JPS62135852A - Solid-state discharging device - Google Patents

Solid-state discharging device

Info

Publication number
JPS62135852A
JPS62135852A JP27601685A JP27601685A JPS62135852A JP S62135852 A JPS62135852 A JP S62135852A JP 27601685 A JP27601685 A JP 27601685A JP 27601685 A JP27601685 A JP 27601685A JP S62135852 A JPS62135852 A JP S62135852A
Authority
JP
Japan
Prior art keywords
electrode
charged
voltage
ions
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27601685A
Other languages
Japanese (ja)
Inventor
Hidemune Ootake
英宗 大嶽
Seiichi Miyagawa
宮川 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP27601685A priority Critical patent/JPS62135852A/en
Publication of JPS62135852A publication Critical patent/JPS62135852A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cost of a power source greatly by providing an AC voltage applying means which generates ions nearby the 2nd electrode and a rectifying circuit which is connected between the 1st electrode and ground. CONSTITUTION:When the 1st electrode 2 and a body 5 to be charged are short- circuited and the AC voltage is applied between the 1st electrode 2 and the 2nd electrode 3, a charging current IC flows through an ammeter 10. Namely, a positive voltage based upon the 1st electrode 2 is applied to the 2nd electrode 3 within a range of 0<t<t1 when a point A is regarded as a reference point, and an electric field is produced between the grounded object body 5 and the 2nd electrode 3 in such a direction that positive ions are charged, thereby sticking the positive ions on the surface of the objective body 5. In a range of t1<t<t2, on the other hand, a negative voltage based upon the 1st electrode 2 is applied to the 2nd electrode 3 and an electric field is established between the object body 5 and the 2nd electrode 3 in such a direction that negative ions are charged, so the surface of the object body 5 is charged to the negative polarity and a negative current flows through the ammeter 10. Consequently, the need for a DC power source is eliminated and the cost of the power source is reduced greatly.

Description

【発明の詳細な説明】 (技術分野) 本発明は静電記録装置、電子写真装置等において、除帯
電装置等に使用され又放電装置、イオン源として種々の
分野に応用可能な固体放電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a solid-state discharge device that is used as a charge removal device in an electrostatic recording device, an electrophotographic device, etc., and can be applied to various fields as a discharge device and an ion source. .

(従来技術) 第4図に従来例に係る固体放電装置の電気的結線を示す
(Prior Art) FIG. 4 shows electrical connections of a solid state discharge device according to a conventional example.

固体放電装置1は誘電体4と該誘電体4を挟んで配設さ
れた第1電極2と第2電極3とで構成される。上記第1
電極2及び第2電極3との間に交流電圧印加手段6によ
り交流電圧を印加することにより、誘電体4表面に誘起
された電荷と第2電極3との間でコロナ放電が起こり、
第2電極3の近傍に正、負のイオンが発生する。従って
、上記第2電極3と被帯電体5との間にバイアス電圧印
加手段8により、バイアス電圧を印加して直流電界を形
成することにより、正、負のイオンのうち必要な極性の
イオンだけが加速されて、被帯電体5を所定の極性に帯
電させることが出来る。
The solid state discharge device 1 is composed of a dielectric 4 and a first electrode 2 and a second electrode 3 disposed with the dielectric 4 sandwiched therebetween. 1st above
By applying an AC voltage between the electrode 2 and the second electrode 3 by the AC voltage applying means 6, a corona discharge occurs between the charge induced on the surface of the dielectric 4 and the second electrode 3.
Positive and negative ions are generated near the second electrode 3. Therefore, by applying a bias voltage between the second electrode 3 and the object to be charged 5 by the bias voltage applying means 8 to form a DC electric field, only ions of necessary polarity among positive and negative ions can be applied. is accelerated, and the object to be charged 5 can be charged to a predetermined polarity.

次に他の従来例の構造を第5図に示す。Next, the structure of another conventional example is shown in FIG.

