JPS62137031A - Sensor for measuring temperature in living body - Google Patents

Sensor for measuring temperature in living body

Info

Publication number
JPS62137031A
JPS62137031A JP60278724A JP27872485A JPS62137031A JP S62137031 A JPS62137031 A JP S62137031A JP 60278724 A JP60278724 A JP 60278724A JP 27872485 A JP27872485 A JP 27872485A JP S62137031 A JPS62137031 A JP S62137031A
Authority
JP
Japan
Prior art keywords
sensor
living body
piezoelectric element
temperature measurement
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60278724A
Other languages
Japanese (ja)
Inventor
宏一 平間
剛 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP60278724A priority Critical patent/JPS62137031A/en
Publication of JPS62137031A publication Critical patent/JPS62137031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業」−の利用分野〕 本発明は、生体内温度測定センサ゛に係り、圧電素子部
とアンテナ部を分離し、可撓性連絡部材で接続してセン
サ感度を安定させると共に、生体内植込み時の生体に対
する安全性を確保した生体内温度測定センサに関する。
[Detailed Description of the Invention] [Field of Application in Industry] The present invention relates to an in-vivo temperature measurement sensor, in which a piezoelectric element part and an antenna part are separated and connected by a flexible connecting member to stabilize the sensor sensitivity. The present invention relates to an in-vivo temperature measurement sensor that ensures safety for the living body when implanted in the living body.

〔従来の技術〕[Conventional technology]

例えば、癌の治療法の1つとして、患部に高周波エネル
ギーを照射し、患部を42.5℃以トの温度に加熱して
、癌細胞を死滅さ・l!るものがある。この加熱に際し
、正常細胞部が43℃を越えた場合には、癌細胞のみな
らず周囲の正常細胞をも死滅さ・ロてしまう。このため
、加熱対象部分に複数個の生体内温度測定センサを植込
め、生体内温度を常時測定し、この測定結果に基づいて
自動的あるいは手動によって高周波エネルギーの照射量
及び照射時間をコントロールし、隔部を42.5゜C以
上に加熱しながら正常細胞部が43℃以」−にならない
ように制御しなければならない。
For example, one treatment for cancer involves irradiating the affected area with high-frequency energy and heating the affected area to a temperature of 42.5°C or higher to kill cancer cells. There are things to do. During this heating, if the normal cell portion exceeds 43°C, not only the cancer cells but also the surrounding normal cells will be killed. For this reason, multiple in-vivo temperature measurement sensors are implanted in the area to be heated, the in-vivo temperature is constantly measured, and based on the measurement results, the irradiation amount and irradiation time of high-frequency energy are controlled automatically or manually. While the septum is heated above 42.5°C, the temperature of the normal cell area must be controlled so as not to exceed 43°C.

第3図は従来の生体内温度測定レンサと生体内l晶度測
定システJ、の一実施例を示す。
FIG. 3 shows an embodiment of a conventional in-vivo temperature measurement sensor and in-vivo crystallinity measurement system J.

生体内の所要部に植込まれるセンIJ″1ば圧電素、了
である水晶振動子2と、水晶振動子2の外周面に貼り伺
けた電極3a、3bと、電極3a、3bに接続され、所
定の巻数をもち、水晶振動子2とループを形成するアン
チ・ノ°コイル4とから構成され、体液の侵入、体液に
よる腐食を防1トするためにカプセル5 (例えばテフ
ロン)により密封されている(長さ約20〜15011
1.直径2 +n −25mmの円柱彫を形成している
)。一方、生体夕)部には、センサ1のアンテナコイル
4と、生体表面においてBA’X結合するプローグ6の
センサコイル7と、センサコイル7の両端に接続された
高周波電圧計8と、周波数可変発振器9と、この周波数
可変発振器9の出力周波数をモニタする周波数カウンタ
10とから構成される温度測定系が用意されている。
A crystal oscillator 2, which is a piezoelectric element, is implanted in a desired part of a living body, and electrodes 3a and 3b are attached to the outer peripheral surface of the crystal oscillator 2, and are connected to the electrodes 3a and 3b. , which has a predetermined number of turns and is composed of a crystal oscillator 2 and an anti-noise coil 4 forming a loop, and is sealed with a capsule 5 (for example, Teflon) to prevent intrusion of body fluids and corrosion by body fluids. (length approximately 20~15011
1. It forms a cylindrical carving with a diameter of 2 + n - 25 mm). On the other hand, the living body part includes an antenna coil 4 of the sensor 1, a sensor coil 7 of a probe 6 that performs BA'X coupling on the living body surface, a high frequency voltmeter 8 connected to both ends of the sensor coil 7, and a frequency variable A temperature measurement system consisting of an oscillator 9 and a frequency counter 10 that monitors the output frequency of the variable frequency oscillator 9 is provided.

