JPS62136618A - Optical device - Google Patents

Optical device

Info

Publication number
JPS62136618A
JPS62136618A JP27831085A JP27831085A JPS62136618A JP S62136618 A JPS62136618 A JP S62136618A JP 27831085 A JP27831085 A JP 27831085A JP 27831085 A JP27831085 A JP 27831085A JP S62136618 A JPS62136618 A JP S62136618A
Authority
JP
Japan
Prior art keywords
optical
light
plate
wave
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27831085A
Other languages
Japanese (ja)
Inventor
Fumio Wada
和田 史生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27831085A priority Critical patent/JPS62136618A/en
Publication of JPS62136618A publication Critical patent/JPS62136618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate polarization dependency by arranging a birefringence plate in an optical path and also arranging a 1/4-wavelength plate right behind it. CONSTITUTION:A light wave 3 entering an optical device is incident on the incidence surface of the birefringence plate 1 at a 0 deg. angle of incidence, and the polarized component S wave perpendicular to the incidence surface ravels straight (3A) and is transmitted through the 1/4-wavelength plate 2 to travel while coinciding with the axis of the light wave 3. The polarized component P wave of the light wave 3 which is parallel to the incidence surface is refracted abnormally (3B) and passes through the birefringence plate 1, and the light is refracted by a projection surface in parallel to the axis of the light wave 3 and passed through the 1/4-wavelength plate 2 to travel in parallel to the axis of the light wave 3. The P and S waves shift in phase by a quarter as much as the wavelength when passing through the 1/4-wavelength plate 2, so the light projected from the 1/4-wavelength plate 2 is circularly polarized light. This is therefore equivalent to random polarized light apparatently and characteristic variation (polarization dependency) of the degree of optical coupling, transmission loss, and transmission waveform, etc., is eliminated, thereby facilitating the design of an optical device.

Description

【発明の詳細な説明】 (概要〕 光波を授受する光部品が配設されてなる光デバイスにお
いて、光デバイス内の入射側の光路に、複屈折板と17
4波長板とを挿入することにより、光デバイスの偏光依
存性を解消する。
DETAILED DESCRIPTION OF THE INVENTION (Summary) In an optical device in which optical components for transmitting and receiving light waves are arranged, a birefringent plate and a
By inserting a four-wavelength plate, the polarization dependence of the optical device is eliminated.

〔産業上の利用分野〕[Industrial application field]

本発明は、光結合、光分岐、光分波、光合波等の機能を
備えた光デバイスに関する。
The present invention relates to an optical device having functions such as optical coupling, optical branching, optical demultiplexing, and optical multiplexing.

光通信機器等においては、光結合、光分岐9光分波、光
合波等の機能を備えた光デバイスが広く使用されている
In optical communication equipment and the like, optical devices having functions such as optical coupling, optical branching/demultiplexing, and optical multiplexing are widely used.

光通信に使用される半導体レーザの発する光は、はぼ直
線偏光に近い偏光である。このような偏光は、温度変化
、光伝送路(例えば光ファイバ)の屈曲、側圧力等の環
境条件、及び時間経過等により、光の偏光条件が変動す
る。
The light emitted by a semiconductor laser used for optical communication is polarized light that is almost linearly polarized. The polarization conditions of such polarized light vary due to environmental conditions such as temperature changes, bending of an optical transmission path (for example, an optical fiber), lateral pressure, and the passage of time.

このことに起因して、このような光路に、光結合、光分
岐、光分波、光合波等の機能を備えた光デバイスを配設
すると、例えば、結合度、伝送損失、伝送波形等の特性
が変動する。即ち、光デバイスには、所謂偏光依存性が
ある。
Due to this, when an optical device with functions such as optical coupling, optical branching, optical demultiplexing, and optical multiplexing is installed in such an optical path, problems such as coupling degree, transmission loss, transmission waveform, etc. Characteristics vary. That is, optical devices have so-called polarization dependence.

したがって、偏光依存性の少ない光デバイスが、要望さ
れている。
Therefore, an optical device with less polarization dependence is desired.

〔従来の技術〕[Conventional technology]

第3図は、偏光依存性の少ない従来の光デバイスの光路
図であって、半導体レーザ5の発する光は、光伝送路(
光ファイバ)6を経て、光デバイス20に伝送される。
FIG. 3 is an optical path diagram of a conventional optical device with little polarization dependence, and the light emitted by the semiconductor laser 5 is transmitted through the optical transmission path (
The signal is transmitted to the optical device 20 via an optical fiber (optical fiber) 6.