この従来例において、第4図に示した例と異なるところ
は、バイアス電圧印加手段8が第2電極3と被帯電体5
との間ではなく、第1電極2と被帯電体5との間に接続
されている点である。
This conventional example differs from the example shown in FIG. 4 in that the bias voltage applying means 8 is connected to the second electrode 3 and
The point is that it is connected between the first electrode 2 and the object to be charged 5, rather than between the first electrode 2 and the charged object 5.

このようにバイアス電圧の印加点を設定することにより
、次のような効果が得られる。即ち、第4図に示すよう
な機構では、第2電極3と被帯電体5との間の電界は、
バイアス電圧印加手段8のみによって形成されるが、第
5図に示す接続機構によれば、イオンを被帯電体5に向
かわせる電界は、バイアス電圧印加手段8による電圧に
、交流電圧印加手段6による電圧を同一方向に重畳した
電圧によって形成されるため、大きな電界が得られ、帯
電効率が大幅に改善されるわけである。
By setting the application point of the bias voltage in this way, the following effects can be obtained. That is, in the mechanism shown in FIG. 4, the electric field between the second electrode 3 and the charged object 5 is
Although it is formed only by the bias voltage application means 8, according to the connection mechanism shown in FIG. Since it is formed by voltages superimposed in the same direction, a large electric field is obtained and charging efficiency is greatly improved.

しかしながら、以上述べてきた従来例は、いずれもコロ
ナ放電を起こすための交流電圧印加手段6に加えて必要
な極性のイオンを被帯電体5に向かわせるためのバイア
ス電圧印加手段8を別電源として必要としていたため、
装置の電源コストがアップすると共に、小型化、軽量化
に対して不利であった。
However, in all of the conventional examples described above, in addition to the AC voltage application means 6 for causing corona discharge, the bias voltage application means 8 for directing ions of necessary polarity toward the charged object 5 are provided as separate power supplies. Because I needed it,
This increases the power supply cost of the device and is disadvantageous to miniaturization and weight reduction.

(目的) 本発明はこの様な背景に基づいてなされたものであり、
従来の固体放電装置で必要としていたバイアス電圧印加
装置を取り除くことにより、電源コストを大幅に削減し
た固体放電装置を提供することを目的とする。
(Purpose) The present invention was made based on this background,
It is an object of the present invention to provide a solid state discharge device in which power supply costs are significantly reduced by removing the bias voltage application device required in conventional solid state discharge devices.

(構成) そのために本発明は第1電極と接地間に接続される整流
回路を設け、整流回路の整流方向に従って一方の極性の
イオンのみ被帯電体に引き寄せられるようにしたことを
特徴とするものである。
(Structure) For this purpose, the present invention is characterized in that a rectifier circuit is provided that is connected between the first electrode and the ground, and only ions of one polarity are attracted to the charged object according to the rectification direction of the rectifier circuit. It is.

以下、本発明の一実施例を図面に基づき説明する。尚、
従来例と同一個所は同一符号とする。
Hereinafter, one embodiment of the present invention will be described based on the drawings. still,
The same parts as in the conventional example are given the same reference numerals.

第1図に本発明の一実施例に係る固体放電装置の電気的
結線を示す。
FIG. 1 shows electrical connections of a solid state discharge device according to an embodiment of the present invention.

図において、固体放電装置1は誘電体4を挾んで配設さ
れた第1電極2と第2電極3で構成され、上記第1電極
2と第2電極3との間に交流電圧印加手段6により、交
流電圧を印加することにより、第2電極3の近傍に正、
負のイオンが発生する。
In the figure, a solid state discharge device 1 is composed of a first electrode 2 and a second electrode 3 disposed with a dielectric 4 in between, and an AC voltage applying means 6 between the first electrode 2 and the second electrode 3. By applying an AC voltage, a positive voltage is generated near the second electrode 3.
Negative ions are generated.