1ンー1−の構成において、温度セン1トlの共振周波
数をf、とし、周波数可変発振器9の出力周波数を温度
センサ1の共振周波数f、近傍において変化させると、
センサコイル7に接続した高周波電圧1i15は、第3
図(ロ)に示Jように、セン゛す1の共振周波数frに
おいて電1180,1最小を示す(これは、)話度セン
1ノ1のアンチづて1イル4とプIコープ6のセンサコ
イル7に印加した高周波エネルギーが生体内温度センサ
1に吸15jされるため生ずるものである(ディップ現
象))。従って、高周波電圧計8の指示が最小になる点
の周波数を周波数カウンタ10により読め取り、例えば
、第3図(ハ)に示すよ・うな予め既知である温度セン
サ1の共振周波数と温度との関係に照らして生体内温度
を正確に知るごとができる。また、自動的に生体内温度
を測定する方法も提案されている(特願昭59−243
097号)。
In the 1-1- configuration, if the resonant frequency of the temperature sensor 1 is f, and the output frequency of the variable frequency oscillator 9 is changed near the resonant frequency f of the temperature sensor 1, then
The high frequency voltage 1i15 connected to the sensor coil 7 is
As shown in Figure (B), at the resonant frequency fr of the sensor 1, the electric current 1180,1 is minimum (this is) due to the anti-contact of the speaker 1 of the 1, the 1 of the 1, and the 1 of the 1 of the 6 This occurs because the high frequency energy applied to the sensor coil 7 is absorbed by the in-vivo temperature sensor 1 (dip phenomenon). Therefore, the frequency at which the indication of the high frequency voltmeter 8 becomes the minimum can be read by the frequency counter 10, and for example, the resonant frequency of the temperature sensor 1 which is known in advance as shown in FIG. It is possible to accurately know the internal body temperature in light of the relationship. In addition, a method for automatically measuring the internal body temperature has also been proposed (Japanese Patent Application No. 59-243
No. 097).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の4二体内温度測定センザにあっては、水
晶振動子と、アンテナコイル及び水晶振動子とアンテナ
コイル間においてループを形成する連絡導線等が比較的
強固なカプセル5に収納され、そのサイズが特定されて
いるため、被測定点が生体の奥深い箇所である場合など
は、センサの感度が劣化し、正確1つ迅速な生体内温度
の測定ができない恐れがある。また、感度の安定化を測
るためにセンサのサイズを長くし、生体の奥深い被測定
点から生体表面近くまで伸長させると、生体の屈曲等の
動作により、センサが生体内から生体外へ突き出る恐れ
があり、生体に対する安定性を確保できない欠点がある
However, in the conventional four-way internal temperature measurement sensor, the crystal resonator, the antenna coil, and the connecting wire forming a loop between the crystal resonator and the antenna coil are housed in a relatively strong capsule 5. Since the size is specified, if the point to be measured is located deep inside the living body, the sensitivity of the sensor may deteriorate and the temperature within the living body may not be accurately and quickly measured. In addition, if the size of the sensor is made longer in order to stabilize the sensitivity and extended from a point to be measured deep inside the living body to near the surface of the living body, there is a risk that the sensor may protrude from inside the living body to outside the living body due to movements such as bending of the living body. However, it has the disadvantage that stability against living organisms cannot be ensured.

〔問題点を解決するための手段及び作用〕本発明は上記
に鑑みてなされたものであり、センサの感度を安定させ
、正確且つ迅速な生体内温度の測定を可能とし、生体の
運動に伴うセンサ突出による生体に対する危険性を回避
するため、センサの圧電素子部とアンテナ部を分離し、
その間を可撓性連絡部材で接続した生体内温度測定セン
サを提供するものである。
[Means and effects for solving the problems] The present invention has been made in view of the above, and is capable of stabilizing the sensitivity of the sensor, enabling accurate and rapid measurement of the temperature inside the living body, and reducing the temperature associated with the movement of the living body. In order to avoid danger to living organisms due to sensor protrusion, the piezoelectric element part and antenna part of the sensor are separated.
The object of the present invention is to provide an in-vivo temperature measurement sensor in which a flexible connecting member is used to connect the two.

〔実施例〕〔Example〕

以下、本発明による生体温度測定センサの一実施例を詳
細に説明する。
Hereinafter, one embodiment of the biological temperature measurement sensor according to the present invention will be described in detail.

第1図は本発明による生体内温度測定センサ19の一実
施例を示し、水晶振動子20を備える圧電素子部21と
、アンテナコイル22を備えるアンテナ部23及び水晶
振動子20とアンテナコイル22との間にループを構成
する導線24から成る可撓性連絡部材29から成る。
FIG. 1 shows an embodiment of the in-vivo temperature measurement sensor 19 according to the present invention, which includes a piezoelectric element section 21 including a crystal oscillator 20, an antenna section 23 including an antenna coil 22, a crystal oscillator 20, and an antenna coil 22. It consists of a flexible communication member 29 consisting of a conducting wire 24 forming a loop therebetween.

圧電素子部21は保護部+A’25 (例えばテフロン
で形成されている)と、テフロン保護部材部材25内に
固定されている水晶振動子20と、水晶振動子20の外
周面に貼り(;Jけた電極25a、26bと、電極26
a、25bに接続されている導体24とから構成される
The piezoelectric element part 21 includes a protective part +A'25 (formed of Teflon, for example), a crystal resonator 20 fixed within the Teflon protective member 25, and a film attached to the outer peripheral surface of the crystal resonator 20 (;J The girder electrodes 25a, 26b and the electrode 26
a and a conductor 24 connected to the conductor 25b.

アンテナ部23は、所定の巻数を持ち、圧電素子部21
からの情報に関し、外部に対して誘導、結合を行なうア
ンテナコイル22(ここでは平面に構成されている)と
、アンテナコイル22を保護するカバー28(例えばメ
ソシュで形成されている)とから構成されている。
The antenna section 23 has a predetermined number of turns, and the piezoelectric element section 21
The antenna is composed of an antenna coil 22 (here configured as a flat surface) that conducts induction and coupling to the outside regarding information from the antenna, and a cover 28 (formed of mesh, for example) that protects the antenna coil 22. ing.

可撓性連絡部材29は、導線24と、導線24を体液に
よる腐食から保護するための保護部材30(例えばテフ
ロン加工)とから構成される装置以」二の構成において
、その動作自体は従来の生体内温度測定センサと同様で
ある。簡略的に述べると、周波数可変発振器の出力周波
数を温度センサ19の共振周波数fr近傍において変化
させると、プローブのセンサコイルに接続した高周波電
圧計はディップ現象によりその電圧値を最小とする。
The flexible communication member 29 is constructed of a device consisting of a conductive wire 24 and a protective member 30 (for example, Teflon coated) for protecting the conductive wire 24 from corrosion by body fluids, and its operation itself is similar to that of the conventional one. It is similar to an in-vivo temperature measurement sensor. Briefly stated, when the output frequency of the variable frequency oscillator is changed near the resonance frequency fr of the temperature sensor 19, the high frequency voltmeter connected to the sensor coil of the probe minimizes its voltage value due to a dip phenomenon.

