JPS62134516A - Range finding method - Google Patents

Range finding method

Info

Publication number
JPS62134516A
JPS62134516A JP27546085A JP27546085A JPS62134516A JP S62134516 A JPS62134516 A JP S62134516A JP 27546085 A JP27546085 A JP 27546085A JP 27546085 A JP27546085 A JP 27546085A JP S62134516 A JPS62134516 A JP S62134516A
Authority
JP
Japan
Prior art keywords
measured
camera
image
arm
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27546085A
Other languages
Japanese (ja)
Inventor
Yukio Hioki
幸男 日置
Tsutomu Fujita
勉 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP27546085A priority Critical patent/JPS62134516A/en
Publication of JPS62134516A publication Critical patent/JPS62134516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To make it possible to simply and easily measure the distance up to a body to be measured by one image pickup means, by mounting a camera to the other end part of a rotary arm rotating around one end part thereof and calculating the distance from one end part of the arm to the body to be measured on the basis of movement quantity from a center line by an operation means. CONSTITUTION:An arm 3 is rotated so that the image of a body to be measured moves from such a state that said image is positioned on the center line in a vertical direction passing the center of the picture of a TV camera 4 to the lateral direction of the picture and the movement quantity from the center line of the image due to the rotation of the arm 3 is calculated to calculate the distance up to the body to be measured. That is, the arm 3 is set so that the camera 4 is positioned at the intersecting point P1 of a circle C and the straight line OT connecting points O, T and the image of the body 5 to be measured and held to such a state that the image of the body 5 to be measured is positioned at the center of the light receiving surface being the picture of the camera 4. When the arm 3 is rotated by a minute angle DELTAtheta from this state and the camera 4 is moved to the point P2 on the circle C, the body 5 to be measured relatively moves to a direction shifted by the angle alpha, which is formed by the optical axis of the camera 4, that is, the straight line OP2 connecting points O, P2 and the straight line P2T connecting points P2, T, with respect to the optical axis of said camera, that is, said straight line OP2. Therefore, the angle alpha is calculated from the picked-up image by the camera 4 to easily calculate a distance D.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、被測定体までの距離を計測する距離計測方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distance measuring method for measuring the distance to a measured object.

〔従来の技術〕[Conventional technology]

一般に、被測定体までの距離を計測する場合、超音波を
利用し、超音波発振器からの超音波が被測定体により反
射されて戻ってくるまでの時間を測定し、前記時間およ
び超音波の速度にもとづいて被測定体までの距離を計測
する手法、テレビジョンカメラまたはCODイメージセ
ンサ等の撮像手段を2台用いた。いわゆる三角測量法に
より距離を計測する手法、あるいはレーザ等の光源から
の光をスポット状もしくは帯状にして被測定体に照射し
、その照射部を1台の撮像手段により撮像して得られる
画像にもとづき距離を計測する手法などが適用されてい
る。
Generally, when measuring the distance to an object to be measured, ultrasonic waves are used to measure the time it takes for the ultrasonic waves from an ultrasonic oscillator to be reflected by the object to be measured and return. A method of measuring the distance to the object to be measured based on the speed was used, and two imaging means such as a television camera or a COD image sensor were used. A method of measuring distance using the so-called triangulation method, or an image obtained by irradiating the object to be measured with light from a light source such as a laser in the form of a spot or band, and capturing the irradiated area with a single imaging device. Based on this, methods for measuring distance have been applied.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、超音波を利用した手法の場合、反射してきた
超音波が被測定体からのものかを識別する必要があり、
その識別処理に手間がかかり、しかも超音波発振器およ
びセンサが非常に高価であるという問題点がある。
However, in the case of methods that use ultrasound, it is necessary to identify whether the reflected ultrasound is coming from the object to be measured.
There are problems in that the identification process is time-consuming and the ultrasonic oscillators and sensors are very expensive.

また、撮像手段を用いる手法の場合、被測定体を画面上
において観察できるため、超音波の場合のような識別処
理は不要になる反面、一方では2台の撮像手段が必要に
なり、他方では光源が・i要になり、やはり高価になる
という問題点がある。
In addition, in the case of methods that use imaging means, the object to be measured can be observed on the screen, so there is no need for identification processing as in the case of ultrasound, but on the other hand, two imaging means are required, and on the other hand, There is a problem that the light source is required and is also expensive.

