発光材料として
は、m−v族化合物半導体であるGaAs、Gar’ 
 、八/GaAs、  InP  %  1nGaAs
P  、  1nGaP  、  1nAIP。
The light emitting material used in the junction type semiconductor light emitting device of the present invention includes GaAs, Gar' which is an m-v group compound semiconductor.
, 8/GaAs, InP% 1nGaAs
P, 1nGaP, 1nAIP.

GaAsP 、 GaN 、、 1nAsP 、 In
AsSb等、II−Vl族化合吻半導体であるZn5e
 、、ZnS 、 ZnO、CdSe、、CdTe等、
rV−Vl族化合物半導体であるPbTe 、Pb5n
Te、Pb5nSe等、更にN−IV族化合物半導体で
あるSiC等があり、それぞれの材木−1の長所を活か
して適用することが可能である。
GaAsP, GaN, 1nAsP, In
Zn5e, which is a II-Vl group compound semiconductor such as AsSb
,, ZnS, ZnO, CdSe, CdTe, etc.
rV-Vl group compound semiconductors PbTe, Pb5n
There are Te, Pb5nSe, etc., as well as SiC, which is an N-IV group compound semiconductor, and it is possible to apply them by taking advantage of the advantages of each lumber-1.

〔発明の効果〕〔Effect of the invention〕

上記より明らかなように、本発明の接合型半導体発光素
子は、実質的に平板部に対して垂直方向に延在するpn
接合PNIのみを有することにより、垂直方向の光を有
効に取得しうるちのであり、所望とする垂直方向の光を
有効に利用できるものである。本発明の発光素子は、誘
導放出による増幅作用をIII用してよりツ4j力な垂
直方向出力光が得られ、発光ダ・イオード、半導体レー
ザ、スーパー・ルミネセンス・ダイオード、高出力発光
ダイオード等を実現することができる。
As is clear from the above, the junction type semiconductor light emitting device of the present invention has pn
By having only the junction PNI, it is possible to effectively obtain light in the vertical direction, and it is possible to effectively utilize the desired light in the vertical direction. The light-emitting device of the present invention uses the amplification effect by stimulated emission to obtain more powerful vertical output light, and can be used in light-emitting diodes, semiconductor lasers, super luminescence diodes, high-output light-emitting diodes, etc. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)は本発明の接合型半導体発光素
子の第一の実施例の断面図、第2図(,3)〜(f)は
第1図に示した発光素子の製作工程の一例を示す流れ図
、第2図(g )はその工程により製作される発光素子
の変形例を示す図、第3図は従来既知の接合型半導体発
光素子の断面図である。 (B)       二手板部 (P)       二円柱状突起 (El)、(B2)    :電極 (C1)、(C2)    :回路 (PN 1 )、(Pl+ 1.)  : I) n接
合(81):上部層
FIGS. 1(a) and (b) are cross-sectional views of the first embodiment of the junction type semiconductor light emitting device of the present invention, and FIGS. 2(, 3) to (f) are cross-sectional views of the light emitting device shown in FIG. FIG. 2(g) is a flowchart showing an example of the manufacturing process, FIG. 2(g) is a diagram showing a modification of the light emitting device manufactured by the process, and FIG. 3 is a sectional view of a conventionally known junction type semiconductor light emitting device. (B) Two-hand plate part (P) Two cylindrical projections (El), (B2): Electrodes (C1), (C2): Circuit (PN 1), (Pl+ 1.): I) N-junction (81): upper layer

Claims (3)

