JPS62134541A - Method for measuring apparent specific gravity of porous body - Google Patents

Method for measuring apparent specific gravity of porous body

Info

Publication number
JPS62134541A
JPS62134541A JP27505785A JP27505785A JPS62134541A JP S62134541 A JPS62134541 A JP S62134541A JP 27505785 A JP27505785 A JP 27505785A JP 27505785 A JP27505785 A JP 27505785A JP S62134541 A JPS62134541 A JP S62134541A
Authority
JP
Japan
Prior art keywords
water
specimen
sample
specific gravity
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27505785A
Other languages
Japanese (ja)
Inventor
Toshiki Miyazaki
宮崎 敏樹
Sanae Machino
町野 早苗
Satoru Suzuki
悟 鈴木
Kazushige Araki
荒木 和茂
Mototsugu Ono
小野 基次
Tsuneo Nishikawa
西川 恒男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27505785A priority Critical patent/JPS62134541A/en
Publication of JPS62134541A publication Critical patent/JPS62134541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To make it possible not only to measure apparent specific gravity but also to calculate a more accurate void ratio from the measurement of the true specific gravity of the same specimen, by imparting stable water supply capacity to a porous water absorbing material to wrap a water-containing specimen in said material and removing the surface water of the specimen with good reproducibility. CONSTITUTION:A specimen surface water removing instrument has a pair of two containers 1, 2 are preliminarily imparts moisture within a proper range to urethane foams to grasp a water-containing specimen 3 and the drain port 6 provided to the bottom part of the lower container 2 has a size discharging moisture in an amount equal to that of moisture absorbed from the surface of the specimen 3 by water-containing urethane foams. The specimen 3 dried and weighed is immersed in water to be defoamed by a vacuum apparatus and pressed for 4-5sec using the surface water removing instrument. By this method, the treatment of the specimen before measurement is finished and the measured specimen 14 is received in the reticulated specimen basket 12 suspended in water of the water tank 11 placed on a balance 10 at a definite position to perform measurement. A weight numerical value is divided by the specific gravity of water at the time of weighting to calculate the apparent volume of the specimen and the already measured dry wt. of the specimen is divided by said calculated value to calculate the apparent specific gravity of the specimen.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多孔体の気孔率を算出するために必要な見掛
比重を迅速且つ精度よく測定する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for quickly and accurately measuring the apparent specific gravity required for calculating the porosity of a porous body.

本発明で言う多孔体とは、製鉄用の鉄鉱石類。The porous body referred to in the present invention refers to iron ore for iron manufacturing.

副原料類、焼結鉱・ペレットなどの塊成鉱類。Auxiliary raw materials, agglomerated minerals such as sintered ore and pellets.

コークスおよび煉瓦類等を含むもので、本発明はこれら
の見掛比重および気孔率測定に広く利用され得るもので
ある。
These include coke, bricks, etc., and the present invention can be widely used for measuring their apparent specific gravity and porosity.

(従来の技術) 従来、多孔体、例えば製鉄用原料である鉄鉱石やペレッ
トの見掛比重は、JIS M 8718に規定されてい
る鉄鉱石類(ペレット)の見掛比重測定法により求めら
れてきた。近年ではオレイン酸ナトリウム水溶液を使用
したペレットの体積測定法(日本学術振興会・製銑第5
4委員会−1637)やコークス分野に於いてはJIS
 K 2151に規定されているコークス気孔率測定法
およびその迅速法(コークス・サーキュラ−985(+
982))による測定が試みられている。焼結鉱につい
ては、標準的な見掛比重測定法ならびに気孔率測定法が
ないため、試料を研磨し、その表面の画像解析による気
孔率測定法が試みられている。
(Prior Art) Conventionally, the apparent specific gravity of porous bodies, such as iron ore and pellets that are raw materials for iron manufacturing, has been determined by the apparent specific gravity measurement method for iron ores (pellets) specified in JIS M 8718. Ta. In recent years, a pellet volume measurement method using an aqueous sodium oleate solution (Japan Society for the Promotion of Science, Ironmaking No. 5) has been developed.
4 Committee-1637) and JIS in the coke field.
Coke porosity measurement method specified in K 2151 and its rapid method (Coke Circular-985 (+
982)) has been attempted. As there is no standard method for measuring apparent specific gravity or porosity of sintered ore, attempts have been made to measure porosity by polishing the sample and analyzing images of its surface.

(発明が解決しようとする問題点) 従来技術として製鉄用原料類の見掛比重測定に関連する
方法を前述したが、夫々の方法には次のような問題点が
ある。
(Problems to be Solved by the Invention) Methods related to measuring the apparent specific gravity of raw materials for iron manufacturing have been described above as conventional techniques, but each method has the following problems.

即ち、JIS M 8718に定められている鉄鉱石類
(ペレット)の見掛比重測定法によれば、焼結鉱が有す
る大きな気孔径までは気孔率として測定できない、また
、見掛体積の測定に於いて水銀が使用されるため、作業
環境および測定後の試料処理の面で問題が指摘されてい
る。
That is, according to the method for measuring the apparent specific gravity of iron ores (pellets) specified in JIS M 8718, the large pore diameter of sintered ore cannot be measured as porosity, and it is difficult to measure the apparent volume. Because mercury is used in this process, problems have been pointed out in terms of the working environment and sample processing after measurement.