なお、この光伝送路6に入射する偏光には、S波(入射
光の電界が入射面に垂直の成分を言い、図では紙面に垂
直な平面内で振動する光で示す。)と、P波(入射光の
電界が入射面に平行の成分を言い、図では紙面に平行な
平面内で振動する光で示す。)とが存在する。
Note that the polarized light incident on the optical transmission path 6 includes S waves (the component in which the electric field of the incident light is perpendicular to the plane of incidence, and is shown in the figure as light that oscillates within a plane perpendicular to the plane of the paper), and P waves. Waves (refers to the components of the electric field of incident light parallel to the plane of incidence, and are shown in the figure as light that oscillates in a plane parallel to the plane of the paper).

図示した光デバイス20は、光分岐器であって、光伝送
路6の出射側の端末は、筐体の側壁(図示せず)に固着
し、さらに出射光を平行にするレンズ7を装着しである
The illustrated optical device 20 is an optical splitter, and the output side terminal of the optical transmission line 6 is fixed to the side wall (not shown) of the housing, and is further equipped with a lens 7 that makes the output light parallel. It is.

光伝送路6の軸心の延長線上の対向する側壁には、一方
の出射路である光伝送路(光ファイバ)11を固着し、
光伝送路11の端面の直前には、レンズ8を装着しであ
る。
An optical transmission line (optical fiber) 11, which is one output path, is fixed to opposing side walls on the extension line of the axis of the optical transmission line 6.
A lens 8 is mounted just in front of the end face of the optical transmission line 11.

10は、薄いガラス板の表面に、誘電体膜を所望に多層
に形成してなる、例えばハーフミラ−の機能を有する光
学膜板である。
Reference numeral 10 denotes an optical film plate having a function of, for example, a half mirror, which is formed by forming dielectric films in multiple layers as desired on the surface of a thin glass plate.

光学膜板10は、レンズ7とレンズ8とのほぼ中間で、
光伝送路6に対して入射角αが、15度、または15度
以下になるように、筐体の底板に固着されている。
The optical film plate 10 is located approximately midway between the lenses 7 and 8,
It is fixed to the bottom plate of the housing so that the incident angle α with respect to the optical transmission line 6 is 15 degrees or less.

また、光伝送路6より出射し、光学膜板10で反射した
光の進路上の、側壁には、レンズ9及び他の出射路であ
る光伝送路(光ファイバ)12を装着しである。
Further, a lens 9 and an optical transmission path (optical fiber) 12, which is another output path, are attached to the side wall on the path of the light emitted from the optical transmission path 6 and reflected by the optical film plate 10.

上述の如く入射角が15度以内になるように、光学膜板
10を配設すると、P波、及びS波のパワー透過率、パ
ワー反射率がほぼ同等になることは、公知のことである
It is well known that when the optical film plate 10 is arranged so that the incident angle is within 15 degrees as described above, the power transmittance and power reflectance of P waves and S waves become almost equal. .

したがって、光デバイス20の光伝送路6より出射した
光パワーは、はぼ半分が光学膜板10を透過して光伝送
路11に入射し、残りの半分が光学膜板10で反射され
て、光伝送路12に入射する。
Therefore, approximately half of the optical power emitted from the optical transmission path 6 of the optical device 20 passes through the optical film plate 10 and enters the optical transmission path 11, and the remaining half is reflected by the optical film plate 10. The light enters the optical transmission line 12.

即ち、光デバイス20は、P波、S波に対して平等に反
応し、偏光依存性が、はぼ解消されたものである。
That is, the optical device 20 reacts equally to P waves and S waves, and polarization dependence is largely eliminated.

なお、光学膜板を、S波、P波に対して同等に反応する
よう膜設計し、光学膜板を入射角が45度になるように
配設、即ち9反射光側の出射路を、入射路に対して直交
する方向に配設しても、偏光依存性が少ない光デバイス
もある。
The optical film plate is designed to respond equally to S waves and P waves, and the optical film plate is arranged so that the incident angle is 45 degrees, that is, the output path on the reflected light side is There are also optical devices that have little polarization dependence even if they are arranged in a direction perpendicular to the incident path.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来の図示光デバイスは、入射側の光
伝送路と、反射光側の光伝送路の配置が30度以下の角
度となり、光路設計の自由度が少なくなり、且つ、それ
ぞれの光伝送路を固着するためには、光デバイスの筐体
を大きくしなければならないという問題点がある。
However, in the above-mentioned conventional illustrated optical device, the arrangement of the optical transmission path on the incident side and the optical transmission path on the reflected light side is at an angle of 30 degrees or less, reducing the degree of freedom in optical path design. There is a problem in that the casing of the optical device must be made larger in order to fix the optical device.

