JPS62134610A - Splicing method for optical fiber - Google Patents

Splicing method for optical fiber

Info

Publication number
JPS62134610A
JPS62134610A JP27509485A JP27509485A JPS62134610A JP S62134610 A JPS62134610 A JP S62134610A JP 27509485 A JP27509485 A JP 27509485A JP 27509485 A JP27509485 A JP 27509485A JP S62134610 A JPS62134610 A JP S62134610A
Authority
JP
Japan
Prior art keywords
optical fibers
optical fiber
jig
groove
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27509485A
Other languages
Japanese (ja)
Inventor
Kunio Masuno
枡野 邦夫
Yoshio Yamagishi
山岸 嘉雄
Shuichi Okubo
秀一 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adamant Co Ltd
Tatsuta Electric Wire and Cable Co Ltd
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Tatsuta Electric Wire and Cable Co Ltd
Adamant Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Tatsuta Electric Wire and Cable Co Ltd, Adamant Kogyo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP27509485A priority Critical patent/JPS62134610A/en
Publication of JPS62134610A publication Critical patent/JPS62134610A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3803Adjustment or alignment devices for alignment prior to splicing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To adhere optical fibers with a high reliability by using optical fibers where metallic coatings are provided on outside peripheral parts and splicing optical fibers mutually or the optical fiber and an apparatus or an element. CONSTITUTION:In case of mutual splicing of optical fibers by soldering, a proper jig is used to put a solder 6 on butted end parts where sheaths are removed to expose metallic coatings. It is preferable that a copper V groove metallic fitting having a V groove 9 is used as the jig 6. The V groove 9 functions to fix fibers, prevent the break and cracks in the fiber junction part, and improve centering. Butted end parts of optical fibers and the jig are soldered integrally into one body to connect optical fibers.

Description

【発明の詳細な説明】 第1図は本発明方法において使用する光フアイバ芯線F
の断面の一例を示す。ガラス或いはプラスチック製のコ
ア1及びクラッド2が光ファイバを構成する。光にとっ
ては、コアとクラッドの境界が壁の役目を為し、コアの
屈折率がクラッドの屈折率より大きく設計されている。
DETAILED DESCRIPTION OF THE INVENTION FIG. 1 shows an optical fiber core F used in the method of the present invention.
An example of a cross section is shown. A core 1 and a cladding 2 made of glass or plastic constitute an optical fiber. For light, the boundary between the core and cladding acts as a wall, and the refractive index of the core is designed to be larger than the refractive index of the cladding.

屈折率の大きな媒質を屈折率の小さな媒質で取囲むこと
によって屈折率の大きな媒質中を光が伝搬することが出
来るというのが光ファイバの基本原理である。クラッド
の外周に一層若しくは複数層の金属被離層から成る金属
被覆5が形成される。金属被覆の外側には、1次被覆層
、緩衝1台、2次被覆層といった外皮層4が形成される
。外皮層は、シリコン樹脂、ナイロン等により構成され
る。ファイバ全体または1部を金属被覆したもの以外に
接続部だけ金属被覆しても良い。
The basic principle of optical fibers is that light can propagate through a medium with a high refractive index by surrounding it with a medium with a low refractive index. A metal coating 5 consisting of one or more metal release layers is formed around the outer periphery of the cladding. On the outside of the metal coating, outer skin layers 4 such as a primary coating layer, a buffer layer, and a secondary coating layer are formed. The outer skin layer is made of silicone resin, nylon, or the like. In addition to coating the whole or part of the fiber with metal, only the connecting portion may be coated with metal.

金属被覆層は、ガラス層との接合性、半田との溶着性、
耐誘性等の観点からへ数層として構成し、下層にはガラ
ス層との接合性を主眼としそして表層には半田との溶着
性、耐誘性等を主眼として適切な金属種を選択すること
が好ましい。表層と下層との整合性が良いことも必要で
ある。例えば、下層としてガラスとの整合性の良いNi
 を使用し、そして表層としてはCu 、 A12 、
 Au  等が使用しうる。従って、下層−表1dの組
合せ例としては、Ni −Cu r Ni −Ag +
 Ni −Au等が挙げられ、更に、Ni −Cu −
Ag 、 Cu −Ni −Ag * Ni −Cu 
−Au 、 Cu −Ni −Au  のような三層榊
造がより効果的である。しかし、Cu 、 Ag 、 
Au  等の単独層でも充分に使用に耐える。
The metal coating layer has good bondability with the glass layer, weldability with solder,
It is composed of several layers from the viewpoint of resistance to induction, etc., and the lower layer is mainly focused on bonding with the glass layer, and the surface layer is selected with an appropriate metal type, focusing on adhesion with solder, resistance to induction, etc. It is preferable. It is also necessary that the surface layer and the lower layer have good consistency. For example, Ni can be used as the lower layer because it has good compatibility with glass.
and the surface layer is Cu, A12,
Au etc. can be used. Therefore, as a combination example of the lower layer-Table 1d, Ni-Cu r Ni-Ag +
Examples include Ni-Au, and furthermore, Ni-Cu-
Ag, Cu-Ni-Ag*Ni-Cu
-Au, Cu-Ni-Au three-layer Sakaki construction is more effective. However, Cu, Ag,
Even a single layer of Au or the like can sufficiently withstand use.