ここで、図に示すように、第1電極2と被帯電体5との
間に整流回路7を接続することにより、上記整流回路の
整流方向に従って、一方の極性のイオンのみ被帯電体5
に引き寄せられて帯電する。
Here, as shown in the figure, by connecting a rectifier circuit 7 between the first electrode 2 and the charged object 5, only ions of one polarity can be applied to the charged object according to the rectifying direction of the rectifying circuit.
It is attracted to and becomes electrically charged.

以下、この動作の詳細な説明を行う。第2A図〜第2C
図は説明のための図であり、固体放電素子1の構成は第
1図に示したものと同様であり、整流回路7の部分を3
通りに場合分けしたものである。第2A図において、第
1電極2と被帯電体5との間には整流回路を介さずに両
者を直接短絡させている。この結線状態で第1電極2と
第2電極3の間に交流電圧を印加すると、電流計10に
は第3A図の(blに示したような帯電電流■。が流れ
る。即ち第2A図のAで示した点を基準点とした場合、
第3A図においてQ<t<t、の範囲では、第2電極3
には第1電極2を基準として正の電圧が印加されており
、接地された被帯電体5と第2電極3との間には、正イ
オンを帯電させる方向の電界が形成される。従って、第
2電極3の近傍に発生した正イオンが被帯電体5の表面
に付着して、正極性に帯電し、誘導電流が電流計10に
示される。
This operation will be explained in detail below. Figures 2A to 2C
The figure is a diagram for explanation, and the configuration of the solid-state discharge element 1 is the same as that shown in FIG.
It is divided into cases. In FIG. 2A, the first electrode 2 and the charged object 5 are directly short-circuited without using a rectifier circuit. When an alternating current voltage is applied between the first electrode 2 and the second electrode 3 in this connected state, a charging current (2) as shown in FIG. 3A (bl) flows through the ammeter 10. That is, as shown in FIG. If the point indicated by A is used as the reference point,
In the range of Q<t<t in FIG. 3A, the second electrode 3
A positive voltage is applied to the first electrode 2 as a reference, and an electric field is formed between the grounded charged object 5 and the second electrode 3 in the direction of charging positive ions. Therefore, the positive ions generated in the vicinity of the second electrode 3 adhere to the surface of the charged object 5 to be positively charged, and an induced current is shown on the ammeter 10.

次に1.<1<12の範囲では、第2電極3には第1電
極2を基準として負の電圧が印加されており、被帯電体
5と第2電極3との間には負イオンを帯電させる方向の
電界が形成されるため、被帯電体5の表面は負極性に帯
電し、負の電流が電流計10に流れる。尚、第3A図(
alは交流電圧印加手段6による印加電圧波形(正弦波
)である。
Next 1. In the range <1<12, a negative voltage is applied to the second electrode 3 with respect to the first electrode 2, and a direction is applied between the charged body 5 and the second electrode 3 in a direction to charge negative ions. Since an electric field is formed, the surface of the charged object 5 is negatively charged, and a negative current flows to the ammeter 10. Furthermore, Figure 3A (
al is a voltage waveform (sine wave) applied by the AC voltage applying means 6.

次に第2B図に示した回路の動作について説明する。Next, the operation of the circuit shown in FIG. 2B will be explained.

この図に示した回路は第1電極2と被帯電体5との間に
図中のB点からA点に向かう方向を順方向とするように
整流器を接続した場合である。この結線状態で第1を極
2と第2電極3との間に交流電圧を印加すると、電流計
10には第3B図に示したような電流が流れる。
The circuit shown in this figure is a case where a rectifier is connected between the first electrode 2 and the charged object 5 so that the direction from point B to point A in the figure is the forward direction. When an alternating current voltage is applied between the first electrode 2 and the second electrode 3 in this connected state, a current as shown in FIG. 3B flows through the ammeter 10.