一方、S波、P波に対して同等に反応するよう膜設計し
た光デバイスは、この膜設計が複雑で困難であるばかり
でなく、所望の多層の膜形成が困難で、コスト高になる
という問題点がある。
On the other hand, for optical devices whose membranes are designed to respond equally to S waves and P waves, not only is the membrane design complicated and difficult, but it is also difficult to form a desired multilayer membrane, resulting in high costs. There is a problem.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来の問題点を解決するため本発明は、第1図の原
理図のように、光波3を授受する光部品が配設されてな
る光デバイス内の光路に、複屈折板lと、複屈折板lの
直後に、174波長板2とを配設し、174波長板2を
通過した光波を円偏光にしたものである。
In order to solve the above-mentioned conventional problems, the present invention, as shown in the principle diagram of FIG. A 174-wavelength plate 2 is disposed immediately after the refracting plate 1, and the light wave passing through the 174-wavelength plate 2 is made into circularly polarized light.

〔作用〕[Effect]

上記本発明の手段によれば、光デバイスの光路には、結
晶軸が紙面に平行し、受光面が紙面に直交する複屈折板
lを配設し、さらに、複屈折板1の直後に、複屈折板1
に並行した1/4波長板2を配設しである。
According to the means of the present invention, the optical path of the optical device is provided with a birefringent plate 1 whose crystal axis is parallel to the plane of paper and whose light-receiving surface is perpendicular to the plane of paper, and further, immediately after the birefringent plate 1, Birefringent plate 1
A 1/4 wavelength plate 2 is arranged parallel to the .

よって、光デバイス内に入射した光波3は、複屈折板l
の入射面に入射角0度で入射し、光波3の入射面に垂直
な偏光成分、即ちS波は、常光として複屈折板1に入射
する。したがって、S波は直進(光波3八で示す)して
、174波長板2に入射し、1/4波長板2を通過して
、光波3の軸心に一敗した方向に進む。
Therefore, the light wave 3 that has entered the optical device passes through the birefringent plate l.
The polarized light component perpendicular to the incident plane of the light wave 3, that is, the S wave, which is incident on the incident plane at an incident angle of 0 degrees, enters the birefringent plate 1 as ordinary light. Therefore, the S wave travels straight (indicated by light wave 38), enters the 174-wave plate 2, passes through the quarter-wave plate 2, and travels in the direction of the axis of the light wave 3.

一方、光波3の入射面に平行な偏光成分、即ちP波は、
異常光として複屈折板1に入射する。したがって、P波
は異常屈折率で屈折(光波3Bで示す)して、複屈折板
1を通過し、ざらに出射面で光波3の軸心に並行するよ
う屈折して、174波長板2に入射する。そして、1ノ
4波長板2を通過して、光波3の軸心に並行して進む。
On the other hand, the polarization component parallel to the plane of incidence of light wave 3, that is, the P wave, is
The light enters the birefringent plate 1 as extraordinary light. Therefore, the P wave is refracted by the extraordinary refractive index (indicated by light wave 3B), passes through the birefringent plate 1, is refracted roughly parallel to the axis of the light wave 3 at the exit surface, and enters the 174-wave plate 2. incident. The light then passes through a 1/4 wavelength plate 2 and travels parallel to the axis of the light wave 3.

このP波とS波は、174波長板2を通過時に位相が1
/4波長ずれるので、1ノ4波長板2より出射した光は
、円偏光である。したがって、見掛は上ランダム偏光と
等価となり、偏光依存性がなくなる。
These P waves and S waves have a phase of 1 when passing through the 174-wave plate 2.
Since the wavelength is shifted by /4 wavelength, the light emitted from the 1/4 wavelength plate 2 is circularly polarized light. Therefore, the appearance is equivalent to randomly polarized light, and there is no polarization dependence.

〔実施例〕〔Example〕

以下図示実施例により、本発明を具体的に説明する。な
お、全図を通じて同一符号は同一対象物を示す。
The present invention will be specifically explained below with reference to illustrated examples. Note that the same reference numerals indicate the same objects throughout the figures.

第2図は本発明の1実施例の光路図であって、半導体レ
ーザーの発する光は、光伝送路6を経て、光デバイス3
0に伝送される。
FIG. 2 is an optical path diagram of one embodiment of the present invention, in which light emitted from a semiconductor laser passes through an optical transmission line 6 and then passes through an optical device 3.
Transmitted to 0.

光デバイス30は、光伝送路6の出射側の端末が、筐体
の側壁に固着し、さらに、レンズ7を装着しである。
In the optical device 30, the output end of the optical transmission path 6 is fixed to the side wall of the housing, and a lens 7 is further attached.

