JPS62137560A - Sensor body - Google Patents

Sensor body

Info

Publication number
JPS62137560A
JPS62137560A JP60276863A JP27686385A JPS62137560A JP S62137560 A JPS62137560 A JP S62137560A JP 60276863 A JP60276863 A JP 60276863A JP 27686385 A JP27686385 A JP 27686385A JP S62137560 A JPS62137560 A JP S62137560A
Authority
JP
Japan
Prior art keywords
electrode
carbon
sensor body
cathode
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60276863A
Other languages
Japanese (ja)
Inventor
Masao Koyama
小山 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60276863A priority Critical patent/JPS62137560A/en
Publication of JPS62137560A publication Critical patent/JPS62137560A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep electrolytic liquid or the like from permeating into an electrode body, by a method wherein one of two electrode bodies is mainly composed of carbon and a water insoluble substance is added thereto. CONSTITUTION:An oxygen electrode 1 as base electrode is made up of, for example, an anode 2 made of silver/silver chloride, a cathode 3 comprising a carbon rod mainly composed of carbon and additionally containing water insoluble substance (e.g. fat), an electrolytic liquid 4, a cylinder 5 and oxygen permeating fluorine based high polymer film 6. Then, a sensitive film 7 converting the outside of the film 6 and a semi-permeable film 9 are sealed up with a seal material 8. This facilitate the making of the cathode 3 while inhibiting permeation of a electrolytic liquid or the like into cathode 3 thereby enabling analysis with a high accuracy for long time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、血液、尿、水溶液等の液体中の成分を検出す
るためのセンサ体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a sensor body for detecting components in liquids such as blood, urine, and aqueous solutions.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

イオン選択性′を他、酵素成極、微生吻電ム等のセンサ
体は液中の成分濃度8選択的に測定できる特色を有して
おり□、従来より水實分析、血液分析。
In addition to ion selectivity', sensor bodies such as enzyme polarization and microorganism electroluminescence have the feature of being able to selectively measure the concentration of components in liquid □, making it more suitable for water analysis and blood analysis than ever before.

尿分析9発蕃反応制ia1などの広い分野において利用
されてきた。これらのセンサ体は、単に測定液中に浸漬
するという簡単な操作のみで各偶に高精度に試料液中の
特定の成分譲度を測定できるため、これらを用いたi々
の測定装置が提案されている。
It has been used in a wide range of fields such as urine analysis and reaction control IA1. These sensor bodies can measure the yield of specific components in the sample liquid with high precision by simply immersing them in the measurement liquid, so various measuring devices using these sensors have been proposed. has been done.

利えば、試料液中のクルコースを測定するのに、基本!
碓として酸素fi嘔又は過酸化水素4極を用い、その感
応部をグルコースオキシダーゼを固定化した感応膜で被
頃してなるセンサ体を備えたものが知られている。この
鳴合、試料液中のグルコースが酵素担体層を拡散して行
く過程で酵素の特異的作用を受けて反応し、次式: %式% D−//L/コノーσ−ラクトン+H,Q→グルコン酸
で示されるように液中の酸素が消費され、過酸化水素が
生成する。こうした反応を利用し%基本電電が酸素電極
のj局舎には酸素の消費量が検知され。
If you can use it, it's the basics for measuring crucose in a sample solution!
A sensor body is known that uses oxygen or hydrogen peroxide quadrupole as its base and has a sensor body whose sensitive part is covered with a sensitive membrane on which glucose oxidase is immobilized. At this time, glucose in the sample solution reacts under the specific action of the enzyme during the process of diffusing through the enzyme carrier layer, resulting in the following formula: % Formula % D-//L/Coneau σ-lactone + H, Q →As shown by gluconic acid, oxygen in the liquid is consumed and hydrogen peroxide is produced. Using this reaction, the consumption of oxygen can be detected at the J station where the basic electric power is oxygen electrode.