そこで、この発明は、簡単かつ安価な構成により、容易
に被測定体までの距離を計測できるよう(てすることを
技術的課題とする。
Therefore, a technical object of the present invention is to easily measure the distance to the object to be measured using a simple and inexpensive configuration.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明は、前記の点に留意してなされたものであり、
一端部を中心に回転する回転アームの他端部に撮像手段
を取り付け、前記撮像手段の画面の中心を通る縦方向の
中心線上に被測定体の画像が位置する状態から、前記画
面の横方向に前記画像が移動するように前記アームを回
転させ、前記アームの回転による前記画像の前記中心線
からの移動量を求め、前記移動量にもとづき演算手段に
より前記アームの一端部から前記被測定体までの止層を
算出することを特徴とする距離計測方法である。
This invention was made with the above points in mind,
An imaging means is attached to the other end of a rotary arm that rotates around one end, and the image of the object to be measured is positioned on the vertical center line passing through the center of the screen of the imaging means, and the horizontal direction of the screen is The arm is rotated so that the image moves, the amount of movement of the image from the center line due to the rotation of the arm is determined, and based on the amount of movement, a calculating means is used to move the object from one end of the arm to the object to be measured. This distance measurement method is characterized by calculating the stop layer up to.

[、作 用〕 1.7たがって、この発明では、回転アームの他端部に
取り付けられた撮像手段により被測定体が撮像され、撮
像手段の画面の中心を通る縦方向の中心線上に被測定体
の画像が位置する状態から、アームの回転により前記画
面の横方向に被測定体り画像が移動したときの移動量が
求められ、この移動量にもとづいて演算手段によりアー
への一端部から被測定体までの距離が算出され、従来の
ように2台の撮像手段や光源、さらには高価な超宮岐セ
ンサ等を用いることなく、容易に被測定体までの距離の
計測が行なわれる。
[Function] 1.7 Therefore, in the present invention, the object to be measured is imaged by the imaging means attached to the other end of the rotating arm, and the object is positioned on the vertical center line passing through the center of the screen of the imaging means. From the position of the image of the object to be measured, the amount of movement of the image of the object to be measured in the lateral direction of the screen due to the rotation of the arm is calculated, and based on this amount of movement, the calculation means calculates the amount of movement of the image of the object to be measured. The distance to the object to be measured is calculated, and the distance to the object to be measured can be easily measured without using two imaging devices, light sources, or expensive ultra-Miyagi sensors as in the past. .

また、アームを一定の微小角度ずつ回転させるごとに、
前記した距離計測動作を繰り返せば、撮像手段の周囲に
存在する各被測定体までの距離さらには各被測定体の位
置が求められる。
Also, each time the arm is rotated by a certain minute angle,
By repeating the distance measurement operation described above, the distance to each object to be measured existing around the imaging means and the position of each object to be measured can be determined.

〔実施例〕〔Example〕

つぎに、この発明を、その1実施例を示した図面ととも
に詳細に説明する。
Next, the present invention will be described in detail with reference to drawings showing one embodiment thereof.

まず、全体の構成を示す第1図において、(1)は基台
、(2)は基台(1)の中央に立設された支柱、(3)
は一端部が支柱(2)の上端に設けられたパルスモータ
の回転軸に軸着でれ水平面内において回転する回転アー
ム、(4)はアーム(3)の他端部に取り付けられ被測
定体(5)を撮像して撮像信号を出力する撮像手段とし
てのテレビジョンカメラ、(6)はカメラ(4)からの
前記撮像信号による被測定体(5)の画像を表示するモ
ニタ用テレビジョン受像機である。
First, in Figure 1 showing the overall configuration, (1) is the base, (2) is the pillar installed in the center of the base (1), and (3) is the base.
(4) is a rotary arm whose one end is attached to the rotating shaft of a pulse motor provided at the upper end of the support column (2) and rotates in a horizontal plane; (5) is a television camera as an imaging means that takes an image and outputs an imaging signal; (6) is a television receiver for a monitor that displays an image of the object to be measured (5) based on the imaging signal from the camera (4); It is a machine.

ざらに、カメラ(4)からの被測定体(5)の画像を処
理する処理回路を示す第2図において、(7)は後述の
コンピュータからの駆動制御信号としてのパルス信号に
よりアーム(3)を所定角度回転させるパルスモータ、
(8)は切換片(8a)がカメラ(4)に接続され前記
コンピュータからの切換制御信号により切換片(8a)
が第1.第2接点(8b)、(8C)に切り換わる切換
スイッチ、(9a)、(9b)は入力端子がそれぞれ第
1.第2接点(8b)、(8C)に接続され前記コンピ
ュータからの記憶制御信号によりスイッチ(8)を介し
たカメラ(4)からの映像信号にもとづく画像をたとえ
ば各画素の明るさの8ビツトの濃淡情報として記憶する
第1、第2画像メモリ、叫はコンピュータであり、前記
各制御信号を出力して各部の制御を行ない、両メモリ(
9a)、(91りの記憶データにもとづき、アーム(3
)の一端部から被測定体(5)までの距離を算出する演
算装置としての機能を有している。
Roughly speaking, in Fig. 2 which shows a processing circuit that processes the image of the object to be measured (5) from the camera (4), (7) controls the arm (3) by a pulse signal as a drive control signal from a computer, which will be described later. A pulse motor that rotates the
In (8), the switching piece (8a) is connected to the camera (4), and the switching piece (8a) is connected to the camera (4) by the switching control signal from the computer.
is the first. The input terminals of the changeover switches (9a) and (9b) that switch to the second contacts (8b) and (8C) are the first and second contacts, respectively. It is connected to the second contacts (8b) and (8C), and the image based on the video signal from the camera (4) via the switch (8) is converted into 8-bit brightness of each pixel by the storage control signal from the computer. The first and second image memories, which store grayscale information, are computers, which output the above-mentioned control signals to control each part, and both memories (
9a), (based on the memory data of 91), the arm (3
) has a function as an arithmetic device that calculates the distance from one end of the object (5) to the object to be measured (5).

