JPS62134243A - Isotactic polystyrene molded body - Google Patents

Isotactic polystyrene molded body

Info

Publication number
JPS62134243A
JPS62134243A JP27341885A JP27341885A JPS62134243A JP S62134243 A JPS62134243 A JP S62134243A JP 27341885 A JP27341885 A JP 27341885A JP 27341885 A JP27341885 A JP 27341885A JP S62134243 A JPS62134243 A JP S62134243A
Authority
JP
Japan
Prior art keywords
stretching
isotactic polystyrene
molded body
org
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27341885A
Other languages
Japanese (ja)
Other versions
JPH0546302B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Junko Takeda
武田 淳子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP27341885A priority Critical patent/JPS62134243A/en
Publication of JPS62134243A publication Critical patent/JPS62134243A/en
Publication of JPH0546302B2 publication Critical patent/JPH0546302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To enhance heat resistance and mechanical strength, by using isotactic polystyrene which is subjected to stretching treatment under heating and of which the heat of fusion obtained by differential scanning thermal analysis is a specific value or more. CONSTITUTION:Isotactic polystyrene is molded in such a state that a low MW org. compound is well dispersed therein and stretched under heating. The proper amount of the low MW org. compound in the molded body at the time of stretching treatment is 1-100pts.wt. of 100pts. of isotactic polystyrene. The low MW org. compound is normally evaporated and removed at the time of stretching under heating and operation is performed to that the presence amount of the low MW org. compound comes to 5pts.wt. at the time of the finish of stretching. Proper stretching temp. is 100-250 deg.C and proper stretching magnification is 1.5-100 times. The heat of fusion of the molded body obtained by differential scanning thermal analysis is 20 Joule/g or more and, if below 20 Joule/g or less, the strength of the molded body is inferior.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性、耐薬品性に優れたアイソタクテイクポ
リスチレンの成形体に関する。詳しくは、特定の方法で
得た高結晶化度子インタクテイクボリスチレン成形体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molded article of isotactic polystyrene having excellent heat resistance and chemical resistance. Specifically, the present invention relates to a high crystallinity interactivory polystyrene molded product obtained by a specific method.

〔従来の技術〕[Conventional technology]

アイソタクテイクポリスチレンは高い融点を有し、比較
的耐薬品性に優れており、耐熱性、耐薬!o、株の#?
11マージ1−での田拾六;卯法六ガでい友しかしなが
ら、融点とポリマーの分解温度が近く成形が困難である
上に、成形物は極めて脆く、実用に耐えないという問題
があり、そのため実際の用途には用いられていなかった
Isotactic polystyrene has a high melting point, relatively good chemical resistance, heat resistance, and chemical resistance! o, stock #?
However, there is a problem that the melting point and decomposition temperature of the polymer are close to each other, making it difficult to mold, and the molded product is extremely brittle and cannot be put to practical use. Therefore, it was not used for actual purposes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

アイソタクテイクポリスチレンの高い融点を有するとい
う本来の性質を活かし、しかも実用に耐える強度を有す
る成形体の開発が望まれている。
It is desired to develop a molded article that takes advantage of isotactic polystyrene's inherent property of having a high melting point and that has strength enough to withstand practical use.

本発明者らは上記問題を解決して優れた物性を有するア
イソタクテイクポリスチレン成形体について鋭意検討し
、本発明を完成した。
The present inventors have made extensive studies on isotactic polystyrene molded bodies that solve the above problems and have excellent physical properties, and have completed the present invention.

〔問題を解決するための手段〕[Means to solve the problem]

即ち、本発明は低分子量有機化合物を含有するアイソタ
クテイクポリスチレンを加熱下に延伸処理して得たアイ
ソタクチックポリスチレンであって、示差走査熱分析に
よって得た融解熱が20ジュール/9以上であることを
特徴とするアイソタクテイクポリスチレン成形体である
That is, the present invention relates to isotactic polystyrene obtained by stretching isotactic polystyrene containing a low molecular weight organic compound under heating, which has a heat of fusion of 20 Joules/9 or more as determined by differential scanning calorimetry. This is an isotactic polystyrene molded article characterized by the following.