従って、前記高周波電圧計の指示が最小になる点の周波
数を読み取り、生体内の温度を正確に検出することがで
きる。
Therefore, it is possible to read the frequency at which the indication of the high-frequency voltmeter is minimum, and to accurately detect the temperature within the living body.

但し、本発明による生体内温度測定センナによれば、ア
ンテナコイル22を生体における被測定点の位置に関係
なく生体内表面近傍に位置させることが可能となるので
、センサ感度の安定が図れ、また、圧電素子部とアンテ
ナ部を可撓性連絡部材で接続したので、生体内の屈曲等
の動作よりセンサが生体りIへ突き出る恐れはなく、生
体に対する安全性を確保できる。
However, according to the in-vivo temperature measurement sensor according to the present invention, it is possible to position the antenna coil 22 near the surface of the in-vivo body regardless of the position of the point to be measured in the living body, so that the sensor sensitivity can be stabilized, and Since the piezoelectric element part and the antenna part are connected by a flexible communication member, there is no fear that the sensor will protrude into the living body I due to movements such as bending inside the living body, and safety for the living body can be ensured.

第2図は、本発明による生体内温度測定センサの他の実
施例である。これば、複数個の圧電素子部を1個のアン
テナ部に可撓性連絡部材を介して接続したものであり、
複数の被測定点に対し複数の圧電素子を植込むが、各々
のセンサからの情報は1個のアンテナ部より抽出するこ
とができる。
FIG. 2 shows another embodiment of the in-vivo temperature measurement sensor according to the present invention. In this case, a plurality of piezoelectric element parts are connected to one antenna part via a flexible connecting member,
Although a plurality of piezoelectric elements are implanted at a plurality of measurement points, information from each sensor can be extracted from one antenna section.

その結果、センサ感度の低下及び生体に対する安全性の
低下を招かずに生体内における複数箇所の温度測定を計
測することができ、生体内温度測定センサ自体のコスト
を低下さセるというメリットが生ずる。
As a result, it is possible to measure temperature at multiple locations within a living body without reducing sensor sensitivity or safety for the living body, which has the advantage of reducing the cost of the in-vivo temperature measurement sensor itself. .

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の生体温度測定センサによれ
ば、センサの圧電素子部とアンテナ部を分離し、その間
を可撓性連絡部材で接続したため、センサの感度を安定
させ、正確且つ迅速な生体内温度の測定を可能とし、生
体の運動に伴うセンサ突出による生体に対する危険性を
回避することができる。
As explained above, according to the biological temperature measurement sensor of the present invention, the piezoelectric element part and the antenna part of the sensor are separated and connected by a flexible connecting member, which stabilizes the sensitivity of the sensor and enables accurate and quick measurement. It is possible to measure the temperature inside the living body, and to avoid danger to the living body due to sensor protrusion due to movement of the living body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による生体内温度測定センサの一実施例
を示す説明図、第2図は本発明による生体内温度測定セ
ンサの他の実施例を示す説明図、第3図(() (o)
 (ハ)は従来の生体内温度測定センサと生体内温度測
定システムの説明図である。 符号の説明 19−−−−生体内温度測定センサ 21−−−−−圧電素子部   23−−−−−−−ア
ンテナ部29−−−−可撓性連絡部材 特許出願人  東洋通信機株式会社 代理人 弁理士   松 原 伸 2 同 同  村木清司 同    同      上 島 淳 −同 同  酒
井宏明
Fig. 1 is an explanatory diagram showing one embodiment of the in-vivo temperature measuring sensor according to the present invention, Fig. 2 is an explanatory diagram showing another embodiment of the in-vivo temperature measuring sensor according to the present invention, and Fig. 3 (() o)
(C) is an explanatory diagram of a conventional in-vivo temperature measurement sensor and in-vivo temperature measurement system. Explanation of symbols 19 ---- In-vivo temperature measurement sensor 21 ---- Piezoelectric element part 23 ------- Antenna part 29 - Flexible communication member Patent applicant Toyo Tsushinki Co., Ltd. Agent: Shin Matsubara, 2nd Patent Attorney, Kiyoshi Muraki, Atsushi Kamijima - Hiroaki Sakai, 2nd Patent Attorney

Claims (2)

【特許請求の範囲】[Claims] (1)温度に応じて共振周波数が変化する圧電素子部と
、 前記圧電素子部からの情報を外部に対して送出するアン
テナ部とを備え、生体内の被測定点に植込み、前記圧電
素子の共振周波数を生体外から検出して、被測定点の温
度を測定する生体内温度測定センサにおいて、 前記圧電素子部と前記アンテナ部を分離し、その間を可
撓性連絡部材で接続したことを特徴とする生体内温度測
定センサ。
(1) It is equipped with a piezoelectric element part whose resonant frequency changes depending on the temperature and an antenna part which transmits information from the piezoelectric element part to the outside, and is implanted at a point to be measured in a living body and the piezoelectric element is An in-vivo temperature measurement sensor that measures the temperature of a point to be measured by detecting a resonant frequency from outside the living body, characterized in that the piezoelectric element part and the antenna part are separated, and a flexible connecting member is used to connect them. In-vivo temperature measurement sensor.
(2)前記圧電素子を複数個設け、単数個の前記アンテ
ナ部と前記可撓性連絡部材で接続したことを特徴とする
前記特許請求の範囲第1項記載の生体内温度測定センサ
(2) The in-vivo temperature measurement sensor according to claim 1, wherein a plurality of said piezoelectric elements are provided and connected to a single said antenna part by said flexible communication member.
JP60278724A 1985-12-11 1985-12-11 Sensor for measuring temperature in living body Pending JPS62137031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60278724A JPS62137031A (en) 1985-12-11 1985-12-11 Sensor for measuring temperature in living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60278724A JPS62137031A (en) 1985-12-11 1985-12-11 Sensor for measuring temperature in living body

Publications (1)

Publication Number Publication Date
JPS62137031A true JPS62137031A (en) 1987-06-19

Family

ID=17601314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60278724A Pending JPS62137031A (en) 1985-12-11 1985-12-11 Sensor for measuring temperature in living body

Country Status (1)

Country Link
JP (1) JPS62137031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137322A (en) * 2010-12-24 2012-07-19 Furuya Kinzoku:Kk Temperature sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137322A (en) * 2010-12-24 2012-07-19 Furuya Kinzoku:Kk Temperature sensor

Similar Documents

Publication Publication Date Title
US3576554A (en) Passive telemetry system
US4776334A (en) Catheter for treatment of tumors
US4517982A (en) Sensing device for cardio-pulmonary functions
JP4808391B2 (en) Encapsulated sensor with external antenna
US3661148A (en) Induction type artery gage
US5246008A (en) Method for monitoring a patient for rejection reactions to an implanted heart
US8874186B2 (en) Apparatus and method for monitoring physiological parameters using electrical measurements
RU2454639C2 (en) Electronic thermometer
US4688580A (en) Non-invasive electromagnetic technique for monitoring bone healing and bone fracture localization
Hart et al. A noninvasive electromagnetic conductivity sensor for biomedical applications
US4785824A (en) Optical fiber probe for measuring the temperature of an ultrasonically heated object
FI119172B (en) Electrode construction for measuring electrical responses from a human body
JPS62137031A (en) Sensor for measuring temperature in living body
US4860756A (en) Electromagnetic bone healing sensor using a multi-coil sensor array
Larsen et al. A microwave decoupled brain-temperature transducer
JPS62114529A (en) Sensor for measuring temperature in living body
JPS62192138A (en) Production of sensor for measuring temperature in living body
Marrelli et al. Miniature angle transducer for marine arthropods
JP2004523314A (en) Medical strip electrode
JP2848959B2 (en) Sensor position monitoring method
JP2020049389A (en) Ultrasonic therapeutic apparatus
JPS62192136A (en) Apparatus for measuring temperature in living body
KR100438140B1 (en) Blood pulse measurement by magnetic method
KR102333062B1 (en) Electromagnetic Wave based Non-Invasive Glucose Sensor and Sensing Method thereof
JPS62192137A (en) Sensor for measuring temperature in living body