水銀に係る作業環境の問題点を解決するためにオレイン
醇ナトリウム水溶液を使用したペレットの体積測定法が
ある。この方法はペレットに限定された体11測定法で
ある。仮に、この方法を焼結鉱類の体積測定に準用した
場合、オレイン醸ナトリウムならびにケロシンの拭き取
り法に問題が生じる。即ち、この方法に於ける拭き取り
法は容器内に脱脂綿またはガーゼを充填して試料表面の
溶液を吸収させるものであるため、充填した吸収材の交
換が必要となる。また、容器に吸収された溶液の排出孔
が設けられていないため、吸収材に持続して一定の吸収
能をもたせることができない。
In order to solve problems in the working environment related to mercury, there is a method for measuring the volume of pellets using an aqueous solution of sodium olein. This method is a body 11 measurement method limited to pellets. If this method were applied to the volume measurement of sintered minerals, a problem would arise in the method of wiping off sodium oleic acid and kerosene. That is, since the wiping method in this method involves filling the container with absorbent cotton or gauze to absorb the solution on the surface of the sample, it is necessary to replace the filled absorbent material. Furthermore, since the container is not provided with a discharge hole for the absorbed solution, the absorbent material cannot have a constant absorption capacity.

さらに、焼結鉱は表面形状が極めて複雑なため、この方
法では試料表面の溶液を均一に除去することが困難であ
る。
Furthermore, since the surface shape of sintered ore is extremely complex, it is difficult to uniformly remove the solution on the sample surface using this method.

コークスの分野ではJIS K 2151に従って気孔
率測定は実施されているが、試料を切り出してこれを煮
洟するなど大変に手間を要する。そこで、近年、その迅
速法(コークス・サーキュラ−985(1982)が実
施されている。この方法では、水中減圧脱泡後の試料に
付着する表面水のみ除去し、気孔中の水はそのまま残し
た状態に試料処理を行い、水中に吊して試料の見掛体積
を測定し、試料の見掛比重が算出される。
In the field of coke, porosity measurement is carried out according to JIS K 2151, but it requires a lot of effort, such as cutting out a sample and boiling it. Therefore, in recent years, a rapid method (Coke Circular 985 (1982)) has been implemented.In this method, only the surface water adhering to the sample after degassing under reduced pressure in water is removed, while the water in the pores is left intact. After processing the sample, the apparent volume of the sample is measured by suspending it in water, and the apparent specific gravity of the sample is calculated.

コークスの場合、表面水除去手段として含水スポンジの
上に試料を一回転させる方法が採用されている。しかし
、表面に大小多様な凹凸を有する焼結鉱の場合、コーク
スと同じ方法では再現性の高い表面水除去となりえない
、見掛比重は気孔率を求めるために測定されるものであ
る。焼結鉱では気孔径が大きく凹凸があり表面形状も複
雑なため、画像解析により気孔率を求める方法が試みら
れている。しかし、研磨コストが高く、多大の時間をも
要する。
In the case of coke, the method used to remove surface water is to rotate the sample once on a water-containing sponge. However, in the case of sintered ore, which has irregularities of various sizes on its surface, surface water cannot be removed with high reproducibility using the same method as for coke, and the apparent specific gravity is measured to determine the porosity. Since sintered ore has large pore diameters, unevenness, and a complex surface shape, attempts have been made to determine porosity using image analysis. However, polishing costs are high and it takes a lot of time.

以上の如く、焼結鉱の見掛比重を測定する場合を例にし
たように、大きな気孔径と複雑な表面形状を有する多孔
体に従来のコークス、鉄鉱石(ペレット)に適用されて
いる方法を採用すると精度面に問題があり、画像解析法
ではコスト、さらには測定時間などの効率面で問題があ
る。
As mentioned above, as an example of measuring the apparent specific gravity of sintered ore, the method is applied to conventional coke and iron ore (pellets) for porous bodies with large pore diameters and complex surface shapes. There are problems with accuracy when using image analysis methods, and problems with efficiency such as cost and measurement time when using image analysis methods.

(問題点を解決するための手段) 本発明は、かかる問題点を解決するためコークスに適用
されている方法(コークス・サーキュラ−985(19
82)を基本として、水中脱泡後試料の表面水を再現性
よく均一に除去する方法を見い出すことによって、焼結
鉱の如き多孔体の新しい見掛比重の測定方法を提供せん
としたもので、その要旨は、乾燥した多孔体を秤量した
後、これを水中に浸して減圧脱泡し、次に少くとも1個
には排水口を有する2個よりなる支持具にそれぞれ支持
または収容され、且つ予め定めた適正量の水分を含有さ
せた多孔質吸水材により前記減圧脱泡後の試料を挟んで
試料表面水を除去し、ついで、該試料を天秤上に設置し
た水槽内に上方より吊るし、天秤に表示される重量増分
を水の比重にて除することで試料の見掛体積を算出し、
さらに見掛体積で試料乾燥重量を除することにより試料
の見掛比重を算出する多孔体の見掛比重測定方法である
(Means for Solving the Problems) In order to solve the problems, the present invention provides a method applied to coke (Coke Circular 985 (1999)).
82), we attempted to provide a new method for measuring the apparent specific gravity of porous materials such as sintered ore by finding a method to uniformly remove surface water from a sample with good reproducibility after degassing in water. , the gist of which is that after weighing a dry porous body, it is immersed in water to degas it under reduced pressure, and then supported or housed in two supports each having at least one drainage port, In addition, water on the surface of the sample is removed by sandwiching the degassing sample with a porous water absorbing material containing a predetermined appropriate amount of water, and then the sample is suspended from above in a water tank placed on a balance. , calculate the apparent volume of the sample by dividing the weight increment displayed on the balance by the specific gravity of water,
This method further calculates the apparent specific gravity of a porous body by dividing the dry weight of the sample by the apparent volume.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明者等は前記の従来のコークスに適用されている測
定法に着目して、この方法を基本として焼結鉱等の多孔
体に適用し、しかも安定した表面水の除去法を研究する
過程で多孔質吸水材に予め一定量の水分を4えておいて
測定試料を挟むことにより、安定した給水能を発揮する
特性を見い出した。この特性を利用すべく研究した経過
を、多孔質吸水材としてウレタンフオームを用いた場合
を例にして説明する。
The present inventors focused on the conventional measurement method applied to coke, and applied this method to porous bodies such as sintered ore, in the process of researching a method for stable removal of surface water. We discovered that a porous water-absorbing material with a certain amount of water in advance and sandwiching a measurement sample in it can exhibit a stable water supply ability. The progress of research to take advantage of this property will be explained using an example of using urethane foam as a porous water absorbing material.