本発明において用いるアイソタクテイクポリスチレンは
、通常のプロピレン、ブテン−1などのα−オレフィン
の高立体規則性の重合体を与える触媒を用いてスチレン
を重合することによって得られたものである。中でも、
沸騰メチルエチルケトンで6時間抽出したときの抽出残
分の割合が80重量%以上のものが好ましく、135℃
テトラリン溶液(約200℃で完全にポリスチレンを溶
解した後降温して測定)で測定した極限粘度数が0.1
〜10通常1〜6程度のものが適当である。
The isotactic polystyrene used in the present invention is obtained by polymerizing styrene using a catalyst that provides a highly stereoregular polymer of α-olefins such as ordinary propylene and butene-1. Among them,
It is preferable that the proportion of the extraction residue after extraction with boiling methyl ethyl ketone for 6 hours is 80% by weight or more, and the temperature is 135°C.
The intrinsic viscosity measured with a tetralin solution (measured by completely dissolving polystyrene at approximately 200°C and then lowering the temperature) is 0.1.
~10 Generally, a value of about 1 to 6 is appropriate.

アイソタクテイクポリスチレンな与える触媒としては種
々のものが良く知られており、固体触媒としては、四塩
化チタンを金属アルミニウム、水素、有機アルミニウム
などで還元して得た三塩化チタンを、必要に応じ電子供
与性化合物の共存下に粉砕して活性化したもの、塩化マ
グネシウムなどの担体に、必要に応じ電子供与性化合物
と共に、四塩化チタンを担持して得たものなどが挙げら
れる。
Various catalysts are well known for producing isotactic polystyrene.As a solid catalyst, titanium trichloride obtained by reducing titanium tetrachloride with metal aluminum, hydrogen, organic aluminum, etc. can be used as needed. Examples include those obtained by pulverizing and activated in the presence of an electron-donating compound, and those obtained by supporting titanium tetrachloride on a carrier such as magnesium chloride together with an electron-donating compound if necessary.

スチレンの重合に際しては上記固体触媒はトリアルキル
アルミニウム、ジアルキルアルミニウムハライドなどの
アルキルアルミニウムと併用して用いられ、アルキルア
ルミニウムとしてトリエチルアルミニウム、トリプロピ
ルアルミニウム、トリブチルアルミニウム、ジエチルア
ルミニウムクロライド、ジプロピルアルミニウムクロラ
イド、ジプチルアルミニウムクロライドなどが例示でき
る。
In the polymerization of styrene, the above-mentioned solid catalyst is used in combination with alkyl aluminum such as trialkyl aluminum and dialkyl aluminum halide. Examples include butylaluminum chloride.

重合温度については特に制限はなく、通常常温〜150
℃、好ましくは50〜100℃が適当であり、必要に応
じ分子量調節剤である水素の存在下に重合することもで
きる。
There are no particular restrictions on the polymerization temperature, and it is usually room temperature to 150℃.
C., preferably 50 to 100.degree. C., and polymerization can be carried out in the presence of hydrogen as a molecular weight regulator, if necessary.

本発明においては、上述の方法で得られたアイソタクテ
イクポリスチレンは低分子量有機化合物を良く分散した
状態で成形し、加熱下に延伸される。ここで用いられた
低分子量有機化合物としてはアイソタクテイクポリスチ
レンと相溶性が良いものであれば良く、好ましくはその
沸点が50℃以上特に100〜250℃のものであり、
例えば、トルエン、キシレン、エチルベンゼン、クメン
、メチルベンゼン、テトラリン、デカリンなどの炭化水
素化合物、クロルベンゼン、ジクロルベンセン、トリク
ロロベンゼンなどのハロゲン化炭化水素、ジフェニルエ
ーテル、7二ソール、ジメトキシベンゼンなどのエーテ
ル類などがあげられる。
In the present invention, the isotactic polystyrene obtained by the above method is molded in a state in which a low molecular weight organic compound is well dispersed, and then stretched under heating. The low molecular weight organic compound used here may be one that has good compatibility with isotactic polystyrene, and preferably has a boiling point of 50°C or higher, particularly 100 to 250°C.
For example, hydrocarbon compounds such as toluene, xylene, ethylbenzene, cumene, methylbenzene, tetralin, and decalin, halogenated hydrocarbons such as chlorobenzene, dichlorobenzene, and trichlorobenzene, and ethers such as diphenyl ether, 7disole, and dimethoxybenzene. etc.