光伝送路6の軸心の延長線上の対向する側壁には、一方
の出射路である光伝送路11を固着し、光伝送路11の
端面の直前には、レンズ8を装着しである。
An optical transmission line 11, which is one output path, is fixed to opposing side walls on an extension of the axis of the optical transmission line 6, and a lens 8 is mounted just in front of the end surface of the optical transmission line 11.

そして、光学膜板10をレンズ7とレンズ8とのほぼ中
間で、光伝送路6に対して入射角が45度になるように
、筐体の底板に固着しである。
Then, the optical film plate 10 is fixed to the bottom plate of the housing approximately halfway between the lenses 7 and 8 so that the angle of incidence with respect to the optical transmission path 6 is 45 degrees.

また、光伝送路6より出射し、光学膜板10で反射した
光波の進路上、即ち、光伝送路6と光伝送路11の光軸
に直交する方向に、レンズ9及び他の出射路である光伝
送路12を装着しである。
In addition, a lens 9 and other output paths are provided along the course of the light waves emitted from the optical transmission path 6 and reflected by the optical film plate 10, that is, in a direction perpendicular to the optical axes of the optical transmission path 6 and the optical transmission path 11. A certain optical transmission line 12 is attached.

レンズ7と光学膜板10の間に、結晶軸が紙面に平行し
、受光面が紙面に直交する複屈折板1を配設し、さらに
、複屈折板1の直後に、複屈折板1に並行した174波
長板2を配設しである。
A birefringent plate 1 whose crystal axis is parallel to the plane of the paper and whose light-receiving surface is perpendicular to the plane of the paper is arranged between the lens 7 and the optical film plate 10. 174 wavelength plates 2 are arranged in parallel.

上述のように構成した光デバイス30においては、光伝
送路6より入射した光は、複屈折板1の受光面に入射角
0度で入射し、S波は、常光として複屈折板1に入射し
直進(光波3Aで示す)して、174波長板2に入射し
、174波長板2を通過して、光学膜板10に入射する
In the optical device 30 configured as described above, the light incident from the optical transmission line 6 is incident on the light receiving surface of the birefringent plate 1 at an incident angle of 0 degrees, and the S wave is incident on the birefringent plate 1 as ordinary light. The light then travels straight (indicated by light wave 3A), enters the 174-wave plate 2, passes through the 174-wave plate 2, and enters the optical film plate 10.

またP波は異常屈折率で屈折(光波3Bで示す)して、
複屈折板1を通過し、さらに出射側の面で光波3の軸心
に並行するよう屈折して、174波長板2に入射する。
In addition, the P wave is refracted with an extraordinary refractive index (shown as light wave 3B),
The light passes through the birefringent plate 1, is further refracted at the exit side surface so as to be parallel to the axis of the light wave 3, and enters the 174-wavelength plate 2.

そして、174波長板2を通過して、光波3の軸心に並
行して進み光学膜板10に入射する。
The light then passes through the 174-wavelength plate 2 and proceeds parallel to the axis of the light wave 3 and enters the optical film plate 10 .

1/4波長板2を通過した光は円偏光であるので、光パ
ワーの半分は光学膜板10を直進して光伝送路11に入
射し、他の半分は、光学膜板10で反射して光伝送路1
2に入射する。
Since the light passing through the quarter-wave plate 2 is circularly polarized, half of the optical power goes straight through the optical film plate 10 and enters the optical transmission path 11, and the other half is reflected by the optical film plate 10. optical transmission line 1
2.

上述の如くに、光デバイス30は偏光依存性が解消され
ていることは勿論のこと、反射光側の光伝送路の配置が
、入射路に対して任意の角度に設定可能である。
As described above, in the optical device 30, not only polarization dependence is eliminated, but also the arrangement of the optical transmission path on the reflected light side can be set at any angle with respect to the incident path.

また、光路設計の自由度が多くて、設計が容易であるば
かりでなく、小形化にすることが容易であり、さらにま
た、膜設計が容易で、低コストである。
In addition, there is a large degree of freedom in optical path design, which not only facilitates design, but also facilitates miniaturization.Furthermore, membrane design is easy and costs are low.

なお、複屈折板で光をS波、P波に分離したことにより
、結合度の低下を防ぐ手段として、複屈折板を薄<シて
、並進ずれdを少なくし、平行仮に近かすけて、角度振
れを無くするようにする。
By separating the light into S waves and P waves using a birefringent plate, as a means of preventing a decrease in the degree of coupling, the birefringent plate is made thinner to reduce the translational shift d, and even if parallel to each other, it is , to eliminate angular shake.