ウレタンフオームの含水率を変化させながら水中脱泡後
の焼結鉱の表面水除去度合をしらべるために試l側に残
る水分を測定したところ、第1図の結果を得た。これに
より、ウレタンフオームは体積比率にして5〜20%の
水分を含んだときに極めて安定した吸水能を発揮するこ
とが判明した。
In order to examine the degree of surface water removal from the sintered ore after underwater defoaming while changing the water content of the urethane foam, the water remaining on the sample side was measured, and the results shown in Figure 1 were obtained. As a result, it was found that urethane foam exhibits extremely stable water absorption ability when it contains 5 to 20% water by volume.

一方、多数の含水試料を連続して脱水処理する場合には
、測定試料よりウレタンフオームに水分が移行してウレ
タンフオーム中の含水率は増大する。第1図から明らか
なように、ウレタンフォーl、の含水率が20%を越え
て含水率が大きくなるにつれて測定試料の残留水分も増
大するので、連続測定を行う場合には安定した脱水が難
しい。
On the other hand, when a large number of water-containing samples are dehydrated in succession, water is transferred from the measurement sample to the urethane foam, and the water content in the urethane foam increases. As is clear from Figure 1, as the moisture content of urethane foam exceeds 20% and the moisture content increases, the residual moisture in the measurement sample also increases, making stable dehydration difficult when performing continuous measurements. .

従って連続処理で安定した表面水の除去を行うためには
、含水ウレタンフオームが試料表面より吸収する余分の
水分量を排出させてウレタンフオームの含水率を常に5
〜20%以内に保定する必要がある。さらに、ウレタン
フオームによる吸水量を安定化させるためには水中脱泡
後の焼結鉱全体を含水ウレタンフオームによりなるべく
一定の力で一定時間包み込む必要がある。これらの必要
条件を満たすべく、1例として木発明者等は第2図に示
す試料表面水除去器具を開発した。容器1.2の二個を
1対として開口部が合致するよう構成し、開口部にウレ
タンフオーム4,5が隆起状に露出するように容器内に
ウレタンフオームを収容した。かかる構造に於いて、ウ
レタンフオームに予め適正範囲内の水分を与え、図示の
如く含水試料3を挟んで一定時間のプレス操作を行うも
のである。
Therefore, in order to remove surface water stably in continuous processing, the water content of the urethane foam must be constantly maintained at 5% by draining the excess water absorbed by the hydrated urethane foam from the sample surface.
It is necessary to maintain it within ~20%. Furthermore, in order to stabilize the amount of water absorbed by the urethane foam, it is necessary to wrap the entire sintered ore after underwater defoaming in the hydrated urethane foam with as constant a force as possible for a certain period of time. In order to meet these requirements, the inventors of the present invention have developed a sample surface water removal device as shown in FIG. 2, as an example. The two containers 1 and 2 were constructed as a pair so that their openings matched, and the urethane foams were housed in the container so that the urethane foams 4 and 5 were exposed in a protruding manner at the openings. In this structure, the urethane foam is preliminarily moistened within an appropriate range, and a water-containing sample 3 is sandwiched between the urethane foams and a pressing operation is performed for a certain period of time as shown in the figure.

更に、第2図に示す表面水除去器具にはウレタンフオー
ムの含水率を安定させて測定試料の表面水除去効果の安
定を図るべく、下部容器2の底部に排水口6を穿設して
いる。尚、排水口は含水ウレタンフオームが試料表面よ
り吸収するに等しい水分量だけ排出されるような大きさ
に選定し、表面水を除去するに際しては吸収水分量と排
水量をより近似させるべく、含水試料を適正な時間だけ
プレスすれば良い。
Furthermore, the surface water removal device shown in FIG. 2 is provided with a drain port 6 at the bottom of the lower container 2 in order to stabilize the water content of the urethane foam and stabilize the surface water removal effect of the measurement sample. . In addition, the size of the drainage port is selected so that the amount of moisture equivalent to that absorbed by the hydrated urethane foam from the surface of the sample is discharged. Just press it for an appropriate amount of time.

以下に第2図に示す試料表面水除去器具を用いてウレタ
ンフオームの適正水分量、連続使用による水分量の変動
、適正なプレス時間等について検討した結果を説明する
The following describes the results of a study on the appropriate moisture content of urethane foam, fluctuations in moisture content due to continuous use, appropriate pressing time, etc. using the sample surface water removal device shown in FIG.

第2図に示す試料表面水除去器具に排水口6として直径
1.5mmの孔を4個穿設した。これを用いて、主に2
0±1a++s粒度の焼結鉱を1個づつ処理し測定した
例について述べる。はじめに、容器へ内蔵したウレタン
フオームの適正水分量について検討した結果を第4図に
示す0本方法によれば水中浸漬脱泡後の試料表面水除去
度合は、主として試料の気孔中に残留する水分量にて確
認できるため、水に馴染ませたウレタンフオームを軽く
絞った時のitを1.0とし、この状態で表面水除去処
理した試料の水分量を同じ<1.0として、試料側水分
と吸水材中水分の変動を夫々に重量比でプロットした。
Four holes each having a diameter of 1.5 mm were bored as drainage ports 6 in the sample surface water removal device shown in FIG. Using this, mainly 2
An example in which sintered ore with a grain size of 0±1a++s was processed and measured one by one will be described. First, the results of examining the appropriate moisture content of the urethane foam contained in the container are shown in Figure 4. According to this method, the degree of water removal from the sample surface after defoaming by immersion in water is mainly due to the moisture remaining in the pores of the sample. Since it can be confirmed by the amount, it is assumed that the IT value when the urethane foam that has been soaked in water is lightly squeezed is 1.0, and the moisture content of the sample that has been subjected to surface water removal treatment in this state is the same <1.0. The changes in water content and water content in the water-absorbing material were plotted in terms of weight ratio.

第4図は、同一焼結鉱について表面水除去操作を綴り返
した場合に於ける吸水材中水分の動きと表面水除去効果
の関係をよく示している。即ち、同じウレタンフオーム
でも上下容り内では飽和水分量が異なり、上下のウレタ
ンフオームにおいて水分量が安定するに従い試料表面水
除去効果も安定したものとなる。このことから、多孔質
吸水材としてウレタンフオームを用いる場合は水分量の
変動が少ない上部容器内水分量をウレタンフオーム4と
の体積比で求めると、適正水分量は5〜10 Vol、
!であることが判明した。
FIG. 4 clearly shows the relationship between the movement of moisture in the water-absorbing material and the surface water removal effect when the surface water removal operation is repeated for the same sintered ore. That is, even if the same urethane foam is used, the saturated water content is different in the upper and lower volumes, and as the water content becomes stable in the upper and lower urethane foams, the effect of removing water on the sample surface becomes stable. From this, when using urethane foam as a porous water-absorbing material, if the moisture content in the upper container, where there is little variation in moisture content, is determined by the volume ratio to the urethane foam 4, the appropriate moisture content is 5 to 10 Vol.
! It turned out to be.

次に、上部容器内初期水分を5〜10 Vollの範囲
に調整し、下部容器内の適正水分量を求めた。
Next, the initial moisture content in the upper container was adjusted to a range of 5 to 10 Vol, and the appropriate amount of moisture in the lower container was determined.

その結果を第5図に示す、ここでは、下部容器内水分を
ウレタンフオーム5との体積比にて変化させながら、含
水試料の表面水を除去して秤量し、これを繰り返して試
料側水分量の変動をプロットした。第5図にもとづいて
、下部容器内適正水分量をウレタンフオーム5との体積
比で求めたところ、適正水分量は10〜20 Voll
であることが判明した。
The results are shown in Figure 5. Here, the surface water of the water-containing sample is removed and weighed while changing the water content in the lower container in the volume ratio with the urethane foam 5, and this is repeated to determine the water content on the sample side. The variation of was plotted. Based on Fig. 5, the appropriate moisture content in the lower container was determined by the volume ratio to the urethane foam 5, and the appropriate moisture content was 10 to 20 Vol.
It turned out to be.

更に、多数の試料について連続使用する場合を想定し、
20±1II11粒度の焼結鉱200個を水中浸漬脱泡
し、第4図および第5図より求めた適正水分量の範囲内
で上下容器内初期水分を調整して順次に表面水を除去し
た。その結果は第6図に示す通り、ウレタンフオームの
湿潤度合は長期に安定していることが判明した。
Furthermore, assuming that a large number of samples will be used continuously,
200 pieces of sintered ore with a particle size of 20±1II11 were immersed in water for defoaming, and the initial moisture content in the upper and lower containers was adjusted within the range of appropriate moisture content determined from Figures 4 and 5, and surface water was sequentially removed. . As shown in FIG. 6, the results revealed that the degree of wetness of the urethane foam was stable over a long period of time.

以上の検討に加え、プレスによる吸収時間の効果を検討
した。第7図にその結果を示す、ここでは、20±1■
粒度の焼結鉱3個と12±1mm粒度のベレット1個を
試料とし、先に求めた適正水分の範囲で上部ウレタンフ
オーム4に7Vo1.駕、下部ウレタンフオーム5に1
7 Vol、$の水を含ませた表面水除去器具を用い、
時間を1秒づつ変化させながら試料に残る水分量の変動
について調べた。結果として、焼結鉱ではいづれもプレ
ス時間4秒間以上で安定し、ペレットでは1秒プレスで
早期に安定することが判明した。ベレットから除去され
る水分は表面水と考えられるため、焼結鉱の場合に水分
が低下するのは1表面に形成されている気孔的水分が吸
収時間により変化していると考えてよい。従って、プレ
スによる吸収時間は4秒間以上にて適正となる。かくし
て、本発明は試料表面水の吸収方法、吸収材水分および
吸収時間の決定により安定した測定前試料処理が可能と
なり、水中における試料の見掛体積測定精度を白石させ
るものとなる。
In addition to the above considerations, we also investigated the effect of absorption time by pressing. The results are shown in Figure 7, where 20±1■
Three pieces of sintered ore with grain size and one pellet with grain size of 12±1 mm were used as samples, and 7Vo1. Palette, lower urethane foam 5 to 1
Using a surface water removal device moistened with 7 Vol.
Changes in the amount of water remaining in the sample were investigated while changing the time in 1 second increments. As a result, it was found that all sintered ores stabilized when pressed for 4 seconds or more, and pellets became stable quickly after 1 second of pressing. Since the water removed from the pellet is considered to be surface water, the reason why the water content decreases in the case of sintered ore can be considered to be that the pore water formed on the surface changes depending on the absorption time. Therefore, the absorption time by pressing is appropriate for 4 seconds or more. Thus, the present invention enables stable sample processing before measurement by determining the absorption method of sample surface water, absorbent material moisture content, and absorption time, and improves the accuracy of measuring the apparent volume of a sample in water.