【特許請求の範囲】[Claims] (1)平板部と、該平板部の片面上に設けた柱状突起と
、平板部及び柱状突起の任意の個所に設けた電極とから
なり、柱状突起内に平板部に対して垂直方向に延在する
pn接合を有し、平板部内に該平板部に対して平行方向
に延在するpn接合を実質的に有しない接合型半導体発
光素子。
(1) Consists of a flat plate part, a columnar protrusion provided on one side of the flat plate part, and an electrode provided at any location on the flat plate part and the columnar protrusion, extending in the direction perpendicular to the flat plate part within the columnar protrusion. A junction type semiconductor light emitting device having a pn junction located in the flat plate portion and having substantially no pn junction extending in a direction parallel to the flat plate portion within the flat plate portion.
(2)柱状突起の頂上面及び平板部の表面をマスク状態
にし、かつ柱状突起の側周面を非マスク状態にして不純
物の拡散を行って、柱状突起内に実質的に平板部に対し
て垂直方向に延在するpn接合のみを形成せしめてなる
特許請求の範囲第(1)項記載の接合型半導体発光素子
(2) Diffusion of impurities is carried out with the top surface of the columnar protrusion and the surface of the flat plate part in a masked state, and the side peripheral surface of the columnar protrusion in an unmasked state, so that the impurity is diffused into the columnar protrusion substantially on the flat plate part. A junction type semiconductor light emitting device according to claim 1, wherein only a pn junction extending in the vertical direction is formed.
(3)柱状突起が平板部の片面上に設けたエピタキシャ
ル成長層から形成したものである特許請求の範囲第(1
)項記載の接合型半導体発光素子。
(3) Claim No. 1 in which the columnar projections are formed from an epitaxial growth layer provided on one side of the flat plate portion.
) The junction type semiconductor light emitting device described in item 2.
JP60278514A 1985-12-11 1985-12-11 Junction type semiconductor light emitting element Pending JPS62137879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60278514A JPS62137879A (en) 1985-12-11 1985-12-11 Junction type semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60278514A JPS62137879A (en) 1985-12-11 1985-12-11 Junction type semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPS62137879A true JPS62137879A (en) 1987-06-20

Family

ID=17598353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60278514A Pending JPS62137879A (en) 1985-12-11 1985-12-11 Junction type semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPS62137879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004661A (en) * 2011-06-15 2013-01-07 Sharp Corp Semiconductor element, method for manufacturing the same, light-emitting diode, method for manufacturing the same, photoelectric conversion element, solar cell, lighting device, backlight, and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004661A (en) * 2011-06-15 2013-01-07 Sharp Corp Semiconductor element, method for manufacturing the same, light-emitting diode, method for manufacturing the same, photoelectric conversion element, solar cell, lighting device, backlight, and display device

Similar Documents

Publication Publication Date Title
US7015054B2 (en) Semiconductor light emitting device and method
US8013320B2 (en) Nitride semiconductor device and method for fabricating the same
US7737451B2 (en) High efficiency LED with tunnel junction layer
US6800500B2 (en) III-nitride light emitting devices fabricated by substrate removal
JP4126749B2 (en) Manufacturing method of semiconductor device
US5838029A (en) GaN-type light emitting device formed on a silicon substrate
US7268371B2 (en) Light extraction from a semiconductor light emitting device via chip shaping
US6008525A (en) Minority carrier device comprising a passivating layer including a Group 13 element and a chalcogenide component
US20200227585A1 (en) Method of manufacturing semiconductor optical device and semiconductor optical device
KR101306024B1 (en) Reverse polarization light emitting region for a nitride light emitting device
US20010000410A1 (en) Forming led having angled sides for increased side light extraction
JP2004521494A (en) Light emitting diode with improved light extraction and method of manufacturing the same
JPH05251739A (en) Semiconductor light emitting device
JPH0695588B2 (en) Semiconductor device
US7772600B2 (en) Light emitting device having zener diode therein and method of fabricating the same
US20210151567A1 (en) Indium-gallium-nitride structures and devices
JPS62137879A (en) Junction type semiconductor light emitting element
JP2000174341A (en) Gallium nitride based compound semiconductor light- emitting element
US6875995B2 (en) Heterogeneous bandgap structures for semiconductor devices and manufacturing methods therefor
KR100564303B1 (en) Light emitting diode and fabrication method thereof
JP3151096B2 (en) Semiconductor light emitting device
JP2004281825A (en) Method of manufacturing light emitting diode
JP3630212B2 (en) Light emitting diode
JPS63107075A (en) Semiconductor light emitting element
JPS62137888A (en) Junction semiconductor light-emitting element