なお、本発明は図示の光分岐器のみならず、光分波、光
合波等の機能を備えた光デバイスに、適用して効果があ
る。
Note that the present invention is effective when applied not only to the illustrated optical splitter but also to optical devices having functions such as optical demultiplexing and optical multiplexing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、光デバイス内の入射側の
光路に、複屈折板と1/4波長板とを挿入して光デバイ
スの偏光依存性を解消した光デバイスであって、光結合
堝失が少なく、光路設計の自由度が多くて、設計が容易
であり、小形化を推進でき、また、膜設計が容易で、低
コストである等、実用上で優れた効果がある。
As explained above, the present invention is an optical device that eliminates the polarization dependence of the optical device by inserting a birefringent plate and a quarter-wave plate in the optical path on the incident side of the optical device, and It has excellent practical effects such as less erosion, more freedom in optical path design, easier design, miniaturization, easier membrane design, and lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、 第2図は本発明の1実施例の光路図、 第3図は従来の光デバイスの光路図である。 図において、 lは複屈折板、 2は174波長板、 5は半導体レーザ、 6、11.12は光伝送路、 10は光学膜板を示す。 Figure 1 is a diagram of the principle of the present invention. FIG. 2 is an optical path diagram of one embodiment of the present invention, FIG. 3 is an optical path diagram of a conventional optical device. In the figure, l is a birefringent plate, 2 is a 174 wavelength plate, 5 is a semiconductor laser; 6, 11.12 is an optical transmission line, 10 indicates an optical film plate.

Claims (1)

【特許請求の範囲】 光波(3)を授受する光部品が配設されてなる光デバイ
ス内の光路に、 複屈折板(1)と、該複屈折板(1)の直後に1/4波
長板(2)とが、配設されてなることを特徴とする光デ
バイス。
[Claims] In an optical path within an optical device in which optical components for transmitting and receiving light waves (3) are arranged, a birefringent plate (1) and a quarter-wavelength filter immediately after the birefringent plate (1) are provided. An optical device characterized in that a plate (2) is arranged.
JP27831085A 1985-12-11 1985-12-11 Optical device Pending JPS62136618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27831085A JPS62136618A (en) 1985-12-11 1985-12-11 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27831085A JPS62136618A (en) 1985-12-11 1985-12-11 Optical device

Publications (1)

Publication Number Publication Date
JPS62136618A true JPS62136618A (en) 1987-06-19

Family

ID=17595555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27831085A Pending JPS62136618A (en) 1985-12-11 1985-12-11 Optical device

Country Status (1)

Country Link
JP (1) JPS62136618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504619A (en) * 1990-10-31 1996-04-02 Dainippon Screen Mfg. Co., Ltd. Scanning drum inner face and method of scanning therefor
JP2007010826A (en) * 2005-06-29 2007-01-18 Kyocera Corp Optical connector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504619A (en) * 1990-10-31 1996-04-02 Dainippon Screen Mfg. Co., Ltd. Scanning drum inner face and method of scanning therefor
JP2007010826A (en) * 2005-06-29 2007-01-18 Kyocera Corp Optical connector

Similar Documents

Publication Publication Date Title
US4671613A (en) Optical beam splitter prism
US5689360A (en) Polarization independent optical isolator
EP0848278B1 (en) Optical circulator
EP0488211B1 (en) Polarization independent optical device
US5726801A (en) Reduced optical isolator module for a miniaturized laser diode assembly
JPH0990279A (en) Polarization independent type optical isolator and optical circulator
US4702548A (en) Apparatus for separating or synthesizing light signals
JPS62136618A (en) Optical device
JPH085976A (en) Variable wavelength optical filter
CA2235306A1 (en) Optical coupler
JP3290578B2 (en) Optical isolator with Fabry-Perot ripple reducer
CN217543553U (en) Polarization beam splitter
JPH0527200A (en) Polarized wave coupler
JPS6134128B2 (en)
JPS5848018A (en) Optical circuit device
KR100264378B1 (en) Apparatus and the method of light seperation using brewster angle, and the method of manufacture of the apparatus
JP2647488B2 (en) Polarization coupler
JP2977926B2 (en) Optical circulator
JP3242839B2 (en) Variable wavelength selector
JP3388377B2 (en) Polarization-independent optical circulator
JP2000214328A (en) Polarization composite element and polarization composite module
JPS6343120A (en) Optical device
JP2002228984A (en) Optical circulator
JPS63183402A (en) Polarized light separating and synthesizing prism for optical device
JPH06230220A (en) Optical parts made from multilayered dielectric films