分散方法としては比較的多量の低分子量有機化合物にア
イソタクテイクポリスチレンを溶解し、次いで成形し、
大過剰の低分子量有機化合物を除去し、延伸処理に供す
ることも可能であり、所定量の低分子量有機化合物とア
イソタクテイクポリスチレンをヘンシェルミキサーなど
で混合し、次いで加熱成形することで延伸処理に供する
ことも可能である。
The dispersion method involves dissolving isotactic polystyrene in a relatively large amount of a low molecular weight organic compound, then molding it.
It is also possible to remove a large excess of the low molecular weight organic compound and subject it to the stretching process, by mixing a predetermined amount of the low molecular weight organic compound and isotactic polystyrene in a Henschel mixer, etc., and then heat forming it. It is also possible to provide

延伸処理の際の成形体中の低分子量有機化合物の量はア
イソタクテイクポリスチレン100重量部(対し、1〜
100重量部が適当であり、通常加熱延伸の際に低分子
量有機化合物を蒸発除去し、延伸終了時には低分子量有
機化合物の存在量を5部以下となるように操作する。
The amount of low molecular weight organic compound in the molded body during the stretching treatment is 100 parts by weight of isotactic polystyrene (1 to 100 parts by weight).
A suitable amount is 100 parts by weight, and the low molecular weight organic compound is usually removed by evaporation during heating and stretching, so that the amount of the low molecular weight organic compound present is 5 parts or less at the end of the stretching.

延伸温度としては100〜250℃、好ましくは120
〜240℃が適当であり、延伸倍率としては1.5〜1
00倍通常2〜50倍が適当である。
The stretching temperature is 100 to 250°C, preferably 120°C.
~240°C is appropriate, and the stretching ratio is 1.5~1
00 times, usually 2 to 50 times is appropriate.

本発明において重要なのは、得られた成形体の示差走査
熱分析によって得た融解熱が20ジユー販の通常の示差
走査熱分析計を用い、10℃/minで30℃より35
0℃まで昇温して測定することによって測定したもので
ある。
What is important in the present invention is that the heat of fusion obtained by differential scanning calorimetry of the obtained molded body was measured at 35° C.
It was measured by raising the temperature to 0°C.

〔発明の効果〕〔Effect of the invention〕

本発明のアイソタクテイクポリスチレン成形体は、耐熱
性と機械的強度にすぐれ、工業的に極めて価値のあるも
のである。
The isotactic polystyrene molded article of the present invention has excellent heat resistance and mechanical strength, and is extremely valuable industrially.

〔実施例〕 以下、実施例を挙げ、本発明をさらに説明する。〔Example〕 Hereinafter, the present invention will be further explained with reference to Examples.

実施例1 (i)アイソタクテイクポリスチレンの製造77(7)
オートクレーブにトルエン31.スチレン21.高活性
三塩化チタン(丸紅ソルヴエー社製、ロット番号TGY
24)1.59およびトリエチルアルミニウム2−を加
え70℃で30分間重合した。
Example 1 (i) Production of isotactic polystyrene 77(7)
Toluene in autoclave 31. Styrene 21. Highly active titanium trichloride (manufactured by Marubeni Solve A, lot number TGY
24) 1.59 and triethylaluminum 2- were added and polymerized at 70°C for 30 minutes.

次いで小量のメタノールを加え、触媒を失活した後、室
温で大量のメタノール中に上記反応液を加え、ポリスチ
レンを析出させた。得られたアイソタクテイクポリスチ
レンは1809であり、その極限粘度数(135℃テト
ラリン溶液)は5.6であった。また、沸騰メチルエチ
ルケトン抽出残分(ソックスレー抽出器で6時間抽出)
は93,0%であった。
Next, a small amount of methanol was added to deactivate the catalyst, and then the reaction solution was added to a large amount of methanol at room temperature to precipitate polystyrene. The obtained isotactic polystyrene was 1809, and its intrinsic viscosity (135° C. tetralin solution) was 5.6. In addition, boiling methyl ethyl ketone extraction residue (extracted for 6 hours with a Soxhlet extractor)
was 93.0%.

x1 (ii)フィルムの製造 上記アイソタクテイクポリスチレン29を20−のテト
ラリン中に190℃で溶解し、次いで厚′?& さ約0.3 mmO液膜とし、窒素気流下50℃大部分
へ のテトラリンを蒸発させ、テトラリン20重量部(対ポ
リスチレン100重量部)を含む膜としト た。この膜を1軸延伸装置(灯光社製)にセラし、18
0℃で窒素気流下で5倍に延伸し、次いで210℃で5
分間保持した後冷却した。
x1 (ii) Preparation of film The above isotactic polystyrene 29 was dissolved in 20-g of tetralin at 190°C, and then the thickness of A liquid film with a thickness of approximately 0.3 mmO was prepared, and most of the tetralin was evaporated at 50°C under a nitrogen stream to form a film containing 20 parts by weight of tetralin (100 parts by weight of polystyrene). This film was placed in a uniaxial stretching device (manufactured by Tokosha Co., Ltd.) for 18
Stretched 5 times at 0°C under a nitrogen stream, then stretched 5 times at 210°C.
After holding for a minute, it was cooled.

得られたフィルムはしなやかであり、150℃でも変形
しなかった。このフィルムの示差走査熱分析を行ったと
ころ融解熱は28.2ジユール/9であった。フィルム
の引張り強さくASTM D  882−64T)は1
200kg1cr&であった。
The obtained film was pliable and did not deform even at 150°C. A differential scanning calorimetry analysis of this film revealed that the heat of fusion was 28.2 Joules/9. The tensile strength of the film (ASTM D 882-64T) is 1
It was 200 kg 1 cr&.

比較例1 実施例1において製造したテトラリン20重量部(対ポ
リスチレン100重量部)160℃で3倍に延伸し、直
に降温してフィルムを得、次いで80℃で減圧乾燥した
。得られたフィルムは150°で変形し白化した。又示
差走査熱分析によって得た融解熱は19.0ジユール/
9であり、フィルムの引張り強さは680kg/cr!
であり、実施例1のものに比べ劣っていた。
Comparative Example 1 20 parts by weight of the tetralin produced in Example 1 (based on 100 parts by weight of polystyrene) was stretched three times at 160°C, the temperature was immediately lowered to obtain a film, and then dried under reduced pressure at 80°C. The resulting film was deformed at 150° and whitened. The heat of fusion obtained by differential scanning calorimetry was 19.0 joules/
9, and the tensile strength of the film is 680 kg/cr!
and was inferior to that of Example 1.

実施例2 実施例1の(i)で得たアイソタクテイクポリスチレン
100gとデカリン30gを混合し、180°Cで加熱
圧縮成形し、厚さ0.1mmのフィルムを得た。このフ
ィルムを実施例1と同様に延伸装置にセットし、190
℃で6倍に延伸し、220で窒素気流下20分間保持し
た。冷却後取り出したフィルムはしなやかであり、15
0℃では変形せず、又、引張り強さは1400kg/c
r! 、融解熱は32.1ジュール/gであった。
Example 2 100 g of isotactic polystyrene obtained in Example 1 (i) and 30 g of decalin were mixed and compression molded under heat at 180° C. to obtain a film with a thickness of 0.1 mm. This film was set in the stretching device in the same manner as in Example 1, and
It was stretched 6 times at 220° C. and held for 20 minutes under a nitrogen stream. The film taken out after cooling was pliable and 15
It does not deform at 0℃ and has a tensile strength of 1400kg/c.
r! , the heat of fusion was 32.1 Joules/g.

Claims (1)

【特許請求の範囲】[Claims] 1、低分子量有機化合物を含有するアイソタクテイクポ
リスチレンを、加熱下に延伸処理して得たアイソタクチ
ック成形体であつて、示差走査熱分析によつて得た融解
熱が20ジュール/g以上であることを特徴とするアイ
ソタクテイクポリスチレン成形体。
1. An isotactic molded article obtained by stretching isotactic polystyrene containing a low molecular weight organic compound under heating, with a heat of fusion of 20 Joules/g or more as determined by differential scanning calorimetry. An isotactic polystyrene molded body characterized by:
JP27341885A 1985-12-06 1985-12-06 Isotactic polystyrene molded body Granted JPS62134243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27341885A JPS62134243A (en) 1985-12-06 1985-12-06 Isotactic polystyrene molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27341885A JPS62134243A (en) 1985-12-06 1985-12-06 Isotactic polystyrene molded body

Publications (2)

Publication Number Publication Date
JPS62134243A true JPS62134243A (en) 1987-06-17
JPH0546302B2 JPH0546302B2 (en) 1993-07-13

Family

ID=17527617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27341885A Granted JPS62134243A (en) 1985-12-06 1985-12-06 Isotactic polystyrene molded body

Country Status (1)

Country Link
JP (1) JPS62134243A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0534528A2 (en) * 1991-09-23 1993-03-31 Fmc Corporation Method for bonding styrenic surfaces
US20180044455A1 (en) * 2015-04-24 2018-02-15 Pirelli Tyre S.P.A. High-performance tyre
US20180051118A1 (en) * 2015-04-24 2018-02-22 Pirelli Tyre S.P.A. High-performance tyre

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934845B (en) * 2014-01-24 2019-07-05 日产自动车株式会社 Electrical part
EP3098892B1 (en) 2014-01-24 2018-11-14 Nissan Motor Co., Ltd Electrical device
JP6252602B2 (en) * 2014-01-24 2017-12-27 日産自動車株式会社 Electrical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0534528A2 (en) * 1991-09-23 1993-03-31 Fmc Corporation Method for bonding styrenic surfaces
US20180044455A1 (en) * 2015-04-24 2018-02-15 Pirelli Tyre S.P.A. High-performance tyre
US20180051118A1 (en) * 2015-04-24 2018-02-22 Pirelli Tyre S.P.A. High-performance tyre
US10557022B2 (en) 2015-04-24 2020-02-11 Pirelli Tyre S.P.A. High-performance tire
US10682885B2 (en) 2015-04-24 2020-06-16 Pirelli Tyre S.P.A. High-performance tyre
US10696824B2 (en) 2015-04-24 2020-06-30 Pirelli Tyre S.P.A. High-performance tyre
US10766306B2 (en) 2015-04-24 2020-09-08 Pirelli Tyre S.P.A. High-performance tyre

Also Published As

Publication number Publication date
JPH0546302B2 (en) 1993-07-13

Similar Documents

Publication Publication Date Title
JPH0657057A (en) Polypropylene composition and its film
JPH05202152A (en) Production of polypropylene molding material
JPS63172706A (en) Manufacture of crystalline vinyl aromatic polymer having mainly syndiotactic structure
KR0179039B1 (en) Highly crystalline polypropylene for forming film
NO148222B (en) SHOCK RESISTANT CHEMICAL MIXED POLYMER MIXTURE
JPS62134243A (en) Isotactic polystyrene molded body
JPH01126355A (en) Propylene polymer composition
JP5206395B2 (en) Polypropylene copolymer and film comprising the same
JPH0428727B2 (en)
JPS6043848B2 (en) Soft resin and its manufacturing method
US3803079A (en) Copolymers of alpha-methylstyrene and vinyltoluene and process for their preparation
JPH0546303B2 (en)
JP2005506429A (en) Use of polypropylene-based compositions in expanded beads
US3386983A (en) Process for the polymerization of isoprene in solution employing air3+ticl4 in the presence of a polyhalogenated lower or cycloaliphatic hydrocarbon
JP2818252B2 (en) Syndiotactic polypropylene drawing method
WO1989004331A1 (en) Process for preparing styrenic polymers and process for molding them
JPH01131263A (en) Polypropylene resin composition
US3231549A (en) