JPS62134531A - Method for measuring load applied to handrail at use time - Google Patents

Method for measuring load applied to handrail at use time

Info

Publication number
JPS62134531A
JPS62134531A JP27573785A JP27573785A JPS62134531A JP S62134531 A JPS62134531 A JP S62134531A JP 27573785 A JP27573785 A JP 27573785A JP 27573785 A JP27573785 A JP 27573785A JP S62134531 A JPS62134531 A JP S62134531A
Authority
JP
Japan
Prior art keywords
handrail
sensor
detecting
stress
stress generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27573785A
Other languages
Japanese (ja)
Inventor
Hideyuki Komiyama
小宮山 秀幸
Naotoshi Komatsu
小松 直利
Minoru Funaki
船木 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP27573785A priority Critical patent/JPS62134531A/en
Publication of JPS62134531A publication Critical patent/JPS62134531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steps, Ramps, And Handrails (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To enhance the safety of a handrail by measuring load applied to the handrail at the time of use and calculating support mount strength corresponding to actual use, by detecting the bending, distortion, tensile and compression stress generated in the mount support by each sensor mounted to the mount support. CONSTITUTION:A sensor 1 for detecting bending stress generated in an up-and- down direction, a sensor 2 for detecting bending stress generated in a left-and- right direction, a sensor 3 for detecting torsion stress around an axis and a sensor 4 for detecting tensile stress and compression stress generated in the direction along the axial direction are provided to the peripheral surface of a mount support 5. Various stresses detected by the sensors 1-4 are measured by a dynamic stress gauge 7 and the measured values are recorded, for example, on a data recorder 8 or a pen recorder 9. In actual measurement, a measuring person grasps a handrail and takes various postures to perform measurement and, further, measurement is performed while variously changing the height of the handrail 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は手摺使用時に手摺にかかる荷重を測定する手摺
使用荷重の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for measuring the load applied to a handrail when the handrail is used.

(従来の技術) 住宅内において、例えば階段等での歩行時の補助として
使用される手摺には、常に一定荷重が一定方向にかかる
わけではな(、使用時の状況に応じて実に様々な荷重が
かかる。したがって、手摺を壁面に固定する際にはその
ような荷重を十分考慮する必要がある。そこで、従来は
人が引っ張ったり、押したりする力を直接測定器で測定
していた。そして、その測定結果に基いて手摺の取付強
度を決定していた。
(Prior art) Handrails used in houses to assist when walking on stairs, for example, do not always carry a constant load in a fixed direction (they can be loaded with a wide variety of loads depending on the usage situation). Therefore, when fixing a handrail to a wall, it is necessary to take this load into consideration.Therefore, in the past, the force exerted by a person when pulling or pushing was directly measured using a measuring device. The installation strength of the handrail was determined based on the measurement results.

(発明が解決しようとする問題点) しかし、そのような測定方法は、手摺にかかる荷重の方
向を予め決めて行うものであるため、その方向以外の方
向からかかる荷重についてはまったく測定することがで
きず、したがって安全性を高める上で限界があった。
(Problem to be solved by the invention) However, since such a measurement method is performed by determining the direction of the load applied to the handrail in advance, it is impossible to measure loads applied from directions other than that direction. Therefore, there were limits to how much safety could be improved.

(問題点を解決するための手段) 本発明の手摺使用荷重の測定方法は、手摺を壁面に取り
付ける取付支柱に、前記手摺にかかる荷重によってこの
取付支柱に生じる曲げ応力、捻じり応力、引張応力、お
よび圧縮応力をそれぞれ検知するストレンゲージからな
るセンサを装着し、これら各センサによって前記取付支
柱に生じる前記各応力を検知することにより前記手摺の
使用荷重を測定するものである。
(Means for Solving the Problems) The method for measuring the working load of a handrail according to the present invention is to apply bending stress, torsional stress, and tensile stress that are generated on a mounting post that attaches a handrail to a wall surface due to the load applied to the handrail. , and a strain gauge for detecting compressive stress, respectively, and the working load of the handrail is measured by detecting the respective stresses generated in the mounting column using these sensors.

(作用) 取付支柱に装着した各センサで取付支柱に生じる曲げ応
力、捻じり応力、引張応力、および圧縮応力をそれぞれ
検知することにより、手摺使用時にかかる荷重が測定さ
れ、これより実際の使用に応じた支柱の取付強度が求め
られ、手摺の安全性が高められる。
(Function) By detecting the bending stress, torsional stress, tensile stress, and compressive stress generated on the mounting support with each sensor attached to the installation support, the load applied when the handrail is used is measured, and this is used to determine the actual use. The installation strength of the support pillars is required to increase the safety of the handrail.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は手摺の両端に設けた取付支柱のうち、一方の取
付支柱を示す平面図、第2図は同側面図、第3図は第1
図で示すm−m線断面図、第4図は第1図で示すIV 
−IV線断面図、第5図は第2図で示ずV−V線断面図
である。
Fig. 1 is a plan view showing one of the mounting posts provided at both ends of the handrail, Fig. 2 is a side view of the same, and Fig. 3 is a plan view of one of the mounting posts provided at both ends of the handrail.
Figure 4 shows the IV shown in Figure 1.
-IV line sectional view, and FIG. 5 is a VV line sectional view not shown in FIG. 2.

取付支柱5の周面に、第1図および第2図に示すように
、取付支柱5に上下方向に生じる曲げ応力を検知する第
1のセンサ1と、取付支柱5に左右方向に生じる曲げ応
力を検知する第2のセンサ2と、取付支柱5にその軸線
周りに生じる捻じり応力を検知する第3のセンサ3と、
取付支柱5にその軸線方向に沿う方向に生じる引張応力
および圧縮応力を検知する第4のセンサ4とが添設され
ている。
As shown in FIGS. 1 and 2, on the circumferential surface of the mounting column 5, there is a first sensor 1 that detects the bending stress that occurs in the vertical direction on the mounting column 5, and a first sensor 1 that detects the bending stress that occurs in the horizontal direction on the mounting column 5. a second sensor 2 that detects the torsional stress generated in the mounting column 5 around its axis;
A fourth sensor 4 is attached to the mounting column 5 to detect tensile stress and compressive stress generated in the direction along the axis of the mounting column 5.

前記第1のセンサ1は、第3図に示すように、2つのス
トレンゲージ11,12からなり、これらストレンゲー
ジ11,12を取付支柱5の上面と下面に取付支柱5の
軸線をはさんで対称に配設したものである。第6図は、
このようになる第1のセンサ1の回路構成を示し、図中
、符号Rは固定抵抗を示す。そして、このセンサ1の出
力電圧e、は次の式で表される。
As shown in FIG. 3, the first sensor 1 consists of two strain gauges 11 and 12, and these strain gauges 11 and 12 are placed between the upper and lower surfaces of the mounting column 5 with the axis of the mounting column 5 interposed therebetween. They are arranged symmetrically. Figure 6 shows
The circuit configuration of the first sensor 1 as described above is shown, and in the figure, the symbol R indicates a fixed resistor. The output voltage e of this sensor 1 is expressed by the following equation.

e+ =E+ /2 ・K、  ・ε。e+ = E+ /2 ・K, ・ε.

ここで、Elはブリッジ電圧、K、はゲージ率、ε1は
いずれか一方のストレンゲージ11または12から得ら
れる曲げ歪の値である。
Here, El is the bridge voltage, K is the gauge factor, and ε1 is the value of bending strain obtained from either one of the strain gauges 11 or 12.

前記第2のセンサ2は、第3図に示すように、2つのス
トレンゲージ21,22からなり、これらストレンゲー
ジ21,22を取付支柱5の内側面と外側面に取付支柱
5の軸線をはさんで対称に配設したものである。このセ
ンサ2の回路構成および得られる出力電圧e2は上記し
た第1のセンサ1と同様である。
The second sensor 2, as shown in FIG. They are arranged symmetrically with each other. The circuit configuration of this sensor 2 and the output voltage e2 obtained are the same as those of the first sensor 1 described above.

前記第3のセンサ3は、第4図に示すように、4つのス
トレンゲージ31,32,33.34からなり、これら
ストレンゲージ31,32,33゜34を取付支柱5の
周面に沿って90度間隔で配し、それぞれを取付支柱5
の軸線に対して45度傾斜させるとともに、取付支柱5
と軸線を対称軸として対向するもの同士、つまり31と
34.32と33との向きが逆になるようにしたもので
ある。
As shown in FIG. 4, the third sensor 3 consists of four strain gauges 31, 32, 33. Arranged at 90 degree intervals, each attached to a mounting post 5
The mounting column 5 is tilted at 45 degrees with respect to the axis of the mounting column 5.
31, 34, 32, and 33 are opposite to each other with the axis of symmetry being the axis of symmetry.

第7図はこのようになる第3のセンサ3の回路構成を示
す。そして、このセンサ3の出力電圧e3は次の弐で表
される。
FIG. 7 shows the circuit configuration of the third sensor 3 thus constructed. The output voltage e3 of this sensor 3 is expressed by the following 2.

e* =に3  ’ εs  ・E:1ここで、Kff
はゲージ率、E3は回路上相対向するストレンゲージ1
1と13、または12と13から得られる捻しり歪の値
、E3はブリッジ電圧である。
e* = 3' εs ・E:1 Here, Kff
is the gauge factor, and E3 is the strain gauge 1 facing each other on the circuit.
The torsional strain value obtained from 1 and 13 or 12 and 13, E3 is the bridge voltage.

前記第4のセンサ4は、第2図および第5図に示すよう
に、4つのストレンゲージ41.42゜43.44から
なり、このうちストレンゲージ41と43.42と44
をそれぞれ十文字状に重ね、一方の組のストレンゲージ
41と他方の組のストレンゲージ42とが取付支柱5の
軸線に沿うようにして、各組を取付支柱5の軸線をはさ
んで対称に配設したものである。第8図は、このように
なる第4のセンサ4の回路構成を示す。そして、このセ
ンサ4の出力電圧e4は次の式で表される。
As shown in FIGS. 2 and 5, the fourth sensor 4 consists of four strain gauges 41, 42, 43, and 44, among which strain gauges 41, 43, 42, and 44
The strain gauges 41 of one set and the strain gauges 42 of the other set are aligned along the axis of the mounting post 5, and each set is arranged symmetrically across the axis of the mounting post 5. It was established. FIG. 8 shows the circuit configuration of the fourth sensor 4 thus constructed. The output voltage e4 of this sensor 4 is expressed by the following equation.

ea = (1+1/) E4 /2−に4 − εs
ここでνはポアソン比、巳、はブリッジ電圧、K4はゲ
ージ率、ε4は取付支柱5の軸線をはさんで対向するい
ずれか1組のストレンゲージ41と42、もしくは43
と44から得られる引張・圧縮歪の値である。
ea = (1+1/) E4 /2- to 4 - εs
Here, ν is Poisson's ratio, 应 is the bridge voltage, K4 is the gauge factor, and ε4 is any one pair of strain gauges 41 and 42 or 43 facing each other across the axis of the mounting post 5.
These are the tensile and compressive strain values obtained from and 44.

以上の各センサ1. 2. 3. 4は、他方の取付支
柱(図示省略)にも上記と同様に取り付けられている。
Each of the above sensors 1. 2. 3. 4 is also attached to the other mounting support (not shown) in the same manner as above.

なお、各センサ1.2. 3(4の取付位置、つまり取
付支柱5の基端部51からの距離は、取付支柱5の長さ
、太さ、断面形状、材質およびこの取付支柱5に取り付
ける手摺6の長さに応じて適宜決定すればよい。
In addition, each sensor 1.2. 3 (The mounting position of 4, that is, the distance from the base end 51 of the mounting post 5, depends on the length, thickness, cross-sectional shape, material of the mounting post 5, and the length of the handrail 6 attached to this mounting post 5. It may be determined as appropriate.

各センサ1.2,3.4で検知した各種応力は、これら
センサ1,2,3.4に接続された動歪計7で測定し、
測定値は、例えばデータレコーダ8やペンレコーダ9で
記録する(第9図参照)。
The various stresses detected by each sensor 1.2, 3.4 are measured by a dynamic strain meter 7 connected to these sensors 1, 2, 3.4,
Measured values are recorded using, for example, a data recorder 8 or a pen recorder 9 (see FIG. 9).

実際の測定にあたっては、測定者が手摺6につかまって
種々の姿勢、例えばったい歩き〔第10図(al参照〕
、片足ったい歩き〔同図(bl参照〕、両足ひきづりも
たれ歩き〔同図(C)参照〕、水平押し〔同図(d)参
照〕、水平引き〔同図(e1参照〕、手摺捧なり方向へ
の引き〔同図(fl参照〕、ジャンプ取り付〔同図(g
l参照〕をとることにより行う。また、手摺6の高さを
色々と変えて上記各姿勢をとることにより行う。
During the actual measurement, the measurer holds onto the handrail 6 and takes various postures, such as walking [see Figure 10 (al)].
, walking on one leg [see figure (bl)], leaning back with both legs [see figure (C)], horizontal pushing [see figure (d)], horizontal pulling [see figure (e1)], handrail support Pulling in the same direction [same figure (see fl)], jump installation [same figure (g
This is done by taking [see 1]. Moreover, this is done by changing the height of the handrail 6 in various ways and taking each of the above postures.

(発明の効果) 本発明の手摺使用荷重の測定方法によれば、手摺にかか
るあらゆる方向の荷重について測定するごとができる。
(Effects of the Invention) According to the method for measuring the working load of a handrail of the present invention, it is possible to measure loads applied to the handrail in all directions.

したがって、手摺の取付強度を正確に求めることができ
るため、手摺の安全性を高めることができる。
Therefore, since the attachment strength of the handrail can be determined accurately, the safety of the handrail can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の手摺使用荷重の測定方法の一実施例を示し
、第1図は手摺の一端側の取付支柱を示す平面図、第2
図は同側面図、第3図は第1図で示すIII−III線
断面図、第4図は第1図で示す■−IV線断面図、第5
図は第2図で示すV−V線断面図、第6図は曲げ応力を
検知する第1および第2のセンサの回路図、第7図は捻
じり応力を検知する第3のセンサの回路図、第8図は引
張応力および圧縮応力を検知する第4のセンサの回路図
、第9図は測定機器の接続状態を示す概略図、第10図
(a)乃至(g)は測定時の測定者の姿勢を説明する説
明図である。 1・・・第1のセンサ   2・・・第2のセンサ3・
・・第3のセンサ   4・・・第4のセ°ンサ11.
12,21,22,31,32,33,34,41,4
2,43.44・・・ストレンゲージ 第7 Z 吊2図 一一一−Er−−−ベ 具−−Et、−−m= 第70図
The figures show an example of the method for measuring the working load of a handrail according to the present invention, and FIG. 1 is a plan view showing a mounting support at one end of the handrail, and
3 is a sectional view taken along the line III-III shown in FIG. 1, FIG. 4 is a sectional view taken along the line ■-IV shown in FIG.
The figure is a cross-sectional view taken along the line V-V shown in Figure 2, Figure 6 is a circuit diagram of the first and second sensors that detect bending stress, and Figure 7 is a circuit diagram of the third sensor that detects torsional stress. Figure 8 is a circuit diagram of the fourth sensor that detects tensile stress and compressive stress, Figure 9 is a schematic diagram showing the connection state of the measuring equipment, and Figures 10 (a) to (g) are during measurement. It is an explanatory view explaining the posture of a measurer. 1... First sensor 2... Second sensor 3.
...Third sensor 4...Fourth sensor 11.
12, 21, 22, 31, 32, 33, 34, 41, 4
2,43.44...Strain Gauge No. 7 Z Hanging Figure 2 111-Er---Belt--Et, --m=Figure 70

Claims (1)

【特許請求の範囲】[Claims] 1)手摺を壁面に取り付ける取付支柱に、前記手摺にか
かる荷重によってこの取付支柱に生じる曲げ応力、捻じ
り応力、引張応力、および圧縮応力をそれぞれ検知する
ストレンゲージからなるセンサを装着し、これら各セン
サによって前記取付支柱に生じる前記各応力を検知する
ことにより前記手摺の使用荷重を測定することを特徴と
する手摺使用荷重の測定方法。
1) Attach a sensor consisting of a strain gauge to the mounting post that attaches the handrail to the wall to detect the bending stress, torsional stress, tensile stress, and compressive stress generated on the mounting post due to the load applied to the handrail, and A method for measuring the working load of a handrail, characterized in that the working load of the handrail is measured by detecting each of the stresses generated on the mounting support with a sensor.
JP27573785A 1985-12-06 1985-12-06 Method for measuring load applied to handrail at use time Pending JPS62134531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27573785A JPS62134531A (en) 1985-12-06 1985-12-06 Method for measuring load applied to handrail at use time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27573785A JPS62134531A (en) 1985-12-06 1985-12-06 Method for measuring load applied to handrail at use time

Publications (1)

Publication Number Publication Date
JPS62134531A true JPS62134531A (en) 1987-06-17

Family

ID=17559683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27573785A Pending JPS62134531A (en) 1985-12-06 1985-12-06 Method for measuring load applied to handrail at use time

Country Status (1)

Country Link
JP (1) JPS62134531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027291A3 (en) * 2000-09-29 2002-06-27 Ensco Internat Inc Hand rail testing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679222A (en) * 1979-11-30 1981-06-29 Toyota Central Res & Dev Lab Inc Instrument for measuring load

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679222A (en) * 1979-11-30 1981-06-29 Toyota Central Res & Dev Lab Inc Instrument for measuring load

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027291A3 (en) * 2000-09-29 2002-06-27 Ensco Internat Inc Hand rail testing apparatus
US6557420B1 (en) 2000-09-29 2003-05-06 Ensco International Incorporated Hand rail testing apparatus

Similar Documents

Publication Publication Date Title
US4493220A (en) Force measuring platform and load cell therefor using strain gages to measure shear forces
US10126186B2 (en) Load transducer system configured to correct for measurement errors in the output forces and/or moments of the system
US8915149B1 (en) Force measurement system
US8544347B1 (en) Force measurement system having a plurality of measurement surfaces
CA1047055A (en) Constant moment weigh scale with floating flexure beam
US20190078951A1 (en) Force Measurement System and a Method of Calibrating the Same
US4785896A (en) Load sensing structure for weighing apparatus
KR100413807B1 (en) Parallel type 6-axis force-moment measuring device
Wang et al. Characterization of a silicon-based shear-force sensor on human subjects
US3879998A (en) Deformation responsive weighing apparatus
JPS62134531A (en) Method for measuring load applied to handrail at use time
USRE32003E (en) Constant moment weigh scale with floating flexure beam
EP1074217A1 (en) Floor reaction force measuring method and apparatus therefor
US4148219A (en) Strain gage load cell
KR101713386B1 (en) Starting Block with Sensor, Measurement System, Measuring Method of Starting Time and Repulsive Power, Recording Medium thereof
CN107750329B (en) Multi-axis force cell sensor body
JPH0862061A (en) Detecting device for strain
USRE32002E (en) Constant moment weigh scale with floating flexure beam
Jin et al. Rail supporting transducer posts for three-dimensional force measurement
Kim et al. Dimensional stability of composites in space: CTE variations and their prediction
SU994937A1 (en) Strain-gauge resistor pickup of force
JPS6225697Y2 (en)
JPS6148647B2 (en)
SU514213A1 (en) Force sensor
JPH03140832A (en) Force sensor