つぎに、前記実施例の動作について説明する。Next, the operation of the above embodiment will be explained.

いま、第3図に示すようにアーム(3)の回転中心をO
,アーム(3)の長さをrとし、被測定体(5)を点T
と表わし、半径rの円C上にカメラ(4)があり、被測
定体(5)が円Cを含む水平面内にあるものとする。
Now, as shown in Figure 3, the center of rotation of the arm (3) is set at O.
, the length of arm (3) is r, and the object to be measured (5) is point T.
Assume that the camera (4) is located on a circle C with a radius r, and the object to be measured (5) is located in a horizontal plane containing the circle C.

そして、円Cと2点0.Tを結ぶ直線πとの交点P1に
、カメラ(4)が位置するようにアーム(3)をセット
し、被測定体(5)の画像がカメラ(4)の画面である
受光面の中心に位置する状態に保持しておき、この状態
からアーム(3)をΔθだけ回転させてカメラ(4)を
円C上の点P2に移動させると、カメラ(4)の光軸、
すなわち点0 、 P2を結ぶ直線OP2に対し、被測
定体(5)は前記直線と点P2 、 Tを結ぶ直線P2
Tとのなす角αだけずれた方向に相対的に移動すること
になる。
Then, circle C and 2 points 0. Set the arm (3) so that the camera (4) is located at the intersection P1 with the straight line π connecting If the arm (3) is rotated by Δθ from this state and the camera (4) is moved to a point P2 on the circle C, the optical axis of the camera (4),
That is, with respect to the straight line OP2 connecting points 0 and P2, the object to be measured (5) is connected to the straight line P2 connecting the straight line and points P2 and T.
It will move relatively in a direction shifted by the angle α formed with T.

このとき、アーム(3)の回転によるカメラ(4)の移
動距離4.すなわち点PL、P2間の円弧の長さeばΔ
θ。
At this time, the distance the camera (4) moves due to the rotation of the arm (3) is 4. In other words, the length of the arc between points PL and P2 is Δ
θ.

1 = 2 r 5lnT−; rΔθ       
   °°゛■と近似することができ、一方直線OTと
直線P2Tとのなす角βI、および直線P2Tと点PI
、P2を結ぶ直線PIP2とのなす角β2はそれぞれ、
βl=α−Δθ            ・・・■π 
Δθ            ・・・■β2さrT−“ と表わすことができる。
1 = 2 r 5lnT-; rΔθ
It can be approximated as °°゛■, and on the other hand, the angle βI between the straight line OT and the straight line P2T, and the angle βI between the straight line OT and the straight line P2T, and the angle between the straight line P2T and the point PI
, the angle β2 formed with the straight line PIP2 connecting P2 is, respectively,
βl=α−Δθ ・・・■π
It can be expressed as Δθ...■β2sarT-".

さらに、点P+、T間の距離をm1点P2 、 T間の
距離をdとすると、 l = d sinβl              
・・・0m = d sinβ2          
   ・・・■と表わされるため、前記■、■式より ユ=二    ・・・■ sinβr  sinβ2 という関係が得られ、この0式を展開すると、m=l工
L             ・・・■sinβl となり、ここで前記■、■式におけるΔθ、αともに非
常に小さく零に近いと見なすと、smβl舛α−Δθ。
Furthermore, if the distance between points P+ and T is m1, and the distance between points P2 and T is d, then l = d sinβl
...0m = d sinβ2
Since it is expressed as ...■, from the above formulas ■ and ■, we get the relationship yu = 2 ...■ sinβr sinβ2, and when we expand this 0 formula, we get m = l engineering L ...■sinβl, where If we assume that both Δθ and α in equations (1) and (2) are very small and close to zero, then smβ1α−Δθ.