金属被覆は、真空蒸着法(スパッタ法も含む)や+1解
乃至無電解めっき法によって実施しうる。
Metal coating can be performed by vacuum deposition (including sputtering) or +1 deposition or electroless plating.

コストや生産速度の観点からは無電解めっき法が好まし
いが、ガラスとの整合性に関しては真空蒸着法が良好で
ある。被覆層の厚さは、厚い方が半田付は性の点からは
良好であるが、厚すぎると剥離を生じやすくまたコスト
高となる。これらを勘案して金属被覆の全厚さはQ、1
5〜15μm1より好ましくは0.7〜1.2μmとす
るのがよい。例えば、1μm  (::u単独層、Cl
3 μm Ni −Q、2 μmAu 、  Q、3 
μm Ni −Q、 7 μmcu二重層が適切である
。金属被覆後、表面酸化を避ける為に防錆処理をしてお
くことが好ましい。
Electroless plating is preferred from the viewpoint of cost and production speed, but vacuum evaporation is better in terms of compatibility with glass. The thicker the coating layer, the better the soldering properties, but if it is too thick, peeling is likely to occur and costs are high. Taking these into account, the total thickness of the metal coating is Q, 1
The thickness is preferably 0.7 to 1.2 μm, more preferably 0.7 to 1.2 μm. For example, 1 μm (::u single layer, Cl
3 μm Ni-Q, 2 μm Au, Q, 3
A μm Ni-Q, 7 μm cu bilayer is suitable. After metal coating, it is preferable to perform anti-corrosion treatment to avoid surface oxidation.

半田付けによる光ファイバの接続は、ファイバ同志の場
合は第2図に示すように適宜の治具6を使用して、外被
を取除き金属被覆の露出した突合せ端部に半田7を盛る
ことにより実施される。治具6としては、第2(b)図
に示すようにVflQ9を有する例えば銅製のV溝金具
を使用することが好ましい。■溝は、ファイバ同志の固
定、ファイバ接合部での折れ、割れの防止、芯出しの向
上といった役目を為す。
To connect optical fibers by soldering, in the case of two fibers, use an appropriate jig 6 as shown in Figure 2 to remove the outer jacket and apply solder 7 to the exposed butt ends of the metal coating. Implemented by As the jig 6, it is preferable to use, for example, a V-groove metal fitting made of copper and having VflQ9 as shown in FIG. 2(b). ■Grooves serve the functions of fixing fibers together, preventing bending and cracking at fiber joints, and improving centering.

接続は、光ファイバの突合せ端部と治具とを一体に半田
付けすることによってもたらされる。
The connection is effected by soldering the abutting ends of the optical fibers and the jig together.

接続に当っては、光ファイバの端末の外被をきれいに除
去し、更に光ファイバを直角且つ平滑に切断することが
必要である。こうした端末処理を施された、金属被覆を
露出した光ファイバは、■溝内に端部を突合せて置かれ
る。ファイバ間のギャップは目視で空間が確認し得ない
程度に密着される。その後、半田こてを使用しての通常
の作業によって突合せ端部に半田が盛られる。半田とし
てはヤニなしの半田の使用が好ましい。
For splicing, it is necessary to cleanly remove the outer sheath from the end of the optical fiber and cut the optical fiber at right angles and smoothly. The optical fiber that has been subjected to such terminal treatment and has its metal coating exposed is placed in the groove with its ends abutting each other. The gaps between the fibers are brought into close contact to such an extent that no space can be visually confirmed. Thereafter, solder is applied to the mating ends in the usual manner using a soldering iron. As the solder, it is preferable to use resin-free solder.

第3図には光フアイバ同志の接続の他の例を示す。この
方法は金属製スリーブ8を介して光フアイバ同志を接続
するもので、該スリーブ8は半田付可能な金属製であり
光ファイバの外径より1〜2μm大きい径の穴を有し、
スリーブの穴の両側から光ファイバを差し込み、両ファ
イバをスリーブ両婬部で半田付けして固定する。スリー
ブの材質としては金又は銀めっきをした銅や黄絹などが
適用できる。
FIG. 3 shows another example of connection of optical fibers. This method connects optical fibers together through a metal sleeve 8, which is made of solderable metal and has a hole with a diameter 1 to 2 μm larger than the outer diameter of the optical fiber.
Insert the optical fibers from both sides of the hole in the sleeve, and fix both fibers by soldering at both ends of the sleeve. As the material of the sleeve, gold- or silver-plated copper, yellow silk, or the like can be used.

第4図に示すように、接続が光電変換器11等の機器や
素子と光ファイバとの間で行われる場合には、金属ケー
ス10の出力口に直接半田付けが行われる。この堝合金
ス〈ケース10の出力口は半田可能な金属製もしくは半
田可能な金属めっきが施されている必要がある。
As shown in FIG. 4, when a connection is made between a device or element such as a photoelectric converter 11 and an optical fiber, soldering is performed directly to the output port of the metal case 10. The output port of the case 10 must be made of a solderable metal or plated with a solderable metal.

本発明は、多心光フアイバケーブルの多心一括接続にも
適用しうる。所定本数の■溝を有する金具を使用して先
きと同態様で接続が行われる。
The present invention can also be applied to multi-fiber batch connection of multi-fiber optical fiber cables. Connection is made in the same manner as before using metal fittings having a predetermined number of grooves.

金属被覆の存在は、従来見られたようなガラスクラッド
の損傷や曲がりを防止する点でも効果的である。
The presence of the metallization is also effective in preventing damage and bending of the glass cladding as seen in the past.

発明の効果 半田付けという簡便な方法でもって、光コネクタ法と同
等或いはそれ以上に良好な損失レベルと融着接続並みの
信頼性が得られる。コストも比較的安い。本方法は、低
コスト、接続の簡便性及び接続状態の安定性の面から、
光ファイバの普及に貢献するところ大である。特別な熟
練を要する接続技術は不要である。また、樹脂による固
定方法と異り、膨張係数の小さな金属による接続のため
、常用温度付近での信頼性は窩くなる。
Effects of the Invention With the simple method of soldering, it is possible to obtain a loss level equivalent to or better than that of the optical connector method and reliability comparable to that of fusion splicing. The cost is also relatively low. This method has the following advantages in terms of low cost, ease of connection, and stability of connection state.
This will greatly contribute to the spread of optical fiber. No connection techniques that require special skill are required. Also, unlike the fixing method using resin, the connection is made using metal with a small coefficient of expansion, so reliability is poor near normal temperatures.

実施例1 コア径50μm及びクラツド径125μmのGII光フ
ァイバ表面に無電解めっき法により厚さ1μmの銅被覆
を施した光ファイバを用いて、光フアイバ間のギャップ
を2μmとり、銅製V溝金具上で半田接続した。この場
合の接続損失は14dBでありそして温度特性(−20
〜+600C)は±α10dBであった。接続損失はコ
ネクタ接続の場合の一般値α5dB より良好であった
Example 1 An optical fiber having a core diameter of 50 μm and a cladding diameter of 125 μm is coated with copper to a thickness of 1 μm by electroless plating on the surface of the GII optical fiber. The gap between the optical fibers is set to 2 μm, and the surface is coated with a copper V-groove fitting made of copper. I connected it by soldering. The splice loss in this case is 14 dB and the temperature characteristic (-20
~+600C) was ±α10 dB. The connection loss was better than the general value α5 dB in the case of connector connection.

これは芯の出方が格段によいためと思われる。また、光
フアイバ間のギャップは0〜5μmの範囲で良好な結果
を得た。
This seems to be because the way the core comes out is much better. Further, good results were obtained when the gap between the optical fibers was in the range of 0 to 5 μm.

実施例2 コア径50μm及びクラツド径125μmのGI型型子
747表面金属被覆として下層に無電解めつきKよりα
5μmのニッケル層をそして表層に電解めっきにより0
.2μmの金1を形成した、光ファイバを用いて実施例
1と同じ方法で接続した。
Example 2 GI type mold 747 with a core diameter of 50 μm and a cladding diameter of 125 μm. Electroless plating on the lower layer as a metal coating on the surface.
A 5μm nickel layer is applied to the surface by electrolytic plating.
.. Connection was made in the same manner as in Example 1 using an optical fiber coated with 2 μm of gold 1.

この馬合には、接続損失1135 dBそして温度特性
±0.08dBと、実施例1より良好な結果を示した。
This match was achieved with a connection loss of 1135 dB and a temperature characteristic of ±0.08 dB, which were better results than Example 1.

第1図Figure 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光ファイバの断面図、第2(a)図はV溝金具
上での光フアイバ同志の半田付は接続状況を示す説明図
、第2(b)図は第2(a)図のX−X線に渋う断面図
、第3(a)図はスリーブの透視図、g3 (b)図は
スリーブを用いた光フアイバ同志の半田付は接続状態を
示す説明図、第4図は光ファイバと素子との接続例を示
す説明図である。 1: コア 2: クラッド 3: 金属被覆 4: 外皮 6: 治具 7: 半田 8: スリーブ 9: ■溝 10: 金属ケース 11: 素子           j・−”f。 代理人の氏名  倉 内 基 弘・  1第2(。)図
     第2(b)図 第4図 第3(0)図 ? 7  第3(b)図
Figure 1 is a cross-sectional view of the optical fiber, Figure 2 (a) is an explanatory diagram showing how the optical fibers are soldered together on the V-groove fitting, and Figure 2 (b) is Figure 2 (a). Figure 3 (a) is a perspective view of the sleeve, Figure 3 (b) is an explanatory diagram showing how optical fibers are soldered together using a sleeve, and Figure 4 FIG. 2 is an explanatory diagram showing an example of connection between an optical fiber and an element. 1: Core 2: Clad 3: Metal coating 4: Outer skin 6: Jig 7: Solder 8: Sleeve 9: ■Groove 10: Metal case 11: Element j・-”f. Name of agent: Motohiro Kurauchi・1 Figure 2(.) Figure 2(b) Figure 4 Figure 3(0)? 7 Figure 3(b)

Claims (1)

【特許請求の範囲】[Claims] 1)外周に金属被覆を施した光フアイバを使用し、光フ
アイバ同志或いは光フアイバと機器乃至素子とを半田付
けにより接続することを特徴とする光フアイバの接続方
法。
1) A method for connecting optical fibers, which uses optical fibers whose outer peripheries are coated with metal, and connects the optical fibers or the optical fibers and devices or elements by soldering.
JP27509485A 1985-12-09 1985-12-09 Splicing method for optical fiber Pending JPS62134610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27509485A JPS62134610A (en) 1985-12-09 1985-12-09 Splicing method for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27509485A JPS62134610A (en) 1985-12-09 1985-12-09 Splicing method for optical fiber

Publications (1)

Publication Number Publication Date
JPS62134610A true JPS62134610A (en) 1987-06-17

Family

ID=17550698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27509485A Pending JPS62134610A (en) 1985-12-09 1985-12-09 Splicing method for optical fiber

Country Status (1)

Country Link
JP (1) JPS62134610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628840A1 (en) * 1993-04-13 1994-12-14 Corning Incorporated A method of encapsulating optical components and products produced by that method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628840A1 (en) * 1993-04-13 1994-12-14 Corning Incorporated A method of encapsulating optical components and products produced by that method

Similar Documents

Publication Publication Date Title
CA1094322A (en) Solderable glass splices, terminations and hermetic seals
US4585304A (en) Technique for repairing and joining small diameter optical fiber cables
US5452387A (en) Coaxial optoelectronic mount and method of making same
JPH04318503A (en) Optical-fiber machining method
JPH0330122B2 (en)
JPS5922203B2 (en) Feedthrough for optical submarine repeaters
US6272273B1 (en) Hermetic cable joint
JPS62134610A (en) Splicing method for optical fiber
CA2339042C (en) Optical feedthrough and method of making same
JP3068941B2 (en) Optical fiber array device and method of manufacturing the same
JP5281072B2 (en) Optical connector and manufacturing method thereof
JPS59184313A (en) Formation of intermediate connecting part and terminal part of metallic coat optical fiber
JPS58216216A (en) Method for assembling optical fiber connector
JPS6343111A (en) Optical fiber branching device
JPS62134609A (en) Jig for connecting optical fiber
JP3078490B2 (en) Method of butt-joining lightwave paths and connecting arrays of lightwave paths to each other
JP3097440B2 (en) Optical fiber array and manufacturing method thereof
JPS61133909A (en) Ferrule and production of ferrule
JPH0362010A (en) Method for connecting metal coated fiber
JPH0459615B2 (en)
JPH02153308A (en) Optical fiber
JPS62192707A (en) Connector provided with optical fiber
JPS5830706A (en) Closed type device for preventing movement of optical fiber core
JPS5937513A (en) Connecting method of optical fiber cable
JPH1068838A (en) Optical fiber