以上に述べた技術的手段を基本とする本発明の見掛比重
測定プロセスを測定手順に従って以下に述べる。まづ、
試料を乾燥して秤量し、これを水中に浸して真空装置に
より例えばITarr、まで減圧し、好ましくは20分
間脱泡する。かかる試料を例えば第2図に示す表面水除
去器具を用い4〜5秒間2つの多孔性吸水材の間に包ん
でプレスする。前述の如く、吸水材としてウレタンフオ
ームを用いた場合には5〜20 VOl、Xに水分調整
することにより安定した吸水能を発揮するため、含水試
料の表面水はここで均一に除去される。こうして測定前
の試料処理を終え、第3図に示す如く構成した装置にて
試料の見掛体積を測定する。測定試料14は、天秤10
に載せた水槽11の水中定位置に、スタンド15.スト
ッパ16.糸17およびプーリ18゜19を介して吊し
た網目状の試料カゴ12内に収容され、測定される。水
中秤量の際、気泡の付着を防止すべく、本方法では網目
の大きな試料カゴとした。かくして秤量した数値を秤量
時の水の比重で除して試料の見掛体積を求め、この見掛
体積で既に測定されている試料の乾燥重量を除して試料
の見掛比重を算出するものである。
The apparent specific gravity measurement process of the present invention based on the above-mentioned technical means will be described below according to the measurement procedure. Mazu,
The sample is dried and weighed, immersed in water, reduced in pressure by a vacuum device to, for example, ITarr, and degassed, preferably for 20 minutes. Such a sample is wrapped between two porous water-absorbing materials and pressed for 4 to 5 seconds using, for example, a surface water removing device shown in FIG. As mentioned above, when urethane foam is used as the water absorbing material, stable water absorption ability is exhibited by adjusting the water content to 5 to 20 VOl, X, so that the surface water of the water-containing sample is uniformly removed here. After finishing the sample processing before measurement, the apparent volume of the sample is measured using the apparatus configured as shown in FIG. The measurement sample 14 is placed on the balance 10
At a fixed position underwater in the aquarium 11 placed on the stand 15. Stopper 16. The sample is stored in a mesh-like sample basket 12 suspended via a string 17 and pulleys 18 and 19, and measured. In this method, a sample basket with a large mesh was used to prevent air bubbles from adhering during underwater weighing. The apparent volume of the sample is calculated by dividing the thus weighed value by the specific gravity of the water at the time of weighing, and the apparent specific gravity of the sample is calculated by dividing the already measured dry weight of the sample by this apparent volume. It is.

(作用) 本発明は、多孔質吸水材に予め適量の水分を含有させた
状態で試料を両側から挟んで試料表面の水分を除去する
点に最も特徴がある。第2図を例にすると、一端を開口
した上部の椀状容器lと下部の椀状容器2を開口部が合
致するよう着脱型ヒンジ7で連結して一対となし、夫々
の容器に5〜20 Vollの水を含ませた多孔質弾性
吸水材、即ちウレタンフオーム4,5を充填し、その中
央部を露出状に隆起させて試料3全体が包み込める構造
としている。8は下容器2の脚、9は上容器lのノブで
ある。試料表面より吸収された余分の水は上下容器をプ
レスする時間に対応して吸水材の外へ排出されるよう下
部容器2の底部に排水口6を設けている。かかる構成と
した試料処理容器に於いて、含水試料の表面水はウレタ
ンフオームに吸収され、4〜5秒間のプレスにより下方
へ移動して排水口へと向うことになる。含水ウレタンフ
オームは極めて水の保持力が強く、30〜40Vo1.
$の水を含ませても滴下せず、プレスされてはじめて水
が滴下する特性を有している。また、ウレタンフオーム
の復元力は再現性を高めるに有効である0以上の通り、
水の出入を一定させることによりウレタンフオームの吸
水能を安定させ、しかもプレス後形状が容易に復元して
含水試料を包み込み、一定の力でプレスできるため、表
面水除去に於ける再現性が向上することになる0本発明
の見掛比重測定法はこのように測定精度を高めるべく開
発した表面水除去法の確立により実用化されるものでる
(Function) The present invention is most characterized in that the porous water-absorbing material contains an appropriate amount of water in advance, and the sample is sandwiched from both sides to remove water on the surface of the sample. Taking FIG. 2 as an example, an upper bowl-shaped container 1 with one end open and a lower bowl-shaped container 2 are connected by a removable hinge 7 so that the openings match, forming a pair, and each container has a It is filled with porous elastic water-absorbing material, ie, urethane foams 4 and 5, impregnated with 20 vol of water, and has a structure in which the entire sample 3 can be wrapped around it by raising the central part thereof in an exposed manner. 8 is a leg of the lower container 2, and 9 is a knob of the upper container l. A drainage port 6 is provided at the bottom of the lower container 2 so that excess water absorbed from the sample surface is drained out of the water-absorbing material in accordance with the time when the upper and lower containers are pressed. In the sample processing container configured as described above, the surface water of the water-containing sample is absorbed by the urethane foam and moved downward to the drain port by pressing for 4 to 5 seconds. Hydrous urethane foam has an extremely strong water retention capacity of 30 to 40 Vo1.
It has the characteristic that it does not drip even if it is soaked with $0.00 of water, but water only drips after it is pressed. In addition, the restoring force of urethane foam is more than 0, which is effective for increasing reproducibility.
By keeping water in and out constant, the water absorption ability of the urethane foam is stabilized, and after pressing, it easily restores its shape to envelop the water-containing sample and can be pressed with a constant force, improving reproducibility in surface water removal. The apparent specific gravity measurement method of the present invention will be put into practical use by establishing the surface water removal method developed to improve measurement accuracy.

以上のように多孔質吸水材としてウレタンフオームを用
いた場合を例にして本発明法を説明したが、多孔質吸水
材としてはウレタンフォームの他に、他の合成樹脂を材
質とする発泡材、その他の多孔質の材料で吸水性を有す
るものであれば同様に使用することができる。これらの
多孔質吸水材としては、表面水を安定して除去すると同
時に、試料より吸収される余分の水分をプレス時に排出
しやすいように弾性を宥しプレス後は型状が容易に復元
するものが望ましい。
As mentioned above, the method of the present invention has been explained using as an example the case where urethane foam is used as the porous water-absorbing material. Other porous materials that have water absorbing properties can be used in the same manner. These porous water-absorbing materials are capable of stably removing surface water, while at the same time providing elasticity so that excess water absorbed from the sample can be easily discharged during pressing, and the shape can be easily restored after pressing. is desirable.

さらに、これらの多孔質吸水材を採用する場合にはそれ
ぞれの材質の特性に応じて前記のウレタンフオームの例
で説明したように、予め含有させる適正な水分量と最適
プレス時間を検討しておくことが必要である。
Furthermore, when adopting these porous water-absorbing materials, consider in advance the appropriate amount of moisture to be contained and the optimal pressing time, as explained in the example of urethane foam above, depending on the characteristics of each material. It is necessary.

また、表面水の除去器具として、第2図に示すように容
器に多孔質吸水材を収容した構造の器具を用いた例につ
いて説明したが、本発明はこの第2図に限定されるもの
ではなく、吸水材の一面を適当な支持具に保持したもの
を2つ準備し、2つの支持具によって吸収材面を対面さ
せてプレスできる構造としても良く、要は支持具に保持
または収容された2Mlの多孔質材を対面させ背面側か
らなるべく一定の圧力でプレスできる構造で、且つプレ
ス時に吸水材から絞り出された余分の水分を排出できる
排出口を備えておれば良い。
Furthermore, as shown in FIG. 2, an example was explained in which a device having a structure in which a porous water-absorbing material was housed in a container was used as a surface water removal device, but the present invention is not limited to this FIG. Instead, it is also possible to prepare two pieces of water-absorbing material with one side of the absorbent material held on a suitable support, and use the two supports to press the absorbent material surfaces facing each other. It is sufficient to have a structure that allows 2Ml porous materials to be pressed from the back side facing each other with as constant a pressure as possible, and a discharge port that can discharge excess water squeezed out from the water-absorbing material during pressing.

さらにまた測定試料として焼結鉱を主にして説明したが
、本発明は前記したように焼結鉱の他に製鉄用の鉄鉱石
類、副原料類、ベレットなどの塊成部類、コークスおよ
び煉瓦類に適用でき、さらには非鉄鉱物などの多孔性物
質(多孔体)についても同様に容易に適用でき、多孔体
であれば被測定物は特に限定されない。
Furthermore, although sintered ore was mainly explained as a measurement sample, as mentioned above, the present invention is applicable to iron ores for iron making, auxiliary raw materials, agglomerated products such as pellets, coke, and bricks, in addition to sintered ore. Furthermore, it can be easily applied to porous substances (porous bodies) such as non-ferrous minerals, and the object to be measured is not particularly limited as long as it is a porous body.

(実施例) 見掛比重は試料の気孔率を算出するために測定される0
本発明の見掛比N測定方法は、含水試料の表面水除去手
段においてコークスの迅速法と異なっている。コークス
の場合に採用されている含水スポンジ上での一回転によ
る表面水除去方法を従来法lと、水中浸漬脱泡処理をし
ない方法を従来法2として、気孔率の面で本発明法と比
較すべく測定結果を第1表に示す、試料は20±1■粒
度の同一焼結鉱を用い、第2図に示す表面水除去器具に
て測定前試料処理を実施した。ここでは、排水口として
直径1.5Hの孔を4個設け、多孔質吸水材としてウレ
タンフオームを用い、上部ウレタンフオームに7Va1
.! 、 下!ウレタンフオームに17 Vol、$の
初期水分を与えた。まづ、乾燥重量を測定し、浸漬脱泡
した試料を5秒間プレスして表面水を除去し、以後は前
述の測定手順によって見掛比重を測定し、その測定結果
に基づいて気孔率を算出した。尚、本発明法および従来
法1については測定精度を比較するために繰り返し20
回測定した結果を示した。
(Example) The apparent specific gravity is measured to calculate the porosity of the sample.
The apparent ratio N measurement method of the present invention differs from the coke rapid method in the means for removing surface water from a water-containing sample. A method of removing surface water by one rotation on a water-containing sponge, which is adopted in the case of coke, is called conventional method 1, and a method without degassing treatment by immersion in water is called conventional method 2, and compared with the method of the present invention in terms of porosity. The measurement results are shown in Table 1. The same sintered ore with a grain size of 20±1 square meters was used as the sample, and the sample was treated with the surface water removal device shown in FIG. 2 before measurement. Here, four holes with a diameter of 1.5H were provided as drainage ports, urethane foam was used as the porous water absorbing material, and the upper urethane foam was made of 7Va1.
.. ! , Below! The urethane foam was given an initial moisture content of 17 Vol, $. First, measure the dry weight, press the immersed defoamed sample for 5 seconds to remove surface water, then measure the apparent specific gravity using the measurement procedure described above, and calculate the porosity based on the measurement results. did. In addition, for the method of the present invention and conventional method 1, 20 repetitions were performed to compare the measurement accuracy.
The results of multiple measurements are shown.

第  1  表 本発明法および従来法lによれば、水中浸漬脱泡処理を
しない従来法2に較べ、試料の見掛体積は大きくなるた
め試料の見掛比重は小さく測定される。従って、試料の
気孔率は高く算出されることになる。この場合、気孔率
は次式より求まる。
Table 1 According to the method of the present invention and the conventional method 1, the apparent volume of the sample is larger and the apparent specific gravity of the sample is measured to be smaller than that of the conventional method 2 which does not perform degassing treatment by immersion in water. Therefore, the porosity of the sample is calculated to be high. In this case, the porosity is determined by the following formula.

ここに P:気孔率(X) Sハ :見掛比重 S:真比重 第1表に示す通り、本発明法に基づく場合と従来法lで
は平均気孔率はほぼ同じであるが、本発明法の方が繰り
返し精度と繰り返し測定での最大最小差は共にすぐれて
いる。
Here, P: Porosity (X) S: Apparent specific gravity S: True specific gravity As shown in Table 1, the average porosity in the case based on the method of the present invention and the conventional method I is almost the same, but in the case based on the method of the present invention is superior in both repeatability and maximum/minimum difference in repeated measurements.

次に、本発明により測定した結果に基づいて求めた焼結
鉱類の気孔率につき、従来より試みられてきた水銀法(
JIS M 871B)と比較すべく第8図および第9
図に測定結果を示す、第8図にみる通り、0印で示す焼
成ペレットと会印で示すブリケットでは本発明法に基づ
く場合および水銀法に基づく場合ともに気孔率は殆ど一
致している。ここで、ブリケットとは焼結用原料を成型
し、1200〜1400℃のガスで焼成して気孔率を変
化させたものである。一方、焼結鉱では第9図にみる通
り。
Next, regarding the porosity of sintered minerals determined based on the results measured by the present invention, the mercury method (
Figures 8 and 9 for comparison with JIS M 871B)
The measurement results are shown in Fig. 8.As can be seen in Fig. 8, the porosity of the fired pellets indicated by the 0 mark and the briquettes indicated by the 0 mark are almost the same in both the case based on the method of the present invention and the case based on the mercury method. Here, briquettes are formed by molding raw materials for sintering and firing with gas at 1200 to 1400°C to change the porosity. On the other hand, for sintered ore, as shown in Figure 9.

同−焼結鉱を本発明法で先に測定して気孔率を求め、こ
れを乾燥した後で水銀法にて測定比較した場合1本発明
法に基づく気孔率は水銀法による気孔率よりも高くなっ
ている。これは、本発明にもとづく気孔率測定法によれ
ば水銀法にもとづく気孔率測定法よりも大きな気孔まで
測定できることを示している。
The same - When sintered ore is first measured using the method of the present invention to determine the porosity, and then dried and then measured and compared using the mercury method. 1. The porosity based on the method of the present invention is higher than the porosity using the mercury method. It's getting expensive. This indicates that the porosity measuring method according to the present invention can measure larger pores than the porosity measuring method based on the mercury method.

(発明の効果) 以上詳述の如く、本発明によれば、多孔質吸水材に安定
した給水能を与えて含水試料を包み込み、試料表面水を
再現性よく除去して見掛比重の測定ができるため、高精
度となり且つ多孔質吸水材の損耗も極めて小さいので連
続して迅速に処理できる。殊に、画像解析法と較べた場
合、コストならびに効率に於いて本発明法を適用した気
孔率測定法は非常に優れている。また、水銀法に較べて
大きな気孔径まで測°定でき、測定液に水を用いるため
、再測定が可使であるばかりでなく、同一試料で真比重
も測定できるゆえ、より正確な気孔率をも求めることが
できる。更に、測定作業の面では、水銀を測定液とする
場合のような煩わしさがなく、測定操作が極めて簡便と
なる等の効果がある。
(Effects of the Invention) As described in detail above, according to the present invention, stable water supply ability is given to the porous water-absorbing material to enclose a water-containing sample, water on the surface of the sample is removed with good reproducibility, and apparent specific gravity can be measured. This allows for high precision and very little wear and tear on the porous water-absorbing material, allowing continuous and rapid processing. In particular, when compared with image analysis methods, the method of measuring porosity using the method of the present invention is extremely superior in terms of cost and efficiency. In addition, compared to the mercury method, it is possible to measure larger pore diameters, and since water is used as the measurement solution, it is not only possible to re-measure, but also the true specific gravity can be measured with the same sample, resulting in more accurate porosity. can also be found. Furthermore, in terms of measurement work, there is no need to worry about the troubles that occur when mercury is used as the measurement liquid, and the measurement operation is extremely simple.

尚、大塊の多孔体をそのまま測定したり、複数の試料を
同時に測定する場合には第2図の表面水除去器具を必要
に応じ拡大して使用しても同様な効果が得られる。
Incidentally, when measuring a large porous body as it is or when measuring a plurality of samples at the same time, the same effect can be obtained by using the surface water removal device shown in FIG. 2, enlarged as necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸水材(ウレタンフオーム)の吸水能に関する
特性図、第2図は本発明実施例の試料表面水除去器具を
示す縦断面図、第3図は見掛比重測定装置の全体概要図
、第4図は表面水除去器具を繰り返し使用した場合での
吸水材中水分の変化と表面水除去効果の関係を示す図、
第5図は下部容器内吸水材中水分の適正量を求めた図、
第6図は上下容器内吸水材中水分の適正量を確認する図
、第7図はプレス操作による試料表面水吸収時間とその
効果を示し、第8図および第9図は水銀法と未決の測定
結果を気孔率での比較として示す図である。 1.2・・・容器、3・・・サンプル、4,5・・・ウ
レタンフオーム、6・・・排水口、10・・・天秤、1
1・・・水槽、12・・・試料カゴ、13・・・水、1
4・・・試料。
Fig. 1 is a characteristic diagram regarding the water absorption capacity of water absorbing material (urethane foam), Fig. 2 is a vertical cross-sectional view showing a sample surface water removal device according to an embodiment of the present invention, and Fig. 3 is an overall schematic diagram of the apparent specific gravity measuring device. , Figure 4 is a diagram showing the relationship between the change in moisture in the water absorbing material and the surface water removal effect when the surface water removal device is repeatedly used.
Figure 5 is a diagram showing the appropriate amount of moisture in the water-absorbing material in the lower container.
Figure 6 is a diagram to confirm the appropriate amount of water in the water absorbing material in the upper and lower containers, Figure 7 shows the sample surface water absorption time and its effect by press operation, and Figures 8 and 9 are diagrams showing the mercury method and the pending results. It is a figure showing measurement results as a comparison in terms of porosity. 1.2... Container, 3... Sample, 4, 5... Urethane foam, 6... Drain port, 10... Balance, 1
1...Aquarium, 12...Sample basket, 13...Water, 1
4...Sample.

Claims (1)

【特許請求の範囲】 1)乾燥した多孔体を秤量した後、これを水中に浸して
減圧脱泡し、次に少くとも1個には排水口を有する2個
よりなる支持具にそれぞれ保持または収容され、且つ予
め定めた適正量の水分を含有させた多孔質吸水材により
前記減圧脱泡後の試料を挟んで試料表面水を除去し、つ
いで、該試料を天秤上に設置した水槽内に上方より吊る
し、天秤に表示される重量増分を水の比重にて除するこ
とで試料の見掛体積を算出し、さらに見掛体積で試料乾
燥重量を除することにより試料の見掛比重を算出するこ
とを特徴とする多孔体の見掛比重測定方法。 2)多孔質吸水材としてウレタンフォームを用いる特許
請求の範囲第1項記載の方法。 3)支持具として容器を用いる特許請求の範囲第1項記
載の方法。
[Claims] 1) After weighing the dry porous material, it is immersed in water to degas it under reduced pressure, and then held or held in two supports each having at least one drain port. The water on the surface of the sample is removed by sandwiching the vacuum-defoamed sample between porous water-absorbing materials containing a predetermined appropriate amount of water, and then the sample is placed in a water tank placed on a balance. Hang it from above and calculate the apparent volume of the sample by dividing the weight increment displayed on the balance by the specific gravity of water, and then calculate the apparent specific gravity of the sample by dividing the dry weight of the sample by the apparent volume. A method for measuring the apparent specific gravity of a porous body. 2) The method according to claim 1, in which urethane foam is used as the porous water absorbing material. 3) The method according to claim 1, wherein a container is used as a support.
JP27505785A 1985-12-09 1985-12-09 Method for measuring apparent specific gravity of porous body Pending JPS62134541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27505785A JPS62134541A (en) 1985-12-09 1985-12-09 Method for measuring apparent specific gravity of porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27505785A JPS62134541A (en) 1985-12-09 1985-12-09 Method for measuring apparent specific gravity of porous body

Publications (1)

Publication Number Publication Date
JPS62134541A true JPS62134541A (en) 1987-06-17

Family

ID=17550243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27505785A Pending JPS62134541A (en) 1985-12-09 1985-12-09 Method for measuring apparent specific gravity of porous body

Country Status (1)

Country Link
JP (1) JPS62134541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608967A (en) * 2019-09-20 2019-12-24 黔南民族师范学院 Method for measuring ceramic expansion and contraction rate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608967A (en) * 2019-09-20 2019-12-24 黔南民族师范学院 Method for measuring ceramic expansion and contraction rate

Similar Documents

Publication Publication Date Title
McIntyre et al. A method for determination of apparent density of soil aggregates.
Klute Water retention: laboratory methods
Ball et al. The determination of water release characteristics of soil cores at low suctions
CN108871998B (en) Method and device for detecting water absorption performance of powder
CN202092923U (en) Water absorption tester
Yang et al. Capillary flow phenomena and wettability in porous media: I. Static characteristics
JPS62134541A (en) Method for measuring apparent specific gravity of porous body
Tripathy et al. Desorption and consolidation behaviour of initially saturated clays
Peroni et al. Measurement of osmotic suction using the squeezing technique
CN216160380U (en) Intelligent temperature control type high-suction testing device
Linares-Solano et al. The n-nonane preadsorption method applied to activated carbons
Bancroft The action of water vapor on gelatine
CN209894637U (en) Device for testing true density of material based on physical adsorption instrument
Parrish Measurement of water regain and macropore volume of ion‐exchange resins
RU2038576C1 (en) Method of determining density of solid bodies
JPS62269040A (en) Method for measuring apparent specific gravity of porous body
Hansen et al. Pore structure of hydrated Portland cement measured by nitrogen sorption and mercury intrusion porosimetry
SU57992A1 (en) Instrument for determining the porosity and volumetric weight of building and similar materials
SU739377A1 (en) Method of determining porosity
CN216013050U (en) Test device for measuring water absorption of rock easy to disintegrate in water
SU1493882A1 (en) Method of obtaining moving part of pore solution from soil and ground of various humidity
CN117054287A (en) Method and device for rapidly determining true relative density of coke
Steinmann et al. Comparison of various methods of volume determination on small wood samples
SU1296908A1 (en) Method of determining particle porosity of particulate carriers of concentrated food
SU1453012A1 (en) Apparatus for compression testing of peat