Sinβ2=1と表わされるため、前記0式は、前記0
式を用いて ゛ ′ 一旦        ・・・α、α−Δθ α
−Δθ と近似することができ、アーム(3)の長さrとfff
immとの和である点0.T間の距離りは、前記■式%
式% しだがって、前記■式において、アーム(3)の長さr
は既知であり、アーム(3)の回転角度Δθもパルスモ
ータ(7)へのパルス数かられかるため、角αをカメラ
(4)による撮像画像から求めれば、距離りを容易に算
出できることになり、つぎにカメラ(4)による撮像画
像から角αを求める手順について説明する。
Since Sinβ2=1, the above equation 0 becomes the above 0
Using the formula, ゛ ′ Once...α, α−Δθ α
−Δθ, the length r of arm (3) and fff
The point 0. which is the sum of imm. The distance between T is according to the above formula %
Formula % Therefore, in the above formula (■), the length r of arm (3)
is already known, and the rotation angle Δθ of the arm (3) can also be determined from the number of pulses to the pulse motor (7), so if the angle α is found from the image captured by the camera (4), the distance can be easily calculated. Next, the procedure for determining the angle α from the image captured by the camera (4) will be explained.

いま、第4図に示すように、カメラ(4)の光軸Rに対
して被測定体(5)の撮像方向が微小角αだけずれてい
る場合、カメラ(4)の受光面S上における該受光面S
の中心点Mから被測定体(5)の画像の結像点Kまでの
位置ずれ量iは、カメラ(4)の集光レンズの位置を示
す点Qから点Mまでの距離をbとすると、 1=b−α              ・・・[相]
と表わすことができ、角αが非常に小さいため、前記[
相]式で表わされる位置ずれ量1はメ i = IJ MeIa&−(il) と近似することができ、被測定体(5)の画像を処理し
て位置ずれ量iを求めれば、距離わが既知であるため、
前記0式より角αを容易に算出できることになる。
Now, as shown in FIG. 4, when the imaging direction of the object to be measured (5) is shifted by a small angle α with respect to the optical axis R of the camera (4), the angle on the light receiving surface S of the camera (4) is The light receiving surface S
The amount of positional deviation i from the center point M of , 1=b−α ... [phase]
Since the angle α is very small, the above [
The amount of positional deviation 1 expressed by the formula [phase] can be approximated as Mei = IJ MeIa & - (il), and if the image of the object to be measured (5) is processed to find the amount of positional deviation i, the distance Therefore,
The angle α can be easily calculated from the above equation 0.

そして、カメラ(4)が第3図の点PIの位置にあると
き、コンピュータaOからの切換制御信号により、スイ
ッチ(8)の切換片(8a)を第1接点(8b)側に切
り換えると同時に、コンピュータaOからの記憶制御信
号により、被測定体(5)の画像がカメラ(4)の受光
面の中心に位置する状態における被測定体(5)の画像
を第1画像メモリ(9a)に記憶させるとともに、アー
ム(3)がΔθ回転してカメラ(4)が第3図の点P2
に移行したときに、前記と同様にしてコンピュータαG
からの切換制御信号によりスイッチ(8)の切換月1(
8a)を第2接点(8C)側に切り換えると同時に、コ
ンピュータ0Iからの記憶制御信号により、被測定体(
5)の画像がカメラ(4)の受光面の中心に位置する状
態から前記受光面の横方向に移動したのちの被測定体(
5)の画像を第1画像メモリJ (9b)に記憶させる
When the camera (4) is at the position of point PI in Fig. 3, the switching control signal from the computer aO switches the switching piece (8a) of the switch (8) to the first contact (8b) side. , an image of the object to be measured (5) in a state where the image of the object to be measured (5) is located at the center of the light receiving surface of the camera (4) is stored in the first image memory (9a) by a storage control signal from the computer aO. At the same time, the arm (3) rotates Δθ and the camera (4) moves to point P2 in Figure 3.
When the computer αG is transferred to
The switching control signal from switch (8) switches month 1 (
8a) to the second contact (8C) side, the object to be measured (
The image of the object to be measured (5) after moving in the lateral direction of the light receiving surface from the state where the image of the camera (4) is located at the center of the light receiving surface of the camera (4).
5) is stored in the first image memory J (9b).

このとき、両メモリ(9a)、(9b)に記憶される画
像データを、第5図に示すように、受光面SをNXN個
の画素に分割したときの各画素の濃淡情報とし、受光面
Sの横方向であるX方向および縦方向であるY方向にそ
れぞれX番目、y番目の画素のデータをL(X、)’)
と表わすとともに、第1画像メモリ(98) ノ各画素
データをI、+(x、y) 、 第2画像メモ11(9
b)の各画素データをL2(x、y)と表わすと、両メ
モIJ (9a)、(91))の各画素データの差から
位置ずれ量iが算出される。
At this time, the image data stored in both memories (9a) and (9b) is the shading information of each pixel when the light-receiving surface S is divided into NXN pixels, as shown in FIG. The data of the X-th and y-th pixels in the X direction, which is the horizontal direction of S, and the Y direction, which is the vertical direction, respectively, are L(X,)')
In addition, each pixel data of the first image memory (98) is expressed as I, + (x, y), and the second image memo 11 (98) is expressed as
If each pixel data of b) is expressed as L2 (x, y), the positional shift amount i is calculated from the difference between each pixel data of both memos IJ (9a), (91)).

すなわち、次式で示される評価量A (X)がコンピュ
ータ<10により演算きれ、 (1行余白) カメラ(4)の光軸付近、つまり受光面の中央の点(g
、署)付近の画像の類似の度合が前記0式で示される評
価量A(x)を用いて調べられ、この評価#A(x)が
最小になるときの受光面SのX方向の座標値Xがコンピ
ュータGOにより導出され、次式%式% に導出された座標値Xが代入されてコンピュータGOに
より位置ずれ量lが算出され、ざらに算出された位置ず
れ量iが前記0式に代入されてコンピュータ(10によ
り角αが算出されるとともに、算出をれた角αが前記■
式に代入されてコンピュータQf]により距離りの算出
が行なわれ、被測定体(5)までの距離りが計測される
That is, the evaluation amount A (X) shown by the following formula can be calculated by the computer < 10, and (1 line margin) the point (g
, the degree of similarity of images near the station) is examined using the evaluation amount A(x) shown by the above formula 0, and the coordinate in the X direction of the light receiving surface S when this evaluation #A(x) is the minimum The value X is derived by computer GO, and the derived coordinate value The angle α is calculated by the computer (10), and the calculated angle α is
The distance is calculated by the computer Qf], and the distance to the object to be measured (5) is measured.

ところで、これまではアーム(3)が水平面に平行な面
内で回転する場合について説明したが、アーム(3)を
水平面に直角な面内で回転するようにし、E+1記した
手順と同様にして、カメラ(4)の受光面の中心に被測
定体(5)の画像が位置する状態から@記受光面の縦方
向に前記画像が移動するようにして被測定体(5)まで
の距離を測定することも勿論可能である。
By the way, so far we have explained the case where the arm (3) rotates in a plane parallel to the horizontal plane, but let's make the arm (3) rotate in a plane perpendicular to the horizontal plane and follow the same procedure as described in E+1. , from a state where the image of the object to be measured (5) is located at the center of the light receiving surface of the camera (4), the distance to the object to be measured (5) is determined by moving the image in the vertical direction of the light receiving surface. Of course, measurement is also possible.

まだ、m1記したように被測定体(5)がアーム(3)
を含む水平面内にある場合だけに限らず、被測定体(5
)がアーム(3)を含む水平面外にある場合についても
、前記した手順にもとづいて距離計測が行なえ、次にそ
の手順について説明する。
As noted in m1, the object to be measured (5) is still attached to the arm (3).
The object to be measured (5
) is outside the horizontal plane that includes the arm (3), the distance can be measured based on the procedure described above, and the procedure will be explained next.

いま第6図に示すように、前記した第3図の場合と同様
に、アーム(3)の回転中心をO,アーム(3)の長さ
をrとし、被測定体(5)を点T′と表わし、カメラ(
4)が点Oを中心とする半径rの水平面に平行な円C上
にあり、被測定体(5)が前記円Cを含む水平面■の上
方にあるものとし、被測定体(5)の画像がカメラ(4
)の受光面の中心を通る縦方向の中心線上に位置するよ
うにアーム(3)、カメラ(4)をセットする。
As shown in FIG. 6, as in the case of FIG. 3 described above, the rotation center of arm (3) is O, the length of arm (3) is r, and the object to be measured (5) is at point ′ and the camera (
4) is on a circle C centered on point O and parallel to a horizontal plane of radius r, and the object to be measured (5) is above the horizontal plane ■ that includes the circle C, and the object to be measured (5) is The image is from the camera (4
) Set the arm (3) and camera (4) so that they are located on the vertical center line passing through the center of the light receiving surface of the camera.

そして、このときのカメラ(4)の位置を円C上の点P
3とし、カメラ(4)の受光面に平行でかつ点T′を含
む面を想定すると、当該想定面における前記中心線に対
応する直線Eば、前記水平面Vおよびカメラ(4)の光
軸である点0 、 Paを結ぶ直線OPgに直交し、か
つ点T′を通ることになり、この状態からアーム(3)
をΔθだけ回転させてカメラ(4)を円C上の点P4に
移動きせると、移動後のカメラ(4)の光軸である点0
 、 P4を結ぶ直線面に対し、被測定体(5)’f;
、 tIJ 記直線OP4ト点P4. T′(!: ヲ
結)直Pa P4T’とのなす角δだけずれた方向に相
対的に移動する。
Then, the position of the camera (4) at this time is a point P on the circle C.
3 and assuming a plane parallel to the light-receiving surface of the camera (4) and including point T', the straight line E corresponding to the center line on the assumed plane is the horizontal plane V and the optical axis of the camera (4). It is perpendicular to the straight line OPg connecting points 0 and Pa and passes through point T', and from this state arm (3)
When rotated by Δθ and move the camera (4) to point P4 on circle C, the optical axis of the camera (4) after movement is point 0.
, For the straight line connecting P4, the object to be measured (5)'f;
, tIJ Line OP4 point P4. T' (!: wo connection) Direct Pa Moves relatively in the direction shifted by the angle δ formed with P4T'.

ところで、この様子を水平面Vに直角方向から見た場合
、点T′は水平面■と直線Eとの交点T?に置き換えら
れ、アーム(3)のΔθの回転により被測定体(5)は
前記した第3図の場合と同じように水平面V内において
移動することになる。
By the way, when this situation is viewed from a direction perpendicular to the horizontal plane V, the point T' is the intersection point T? of the horizontal plane ■ and the straight line E? By the rotation of the arm (3) by Δθ, the object to be measured (5) moves within the horizontal plane V in the same way as in the case of FIG. 3 described above.

しだがって、実際の被測定体(5)の位置である点゛r
′を点rとみなし、コンピュータGOにより前記した演
t1を行なうことにより、点Pa 、 T″間の距離m
’、すらに点O1T′間の距離D’ (= r 十m’
 )が算出される。
Therefore, the point ゛r which is the actual position of the measured object (5)
′ is regarded as the point r, and by performing the above calculation t1 using the computer GO, the distance m between the points Pa and T″ can be calculated.
', even the distance D' between points O1T' (= r 10 m'
) is calculated.

しかし、アーム(3)の回転中心から被測定体(5)ま
での実際の距離は点0 、 T’間の距離りであり、距
離D″は点Pa 、 T’間の距離をm′2点P3. 
T’を結ぶ直線PaT’と点Pa 、 T“を結ぶ直線
扉とのなす角φをと表わされ、さらに距離mが 171’= m’/朗φ            ・・
・□□□と表わされるため、角φがわかれば前記[相]
式、■式より距離D′を算出することができる。
However, the actual distance from the center of rotation of the arm (3) to the object to be measured (5) is the distance between points 0 and T', and the distance D'' is the distance between points Pa and T' by m'2. Point P3.
The angle φ between the straight line PaT' connecting T' and the straight door connecting points Pa and T'' is expressed as, and the distance m is 171' = m'/roφ...
・Since it is expressed as □□□, if the angle φ is known, the above [phase]
The distance D' can be calculated from the formula and formula (2).

このとき、カメラ(4)の受光面Sの中心を通る縦方向
の中心線に物体の画像が結像される場合の、前記中心か
ら画像までの各距離と、カメラ(4)の光軸に対する物
体の撮像方向とのなす角との関係を予め求めておき、点
P3に位置するカメラ(4)による点Tで示される被測
定体(5)の画像を第1画像メモリ(9a)に記憶させ
、その後コンピュータ0■により画像処理する際に、第
5図に示す受光面Sの中央の点(y、、y)から被測定
体(5)の画像までの受光面S上における距離jを導出
し、予め求めた前記距離と角との関係から、直線P a
 ’I”と石線P a ’I’ ″とのなす角φを導出
することができ、このようにして導出きれた角φが前記
(節穴、■式に代入され、コンピュータ叫により距離り
の算出が行なわれ、被測定体(5)までの距離りが計測
されることになる。
At this time, when an image of an object is formed on a vertical center line passing through the center of the light receiving surface S of the camera (4), each distance from the center to the image and the optical axis of the camera (4) are calculated. The relationship between the angle formed by the imaging direction of the object is determined in advance, and the image of the object to be measured (5) indicated by point T taken by the camera (4) located at point P3 is stored in the first image memory (9a). Then, when the image is processed by the computer 0, the distance j on the light receiving surface S from the center point (y,, y) of the light receiving surface S shown in FIG. 5 to the image of the object to be measured (5) is calculated. From the relationship between the derived and previously determined distance and angle, the straight line P a
It is possible to derive the angle φ between 'I' and the stone line P a 'I''', and the angle φ thus derived is substituted into the above-mentioned (knot hole, Calculation is performed and the distance to the object to be measured (5) is measured.

なお、mJ記距離Jを導出する場合、カメラ(4)が点
P3にある状態での第1画像メモIJ (9a)に記憶
された被測定休(5)の画像の各画素データLs(x、
y)と、カメラ(4)が点P4にある状態での第2画像
メモIJ (9b)に記憶された被測定体(5)の画像
の各画素デー、zL4(x、y)とから、N = 51
2として、@記@式が最小になるときの受光面SのY方
向の座標値yを尋出し、前記0式と同様に表わされる次
式、1=y−−H・・・0 に前記導出した座標値yを代入することにより距離、1
.すなわち受光面S上での被測定体(5)の画像の受光
面Sの中心からの位置ずれ量Jを導出することができる
In addition, when deriving the mJ recording distance J, each pixel data Ls(x ,
y) and each pixel data, zL4(x,y) of the image of the object to be measured (5) stored in the second image memo IJ (9b) with the camera (4) located at point P4, N = 51
2, find out the coordinate value y of the light receiving surface S in the Y direction when the @formula becomes the minimum, and use the following formula expressed in the same way as the above formula 0, 1=y--H...0 as shown above. By substituting the derived coordinate value y, the distance, 1
.. That is, the amount of positional deviation J of the image of the object to be measured (5) on the light receiving surface S from the center of the light receiving surface S can be derived.

ただし、第6図において直線E上の点B 、 B’i寸
直線Eとカメラ(4)の視野範囲の縦方向の限界線との
交点を示し、点P3 、 Bを結ぶ直線P3Bと点P3
゜B′を結ぶ直線PaB’とのなす角φ′はカメラ(4
)の縦方向の視野角である。
However, in Fig. 6, point B on the straight line E, the intersection of the B'i dimension line E and the vertical limit line of the field of view of the camera (4), and the straight line P3B connecting the points P3 and B and the point P3.
The angle φ' with the straight line PaB' connecting ゜B' is the angle φ' of the camera (4
) is the vertical viewing angle.

また、前記したようにして導出された角φおよび距離m
を用いることにより、点Oがら被測定体(5)を示す点
T′を見たときの仰角、すなわち点O1T′を結ぶ直線
−δPと点0.T′を結ぶ直線7とのなす角ξは、 m♂nφ ξ=jan−’   /F r−4−m曲φ            ・・・[有]
と表わされ、アーム(3)の基準位置からの回転角θ。
Also, the angle φ and the distance m derived as described above
By using the angle of elevation when looking at the point T' indicating the object to be measured (5) from the point O, that is, the straight line -δP connecting the point O1T' and the point 0. The angle ξ formed with the straight line 7 connecting T' is m♂nφ ξ=jan-' /F r-4-m curve φ... [Yes]
is the rotation angle θ of the arm (3) from the reference position.

点Oから被測定体(5)までの距離D′、仰角ξを用い
、被測定体(5)の位置を点Oを原点とする極座漂(θ
Using the distance D' from point O to the object to be measured (5) and the angle of elevation ξ, the position of the object to be measured (5) is determined by polar drift (θ) with point O as the origin.
.

D′、ξ)として表示することができ、従って第7図に
示す↓うに、アーム(3)を一定の微小角Δθ′ずつ回
転させるごとに前記した動作を繰り返すことにより、カ
メラ(4)の周囲に存在する各被測定休までの距離を計
測することができると同時に、各被測定体の位置を点O
を原点とする極座標として表示、認識するととができ、
たとえばロボットの視覚センサに適用した場合には、ロ
ボット周囲に存在する物体の位置を容易に認識すること
が可能となる。
Therefore, as shown in Fig. 7, by repeating the above operation each time the arm (3) is rotated by a certain minute angle Δθ', the camera (4) can be displayed as It is possible to measure the distance to each object to be measured in the surrounding area, and at the same time, the position of each object to be measured can be determined from a point O.
can be displayed and recognized as polar coordinates with the origin as
For example, when applied to a robot's visual sensor, it becomes possible to easily recognize the position of objects around the robot.

なお、撮像手段としてテレビジョンカメラ(4) ヲ用
い/+、が、これに限るものでなく、CODイメージセ
ンサや赤外線カメラなどを用いてもよいことは勿論であ
る。
Note that although a television camera (4) is used as the imaging means, the present invention is not limited to this, and it goes without saying that a COD image sensor, an infrared camera, or the like may be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の距離計測方法によると、従来
のように、2台の撮像手段やレーザ等の光源、さらには
高価な超音波センサを用いる必要がなく、1台のテレビ
ジョンカメラ(4)等の撮像手段で済むだめ、簡単かつ
安価な構成により、容易に被測定休(5)までの距離を
計測することができ、ロボットなどにおける距離計測方
法として非常に有利である。
As described above, according to the distance measuring method of the present invention, there is no need to use two imaging means, a light source such as a laser, or an expensive ultrasonic sensor as in the conventional method, and only one television camera ( Since only an imaging means such as 4) is required, the distance to the object to be measured (5) can be easily measured with a simple and inexpensive configuration, which is very advantageous as a distance measuring method for robots and the like.

また、アーム(3)を一定の微小角度ずつ回転させるご
とに距離計測動作を繰り返すことにより、カメラ(4)
等の撮像手段の周囲に存在する各被測定体までの距離さ
らには各被測定体の位置を知ることが可能となる。
In addition, by repeating the distance measurement operation every time the arm (3) is rotated by a certain minute angle, the camera (4)
It becomes possible to know the distance to each object to be measured that exists around the imaging means such as, and also the position of each object to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の距離計測方法の1実施例を示し、第
1図は装置の外観の斜視図、第2図は画像処理回路のブ
ロック図、第3図および第4図はそれぞれ動作説明図、
第5図は第2図の画像メモリの記憶画像データの説明図
、第6図および第7図はそれぞれ異なる状態における動
作説明図である。 (3)・・・回転アーム、(4)・・・テレビジョンカ
メラ、(5)・・・被測定体、αQ・・・コンピュータ
The drawings show one embodiment of the distance measuring method of the present invention, in which Fig. 1 is a perspective view of the external appearance of the device, Fig. 2 is a block diagram of the image processing circuit, and Figs. 3 and 4 are operation explanatory diagrams. ,
FIG. 5 is an explanatory diagram of the image data stored in the image memory of FIG. 2, and FIGS. 6 and 7 are explanatory diagrams of operations in different states. (3)... Rotating arm, (4)... Television camera, (5)... Measured object, αQ... Computer.

Claims (1)

【特許請求の範囲】[Claims] (1)一端部を中心に回転する回転アームの他端部に撮
像手段を取り付け、前記撮像手段の画面の中心を通る縦
方向の中心線上に被測定体の画像が位置する状態から、
前記画面の横方向に前記画像が移動するように前記アー
ムを回転させ、前記アームの回転による前記画像の前記
中心線からの移動量を求め、前記移動量にもとづき演算
手段により前記アームの一端部から前記被測定体までの
距離を算出することを特徴とする距離計測方法。
(1) From a state in which an imaging means is attached to the other end of a rotary arm that rotates around one end, and the image of the object to be measured is located on a vertical center line passing through the center of the screen of the imaging means,
The arm is rotated so that the image moves in the lateral direction of the screen, the amount of movement of the image from the center line due to the rotation of the arm is determined, and one end of the arm is calculated by a calculation means based on the amount of movement. A distance measuring method characterized by calculating a distance from to the object to be measured.
JP27546085A 1985-12-07 1985-12-07 Range finding method Pending JPS62134516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27546085A JPS62134516A (en) 1985-12-07 1985-12-07 Range finding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27546085A JPS62134516A (en) 1985-12-07 1985-12-07 Range finding method

Publications (1)

Publication Number Publication Date
JPS62134516A true JPS62134516A (en) 1987-06-17

Family

ID=17555838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27546085A Pending JPS62134516A (en) 1985-12-07 1985-12-07 Range finding method

Country Status (1)

Country Link
JP (1) JPS62134516A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317502A (en) * 1989-03-24 1991-01-25 Celette Sa Positional inspection device for measuring point in car
CN103234509A (en) * 2013-04-07 2013-08-07 上海理工大学 Measuring apparatus for included angle of light beams
WO2017057016A1 (en) * 2015-09-29 2017-04-06 ソニー株式会社 Measurement device and method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317502A (en) * 1989-03-24 1991-01-25 Celette Sa Positional inspection device for measuring point in car
CN103234509A (en) * 2013-04-07 2013-08-07 上海理工大学 Measuring apparatus for included angle of light beams
WO2017057016A1 (en) * 2015-09-29 2017-04-06 ソニー株式会社 Measurement device and method, and program
JPWO2017057016A1 (en) * 2015-09-29 2018-08-09 ソニー株式会社 Measuring apparatus and method, and program
EP3358297A4 (en) * 2015-09-29 2019-05-29 Sony Corporation Measurement device and method, and program
US10508911B2 (en) 2015-09-29 2019-12-17 Sony Corporation Apparatus and method for measurement, and program

Similar Documents

Publication Publication Date Title
US5798750A (en) Image display apparatus
US4424588A (en) Method for detecting the position of a symmetrical article
JPH07286837A (en) Instrument and method for measuring rotational amount of spherical body
JPS62206684A (en) Position and shape measuring method by pattern projection
JPH06167564A (en) Position measuring system and device using fish eye lens
JP2000028332A (en) Three-dimensional measuring device and method therefor
JPS62134516A (en) Range finding method
JPH0335108A (en) Lead position recognition device
JPS62134515A (en) Range finding method
JPH10267621A (en) Apparatus and method for measurement of height of object
JPS60227104A (en) Method and device for deciding position
JPH07139918A (en) Method for measuring central position/radius of cylinder
JPH03237311A (en) Inage input device
JPS6268565A (en) Automatic coating apparatus
JPS6180008A (en) Shape measuring apparatus
JPS62187980A (en) Device for determining picture element size
JPS6131910A (en) Measuring instrument for curved surface
JPH0452646Y2 (en)
JPH02285875A (en) Target capturing position setting device for image tracking system
JPH02281315A (en) Free-running coordinate reading method and device for this method
JPH045955B2 (en)
JPH0599622A (en) Calibration device employing rotating mechanism for camera
JPS6264903A (en) Method and apparatus for measuring shape
JPH0739956B2 (en) Method of detecting target position by camera
JPS61219554A (en) Device for measuring clamp shear quantity