また過酸化水素を極の場合には過酸化水素の生成量が検
知される。そしてこのようにして得られる基本電極の出
力と試料液中のグルコース濃度との間に(ば相関関係が
あるため、基本電極の出力を測定することにより試料液
中のグルコース濃度を測定することができる。
Further, when hydrogen peroxide is used as the electrode, the amount of hydrogen peroxide produced is detected. Since there is a correlation between the output of the basic electrode obtained in this way and the glucose concentration in the sample liquid, it is possible to measure the glucose concentration in the sample liquid by measuring the output of the basic electrode. can.

一方、このようにして用いられる生化学活性物質も検出
対象となる成分に応じて多種多様に選択される。例えば
、グルコースオキシダーゼ、タカラーゼ、ウラートオキ
シダーゼ、ペルオキシダーゼ、シトクロムオキシダーゼ
、アスコルベートオキシダーゼ、アミノ酸オキシダーゼ
、コレステロールオキシダーゼ等の酸化還元酵素類、 
Pseudomo−nas fluorescens 
、硝化菌、 Bacillus  5ubtiJis。
On the other hand, the biochemically active substances used in this way are also selected from a wide variety depending on the component to be detected. For example, redox enzymes such as glucose oxidase, tacalase, urate oxidase, peroxidase, cytochrome oxidase, ascorbate oxidase, amino acid oxidase, cholesterol oxidase,
Pseudomonas fluorescens
, nitrifying bacteria, Bacillus 5ubtiJis.

Escherichia  coliやその他の微生物
菌体、細胞。
Escherichia coli and other microbial cells and cells.

オルガネラ、抗体、抗原、アビジンなど結合タンパク質
、ホルモンIIセプター、レクチンなどがあげられる。
Examples include organelles, antibodies, antigens, binding proteins such as avidin, hormone II receptors, and lectins.

上記生化学活性物質の固定化には、従来の物理吸着法、
包括去、化学結合法等を利用でき、膜状9粒千秋あるい
はチューブの内壁面に担持された形状等を有してポーラ
ログラフ式醒他と組み合わされ、センサ体が構成される
For immobilization of the above biochemically active substances, conventional physical adsorption methods,
Encyclopedia removal, chemical bonding methods, etc. can be used, and the sensor body is constructed by combining with a polarographic type material, etc., in the form of nine film-like particles or supported on the inner wall surface of a tube.

しかしながら上記のようなセッサ体を用いて各種試料液
中の成分をくり返し分析する過程で、しだいにその生化
学的活性物質を固定化した。、列んば膜状の感応1莫等
の感応部の活性低Fやポーラログラフ式電極の性能低下
が起り、ついには寿命が尽きてセンサ体の交換が必要に
なる。すなわち、従来のポーラログラフ式電極では、そ
のポーラログラフ式電極をWt成する電極体の材料に、
白金。
However, in the process of repeatedly analyzing components in various sample solutions using the above-mentioned sesser bodies, the biochemically active substances were gradually immobilized. , a low activation F of the sensitive part such as a membrane-like sensitive part and a deterioration of the performance of the polarographic electrode will eventually come to an end and the sensor body will need to be replaced. That is, in the conventional polarographic electrode, the material of the electrode body forming the polarographic electrode is Wt.
platinum.

金、ロジウム等の貴金属が用いられており、このような
電極体を用いた電極体では試料を分析するについてしだ
いにその表面がよごれて感度が低下しノイズが増大して
しまう。こうして劣化した4他全体を容易に廃棄するの
は資源保護の面でも問題があり、不経済でもありた。そ
こで、電極体はそのit用いて生化学活性物質を固定化
した。感応膜等の担体だけを交換して繰り返し使用する
ことが試みられているが、担体の交遺にはポーラログラ
フ式電極との密着性を一定にして再生することが要求さ
れるため、同一の特性を得るのが非常に難しく熟Iia
が必要であったり%また操作が煩雑である点にも問題が
ありた。
Noble metals such as gold and rhodium are used, and when an electrode body using such an electrode body is used to analyze a sample, its surface gradually gets dirty, resulting in a decrease in sensitivity and an increase in noise. Easily disposing of the entire structure that has deteriorated in this way poses a problem in terms of resource conservation and is also uneconomical. Therefore, the biochemically active substance was immobilized using the electrode body. Attempts have been made to replace only the carrier, such as a sensitive membrane, and use it repeatedly, but since the replacement of the carrier requires constant adhesion with the polarographic electrode, it is difficult to reproduce the carrier with the same characteristics. Very hard to get mature Iia
There were also problems in that it required % and the operation was complicated.

このような問題点に対して、電極体に炭素を主成分とし
た材料を用いてなるセンサ体を本発明者はすでに出願し
ている。(特願昭60−61831号)このような炭素
を主双分とした材料を用いることで、従来の貴金属を用
いた場合と比較して容易に安価にセンサ体を製造するこ
とができる。さらには1例えばグルコースオキシダーゼ
を用いてグルコースを゛測定する場合などだ発生するH
!0!が、炭素を主 分としたRNを用いることにより
その表面で直接分解されてO象を生じないため%測定′
v1度の低下が防がれ、さらには[(lotが残らない
ことからML極の長痔命がなされる。また電気化学的に
安定なため、例えば誤まって逆方向に電圧配 をかける場合でも、炭素を主成分とした電極の場I合は
何ら問題は生じない。さらには電極体表面へのよごれの
付着もみとめられず、従来その付着におって生じていた
感度の低下等を防ぐことができた。
In order to solve these problems, the present inventor has already filed an application for a sensor body in which the electrode body is made of a material containing carbon as a main component. (Japanese Patent Application No. 60-61831) By using such a material in which carbon is the main component, the sensor body can be manufactured more easily and at a lower cost than when conventional precious metals are used. Furthermore, H generated when measuring glucose using glucose oxidase, etc.
! 0! However, by using RN mainly composed of carbon, it is not directly decomposed on the surface and does not produce an O phenomenon, so it is difficult to measure the percentage.
A drop in v1 degree is prevented, and furthermore, the ML pole is long-lived because there is no [(lot left).Also, since it is electrochemically stable, for example, if the voltage is applied in the opposite direction by mistake, However, in the case of electrodes whose main component is carbon, no problem occurs.Furthermore, no dirt is observed to adhere to the electrode surface, preventing the reduction in sensitivity that conventionally occurs due to such adhesion. I was able to do that.

しかしながら、このような炭素を主況分とした材料より
なる電極体では、その構造上電解液亭の浸透が生じてし
まう場合があり、このような浸透が生じると短絡が起こ
ってセンサ体の役目をはださなくなってしまうという問
題が残っていた。
However, in an electrode body made of a material mainly composed of carbon, the electrolyte may penetrate due to its structure, and when such penetration occurs, a short circuit occurs and the sensor body loses its role. There remained the problem that the hair would no longer be exposed.

〔発明の目的〕[Purpose of the invention]

本発明はこのような問題点に対してなされたものであり
、製作が容易で安価でありかつ充分な精度及び寿命を有
するセンサ体を提供することを目的とする。
The present invention has been made to address these problems, and it is an object of the present invention to provide a sensor body that is easy to manufacture, inexpensive, and has sufficient accuracy and service life.

〔発明の概要〕[Summary of the invention]

本発明のセンサ体はそのセンサ体の基本電極であるポー
ラログラフ式電極の二つの電極体のうち、一方の電極体
が炭素を主成分とし、かつ水に不溶性の物質を含有して
いることを特徴としている。
The sensor body of the present invention is characterized in that one of the two electrode bodies of the polarographic electrode, which is the basic electrode of the sensor body, has carbon as a main component and contains a water-insoluble substance. It is said that

本発明て、係るセンサ体の一列を示した模擬断面図を第
1図に示す。図で1本例の場合の基本電柩である酸素を
礪1は%銀/塩化銀からなるアノード2.炭素を主成分
としさらに水に不溶性の物質をayした炭素棒からなる
カソード3.これらアノード及びカソードの′f極体I
′Bffに充填されて因る例えば飽和KCit溶液等か
らなる電解液4及びこれらを収容する絶縁性筒体5、並
びにカソード3及び筒体5の下部端面に密着して設けら
れている#R素透過性手フッ素系高分子@6から構成さ
れている。そしてこのフッ素系高分子膜6の外l1ll
lを覆って生化学活性物質を固定化した感応膜7及び半
透!9が装着されシール材8確封止されている。なお本
例ではカソード3の側面部は絶縁のため熱硬化性エポキ
シ樹脂3aにより被浚されている。このように一方の′
電極体(第1図で示した例ではカソード3)に炭素を主
成分とした導電性材料を用いかつ水に不溶性の物質を含
有させた本発明に係るセンサ体は従来の貴金属よりなる
電極体を有するセンサ体に比べて剛性も向上しており1
表面におけるよごれの付着等も生じず、また製造方法も
簡略化が可能であり、容易に使い捨て可能なほどの経済
性をも持つて−る。
In accordance with the present invention, a simulated sectional view showing one row of such sensor bodies is shown in FIG. In the figure, the basic electrode in the case of one example is oxygen, and the anode 2 is made of % silver/silver chloride. Cathode consisting of a carbon rod containing carbon as a main component and a water-insoluble substance 3. 'f pole body I of these anodes and cathodes
'Bff, an electrolytic solution 4 made of, for example, a saturated KCit solution, an insulating cylindrical body 5 containing these, and an #R element provided in close contact with the lower end surface of the cathode 3 and the cylindrical body 5. It is composed of a transparent fluorine-based polymer @6. And the outside of this fluoropolymer film 6
Sensitive membrane 7 and semi-permeable which cover l and immobilize biochemically active substances! 9 is installed and the sealing material 8 is securely sealed. In this example, the side surface of the cathode 3 is covered with thermosetting epoxy resin 3a for insulation. In this way, one ′
The sensor body according to the present invention, in which the electrode body (the cathode 3 in the example shown in FIG. 1) is made of a conductive material mainly composed of carbon and contains a water-insoluble substance, is different from the conventional electrode body made of noble metal. The rigidity is also improved compared to the sensor body with 1
It does not cause dirt to adhere to the surface, the manufacturing method can be simplified, and it is economical enough to be easily disposable.

さらに、本発明による水に不溶性の物質を含有した炭素
よりなる電極体は、炭素を主成分とする′11体内部へ
の液の浸入等がおさえられ、長切開デ足した特性を示す
センサ体を作ることができる。
Furthermore, the electrode body made of carbon containing a water-insoluble substance according to the present invention is a sensor body that exhibits long incision characteristics by suppressing the infiltration of liquid into the body mainly composed of carbon. can be made.

そしてさらに炭素を主成分とした電極体に微量の鉄、銅
、コバルト、カルシウム等金属化合物を添加することに
より、長期間にわたり、異常なノイズ等の発生が少ない
安定なポーラログラフ式電極が作製できる。
Furthermore, by adding trace amounts of metal compounds such as iron, copper, cobalt, and calcium to the electrode body whose main component is carbon, it is possible to produce a stable polarographic electrode that generates little abnormal noise over a long period of time.

本発明においてこのような炭素を主成分とした材料より
なる電極体に、油脂、肪酸誘導体、ロウ。
In the present invention, the electrode body made of such a material mainly composed of carbon includes oils and fats, fatty acid derivatives, and wax.

ワックス、高分子材料、顔料等から1選ばれた水に不溶
性の物質を含浸するには、例えば電極体を形成した後に
減圧された環境に置いて内部の気体を放出させ、その後
前述したような水に不溶性な物質を加熱して融解した液
中に浸漬して含浸させる等の方法が用いられる。こうし
た含浸は電極体の表面近傍だけでも所定の効果は得られ
るが、電極体内部にまで含浸させた方が、液の浸入を防
ぐ面からみても好ましい。
To impregnate a water-insoluble substance selected from wax, polymer materials, pigments, etc., for example, after forming an electrode body, place it in a reduced pressure environment to release the internal gas, and then use the method described above. A method such as impregnating a water-insoluble substance by heating it and immersing it in a molten liquid is used. Although a certain effect can be obtained by such impregnation only in the vicinity of the surface of the electrode body, it is preferable to impregnate the inside of the electrode body from the viewpoint of preventing infiltration of liquid.

窮2図に本発明に係る他の構造を有するセンサ体の一例
を示す。図で、多数の炭素繊維を樹脂で成形してなる電
極体3及び銀の外側に塩化銀層を形成した銀/塩化銀よ
りなる電極体2がともに絶縁性のボディ5aに固着され
、さらにシール材11を間にしてネジ部12.13によ
り絶縁性のボディ5bに取り付けられている。炭素徹維
を樹脂で底形してなる電極体3は金属バネ14を介しI
J−ド線15と接続され、また銀/塩化銀よりなる電極
体2はネジ部12.13を介してリード線16に接続さ
れている。そして先端にはグルコースオキシダーゼを含
Mさせたアクリルアミドゲルよりなる感応膜17が担持
されている。この第2図に示した構造を!したセンサ体
で(;、第1図で示したような′rt解液は■しておら
ず%電極体に直接感応膜が接合されており、測定試料と
の接触により生じた電気信号をリード線より取り出して
測定分析を行なう。
FIG. 2 shows an example of a sensor body having another structure according to the present invention. In the figure, an electrode body 3 made of a large number of carbon fibers molded with resin and an electrode body 2 made of silver/silver chloride with a silver chloride layer formed on the outside are both fixed to an insulating body 5a, and further sealed. It is attached to the insulating body 5b by a threaded portion 12.13 with the material 11 in between. The electrode body 3, which is made of a carbon fiber with a resin bottom, is connected to I through a metal spring 14.
The electrode body 2 made of silver/silver chloride is connected to the lead wire 16 via a threaded portion 12.13. A sensitive membrane 17 made of acrylamide gel containing M containing glucose oxidase is supported on the tip. The structure shown in this Figure 2! With the sensor body (;, as shown in Figure 1, the 'rt solution is not used, and the sensitive film is directly bonded to the electrode body, and the electrical signal generated by contact with the measurement sample is read. Take it out from the line and perform measurement analysis.

このような電解質を有していtいセンサ体においても、
そのセンサ体を構成する炭素を主成分とした材料よりな
るIE電極体、水に不溶性の物質を含浸させて撥水性を
持たせることにより、試料液や洗浄液等が浸入して生じ
るリーク及びそれによる測定精度の低下をおさえること
ができる。
Even in a sensor body that does not have such an electrolyte,
By impregnating the IE electrode body made of a carbon-based material that makes up the sensor body with a water-insoluble substance to make it water-repellent, leakage caused by infiltration of sample liquid, cleaning liquid, etc. Decrease in measurement accuracy can be suppressed.

これ以外にも炭素を主成分として多孔質の形状をMした
!極体とすることもできる。このような′電極体ではそ
の孔の中に酵素等の生化学活性物質を担持させ他の部分
には水に不溶性の物質を担持させることにより、感応膜
と電極体が一体化されたセンサ体が構成される。このよ
うす構成では生化学活性物質を担持した部位以外では、
液の浸透は生じない。
In addition to this, we also created a porous shape with carbon as the main component! It can also be a polar body. In such an electrode body, a biochemically active substance such as an enzyme is supported in the pores, and a water-insoluble substance is supported in the other parts, thereby creating a sensor body in which the sensitive membrane and the electrode body are integrated. is configured. In this configuration, in areas other than those carrying biochemically active substances,
No liquid penetration occurs.

一方、これらのセンサ体を用いて測定を行fよう際に、
同様なセンサ体を2体用意し一方のセンサ体だけ生化学
活性物質を担持させないでこの2体を同時に用いて測定
してもよい。すなわち生化学活性物質を固定化した感応
膜を担持したセンサ体だけでは試料液中に含まれた被検
対象物質以外の物質によって、その感応膜の有無にかか
わり声(検出信号が発生してしまい、その結果正確な被
検対象物質の測定分析ができない場合がある。このよう
な場合には生化学活性物質を担持しないセンサ体の信号
出力と生化学活性物質を担持したセンサ体の出力信号の
差をとることにより、その被検対象物質以外の物質の影
響を打ち消して正確な被検対象物質の測定分析が行なえ
る。
On the other hand, when performing measurements using these sensor bodies,
Two similar sensor bodies may be prepared and one of the sensor bodies may not support a biochemically active substance, and these two bodies may be used simultaneously for measurement. In other words, if only a sensor body carrying a sensitive membrane with immobilized biochemically active substances is used, substances other than the analyte contained in the sample solution may interfere with the presence or absence of the sensitive membrane and generate a detection signal. As a result, accurate measurement and analysis of the target substance may not be possible.In such cases, the signal output of a sensor body that does not carry a biochemically active substance and the output signal of a sensor body that carries a biochemically active substance may differ. By taking the difference, the influence of substances other than the target substance to be tested can be canceled out, and accurate measurement and analysis of the target substance to be tested can be performed.

〔発明の実施例〕[Embodiments of the invention]

実施例1 石油ピッチ及びアスファルトを主成分とした材料を用い
、鉄、カルシウム、アルミニウム、ケイ素がそれぞれお
よそ0.01〜0.5wt%程度含まれ、残部が実質的
に炭素からなる原料を成形した後、約1100〜140
0℃で焼成し、直径3mmの棒状体(以下、炭素棒とい
う)を得た。さらに、これに、融点が80℃付近のパラ
フィン系のワックスを含浸させて電極体とした。この電
極体の一方の端部にリード線を接続後、側面に熱硬化性
エポキシ樹脂で被覆を施した。そしてこれを用いて第1
図の断面図、に示すようなセンサ体に組み立てた。
Example 1 Using a material mainly composed of petroleum pitch and asphalt, a raw material containing approximately 0.01 to 0.5 wt% of each of iron, calcium, aluminum, and silicon, with the balance substantially consisting of carbon was molded. After, about 1100-140
It was fired at 0° C. to obtain a rod-shaped body (hereinafter referred to as a carbon rod) with a diameter of 3 mm. Further, this was impregnated with paraffin wax having a melting point of around 80° C. to form an electrode body. After connecting a lead wire to one end of this electrode body, the side surface was coated with a thermosetting epoxy resin. And using this, the first
It was assembled into a sensor body as shown in the cross-sectional view of the figure.

次いで、ワックスを含浸させた炭素棒よりなるカソード
3のもう一方の端部に接するように約25μm厚のフッ
素系高分子漠6.約50μm厚のグルコースオキシダー
ゼを固定化した感光i漠7.約50μm厚のセルロース
ジアセテートからなる非対称孔径8有した半透j莫9を
この順でそれぞれ装、督した。そしてワックスを含浸さ
せた炭素棒よりなるカソード3には銀/塩化銀電極より
なるアノード2に対し−0,8vになるように電圧を印
加して使用した。このセンサ体をpH5のリン酸塩緩衝
液と40 m!I/d lのグルコース溶液とに交互に
接触させると、第3図の特性図に示したように良好な応
答が得られた。なお図でaはグルコース溶液ト、bは緩
衝液とそれぞれ接触させた点である。
Next, 6. a fluoropolymer membrane with a thickness of about 25 μm is placed in contact with the other end of the cathode 3 made of a carbon rod impregnated with wax. 7. A photosensitive membrane with immobilized glucose oxidase approximately 50 μm thick. Semi-transparent membranes made of cellulose diacetate with a thickness of about 50 μm and having asymmetric pore diameters of 8 and 9 were respectively loaded and prepared in this order. The cathode 3 made of a carbon rod impregnated with wax was used by applying a voltage of -0.8 V to the anode 2 made of a silver/silver chloride electrode. This sensor body was mixed with a pH 5 phosphate buffer solution for 40 m! When contacted alternately with glucose solutions of I/dl, a good response was obtained as shown in the characteristic diagram of FIG. In the figure, a indicates the point of contact with the glucose solution, and b indicates the point of contact with the buffer solution.

またこうして用いたセンサ体は膜を交換せずにおよそ8
00検体まで、すなわち膜が劣化して使用不可能になる
まで測定が可能でありた。これは従来の白金を用いた電
極体を備えたセンサ体と比べて、およそ2割程長寿命化
かはだせたことを示している。一方この白金を用いたV
ta体を備えたセンサ体では、測定を続けるにしたがっ
てしだいに感度が低下しノイズが増大した。そして劣化
して使用が不可能になってから分解して内部の白金より
なる電極体を調べたところ、その1也体表面に最初の製
作時にはなかった付着物が認められた。
Also, the sensor body used in this way can be used for approximately 80 minutes without replacing the membrane.
It was possible to measure up to 00 samples, that is, until the membrane deteriorated and became unusable. This indicates that the lifespan can be extended by approximately 20% compared to the conventional sensor body equipped with an electrode body using platinum. On the other hand, V using this platinum
In the sensor body equipped with the ta body, the sensitivity gradually decreased and the noise increased as measurements continued. When it deteriorated and became unusable, it was disassembled and the platinum electrode body inside was examined, and deposits that were not present when it was first manufactured were found on the surface of the body.

これに対して本発明に係るセンサ体に用いた炭素棒には
同様の条件の測定の後でもそのような付着物は何ら認め
られなかった。
On the other hand, no such deposits were observed on the carbon rod used in the sensor body according to the present invention even after measurement under similar conditions.

〔発明の効果〕〔Effect of the invention〕

本発明に係るセンサ体は、従来の貴金属′qLムにかえ
て水に不溶性の物質を含有させた炭素を主成分とする材
料を用いることにより、容易に作製が可能であり、かつ
、試料成分の分析に十分な反応と長期間にわたる安定な
出力が得られるので、安価で高精度な分析が行なえる。
The sensor body according to the present invention can be easily manufactured by using a material whose main component is carbon containing a water-insoluble substance instead of the conventional noble metal 'qL, It provides sufficient reaction and stable output over a long period of time for analysis, making it possible to conduct inexpensive and highly accurate analysis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明に係るセンサ体の一例を表した
模擬断面図、第3図は試料液中の特定成分を測定した時
の出力応答を表わした特性図である。 l・・・酸素1t%、2・・・アノード、3・・・カソ
ード。 4・・・電解液、5・・・絶縁体筒体、5a、5b・・
・絶縁性のボディ、6・・・テフロン膜、7.17・・
・感応膜8.11・・・シール材、9・・・半透膜、1
0,15゜16・・・リード!!、12.13・・・ネ
ジ部% 14・・・金属バネ。 代理人 弁理士  則 近 H右 同     竹 花 喜久男 第1図 第2図
1 and 2 are simulated cross-sectional views showing an example of a sensor body according to the present invention, and FIG. 3 is a characteristic diagram showing an output response when a specific component in a sample liquid is measured. 1... Oxygen 1t%, 2... Anode, 3... Cathode. 4... Electrolyte, 5... Insulator cylinder, 5a, 5b...
・Insulating body, 6... Teflon membrane, 7.17...
・Sensitive membrane 8.11...Sealing material, 9...Semipermeable membrane, 1
0,15°16...Lead! ! , 12.13... Threaded part % 14... Metal spring. Agent: Patent Attorney Norihiro H. Kikuo Takehana Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)基本電極として用いるポーラログラフ式電極の感
応部に生化学活性物質を固定化してなるセンサ体におい
て、 前記ポーラログラフ式電極の二つの電極体のうち、一方
の電極体が炭素を生成分とし、かつ水に不溶性の物質を
含有していることを特徴とするセンサ体。
(1) In a sensor body in which a biochemically active substance is immobilized on the sensitive part of a polarographic electrode used as a basic electrode, one of the two electrode bodies of the polarographic electrode has carbon as a product, A sensor body characterized by containing a substance that is insoluble in water.
(2)水に不溶性の物質が油脂、脂肪酸誘導体、ワック
ス、高分子材料、顔料の中より選ばれたものであること
を特徴とする特許請求の範囲第1項記載のセンサ体。
(2) The sensor body according to claim 1, wherein the water-insoluble substance is selected from oils and fats, fatty acid derivatives, waxes, polymeric materials, and pigments.
JP60276863A 1985-12-11 1985-12-11 Sensor body Pending JPS62137560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60276863A JPS62137560A (en) 1985-12-11 1985-12-11 Sensor body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60276863A JPS62137560A (en) 1985-12-11 1985-12-11 Sensor body

Publications (1)

Publication Number Publication Date
JPS62137560A true JPS62137560A (en) 1987-06-20

Family

ID=17575461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276863A Pending JPS62137560A (en) 1985-12-11 1985-12-11 Sensor body

Country Status (1)

Country Link
JP (1) JPS62137560A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0592805A2 (en) * 1992-09-09 1994-04-20 AGENCY OF INDUSTRIAL SCIENCE & TECHNOLOGY MINISTRY OF INTERNATIONAL TRADE & INDUSTRY Carbon sensor electrode and process for producing the same
WO2007006179A1 (en) * 2005-07-14 2007-01-18 Blincofa Biomedical Technology Corp. A graphite electrode used in detection device for analyzing trace amount of organic substances and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0592805A2 (en) * 1992-09-09 1994-04-20 AGENCY OF INDUSTRIAL SCIENCE & TECHNOLOGY MINISTRY OF INTERNATIONAL TRADE & INDUSTRY Carbon sensor electrode and process for producing the same
EP0592805A3 (en) * 1992-09-09 1996-07-24 Agency Ind Science Techn Carbon sensor electrode and process for producing the same
WO2007006179A1 (en) * 2005-07-14 2007-01-18 Blincofa Biomedical Technology Corp. A graphite electrode used in detection device for analyzing trace amount of organic substances and its manufacturing method

Similar Documents

Publication Publication Date Title
KR100379663B1 (en) Chemical sensors, especially silicon-based biosensors
KR890004367B1 (en) Enzyme sensor
US4431507A (en) Enzyme electrode
Ikariyama et al. Electrochemical fabrication of amperometric microenzyme sensor
JPH05503580A (en) Polarographic chemical sensor with external reference electrode
DE69915850D1 (en) SMALL VOLUME IN VITRO SENSOR WITH DIFFUSIONABLE OR NON-WASHABLE REDOX AGENT
JP2003098142A (en) Method for monitoring bioelectrochemical reaction and its reaction medium
WO1987006701A1 (en) Microelectrode for electrochemical analysis
JPH0136062B2 (en)
Özcan et al. Selective and sensitive voltammetric determination of dopamine in blood by electrochemically treated pencil graphite electrodes
JPS6239900B2 (en)
JPH01114746A (en) Biosensor
US5269903A (en) Microbioelectrode and method of fabricating the same
US5059290A (en) Electroanalytical method
Navera et al. Nafion‐coated carbon fiber for acetylcholine and choline sensors
JPS62137560A (en) Sensor body
JPH04279854A (en) Platinum coated carbon fiber electrode and enzymatic film sensor using same
JP2003207476A (en) Ion sensor and biochemical autoanalyzer using the same
JPH0345336B2 (en)
JPS6212472B2 (en)
JPH05149910A (en) Cell for electrochemical measurement
JPH0629873B2 (en) Enzyme functional electrode
JPS62232554A (en) Biosensor
EP4170334A1 (en) Enzymatic self-calibrating biosensor for continuous ph monitoring
JPS5967452A (en) Biosensor