即ち、第2B図のAで示した点を基準点とすると、第3
B図において0<t<t、の範囲では、第2電極3には
正の電圧が印加されており、被帯電体5と第21i極3
との間には正イオンを帯電させる方向の電界が形成され
る。従って、第2電極3の近傍の正イオンが被帯電体5
に向かって移動し、被帯電体5の表面に帯電する。この
時電流はBから六方向に流れ、これは整流器7の順方向
である。
That is, if the point indicated by A in Fig. 2B is the reference point, then the third
In the range of 0<t<t in Figure B, a positive voltage is applied to the second electrode 3, and the charged body 5 and the 21i-th electrode 3
An electric field is formed between them in a direction that charges positive ions. Therefore, positive ions near the second electrode 3 are transferred to the charged body 5.
The charging target 5 moves towards the surface of the object 5 to be charged. At this time, current flows in six directions from B, which is the forward direction of the rectifier 7.

さらに1.<1<12の範囲では、第2電極3には負の
電圧が印加されており、イオンが発生しているが、負の
イオンは被帯電体5に向かつて移動することなく、第2
電極3.の近傍あるいは誘電体4の表面に滞留する。こ
れは、整流器7が接続されているため、逆方向の電荷の
移動が起こらないからである。このようにして第2B図
に示した回路構成では、帯電電流■。は正方向にしか流
れず、したがって第3B図に示したような波形になり、
被帯電体5は正極性に帯電する。
Furthermore 1. In the range <1<12, a negative voltage is applied to the second electrode 3 and ions are generated, but the negative ions do not move toward the charged object 5 and are transferred to the second electrode 3.
Electrode 3. or on the surface of the dielectric 4. This is because since the rectifier 7 is connected, charge movement in the opposite direction does not occur. In this way, in the circuit configuration shown in FIG. 2B, the charging current is . flows only in the positive direction, resulting in a waveform as shown in Figure 3B,
The object to be charged 5 is positively charged.

さらに第2C図に示し回路では、整流器7の接続方向が
第2B図の場合と逆になっているため、帯電電流I、の
流れる方向も第2B図の場合と逆になり、第3C図に示
したように負方同にしか流れず、被帯電体5の表面は負
極性に帯電することになる。
Furthermore, in the circuit shown in FIG. 2C, since the connection direction of the rectifier 7 is reversed from that in FIG. 2B, the direction in which the charging current I flows is also reversed from that in FIG. As shown, the current flows only in the negative direction, and the surface of the charged object 5 is negatively charged.

以上述べてきたように、本発明によれば、バイアス電圧
を印加するための電源は用いずに第1電極2と被帯電体
5との間に整流回路を接続することにより、被帯電体を
一方の極性に帯電させることが出来る。
As described above, according to the present invention, by connecting a rectifier circuit between the first electrode 2 and the charged object 5 without using a power source for applying a bias voltage, the charged object can be controlled. It can be charged to one polarity.

尚、本発明による回路構成により実際に作動させたとこ
ろ、下表に示すように充分な帯電電流を得ることが出来
た。
When the circuit configuration according to the present invention was actually operated, a sufficient charging current could be obtained as shown in the table below.

但し、5KHz時であり、被帯電体と固体放電素子との
ギャップは4鶴である。(帯電電流密度の単位はμA 
/all) (効果) 本発明は以上述べた通りのものであり、本発明に係る固
体放電装置によれば、交流電源のみを使用し、直流電源
を必要としないので、電源コストが大幅に削減され、回
路構成がMjlになる。ま7こ装置の小型化、軽量化、
あるいは消費電力の削減を計ることが出来る。
However, the frequency is 5 KHz, and the gap between the charged body and the solid discharge element is 4 squares. (The unit of charging current density is μA
/all) (Effects) The present invention is as described above, and the solid-state discharge device according to the present invention uses only an AC power source and does not require a DC power source, so power supply costs are significantly reduced. The circuit configuration becomes Mjl. Making the device smaller and lighter,
Alternatively, it is possible to reduce power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る固体放電装置の電気的
結線図、第2A図、第2B図、第2C図はその要部であ
る整流回路の働きを説明するための回路図、第3A図(
al、 (bl、第3B図、第3C図はそれぞれ第2A
図、第2B図、第2C図に対応する波形図、第4図、第
5図はそれぞれ異なる従来例に係る固体放電装置の電気
的結線図である。 2・・・第1電極、3・・・第2電極、4・・・誘電体
、6・・・交流電圧印加手段、7・・・整流回路。 第3A図 第3B図 ri ■ 第3C図 第4図 第5図
FIG. 1 is an electrical wiring diagram of a solid state discharge device according to an embodiment of the present invention, FIGS. 2A, 2B, and 2C are circuit diagrams for explaining the function of a rectifier circuit, which is the main part thereof, Figure 3A (
al, (bl, Figures 3B and 3C are respectively 2A
The waveform diagrams corresponding to FIGS. 2B and 2C, and FIGS. 4 and 5 are electrical connection diagrams of solid-state discharge devices according to different conventional examples, respectively. 2... First electrode, 3... Second electrode, 4... Dielectric, 6... AC voltage application means, 7... Rectifier circuit. Figure 3A Figure 3B ri ■ Figure 3C Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 誘電体と、上記誘電体を介して配設された第1電極及び
第2電極と、上記第1電極と第2電極との間に交流電圧
を印加し、上記第2電極の近傍にイオンを発生させるた
めの交流電圧印加手段と、上記第1電極と接地間に接続
される整流回路とを有することを特徴とする固体放電装
置。
An alternating current voltage is applied between a dielectric, a first electrode and a second electrode disposed through the dielectric, and the first and second electrodes to generate ions near the second electrode. A solid state discharge device comprising: means for applying an alternating voltage to generate the alternating voltage; and a rectifier circuit connected between the first electrode and ground.
JP27601685A 1985-12-10 1985-12-10 Solid-state discharging device Pending JPS62135852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27601685A JPS62135852A (en) 1985-12-10 1985-12-10 Solid-state discharging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27601685A JPS62135852A (en) 1985-12-10 1985-12-10 Solid-state discharging device

Publications (1)

Publication Number Publication Date
JPS62135852A true JPS62135852A (en) 1987-06-18

Family

ID=17563610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27601685A Pending JPS62135852A (en) 1985-12-10 1985-12-10 Solid-state discharging device

Country Status (1)

Country Link
JP (1) JPS62135852A (en)

Similar Documents

Publication Publication Date Title
JP4219451B2 (en) Static eliminator
US4567541A (en) Electric power source for use in electrostatic precipitator
US4775915A (en) Focussed corona charger
JPH08217412A (en) Corona discharge apparatus
CN110165925B (en) High-voltage friction nano generator, high-voltage power supply, self-driven sucker and power generation method
JPS62135852A (en) Solid-state discharging device
JPS60195566A (en) Discharging device
JPS6219033B2 (en)
US3875482A (en) Charging control device
KR100205392B1 (en) Electrostatic precipitator
JP2789187B2 (en) Mobile object static elimination method
JPS6251463A (en) Electric discharge device
JPS58108559A (en) Charging device for electronic copying machine or the like
JPS6136771A (en) Electrifier
JPS6317472A (en) Corona discharger
JPH0685360B2 (en) Static electricity removal method
EP0386242A1 (en) Pulsed-voltage source for gas-cleaning electrofilters
JPS5923499A (en) Static electricity removing method
JPS59147154U (en) Corona charger for electrophotographic equipment
JPS61254966A (en) Corona charging device
JPS62139571A (en) Electric discharging device
JPS6250856A (en) Electostatic charger
JPS61254965A (en) Corona charging device
JPS62240979A (en) Solid state discharge device
JPS6216962U (en)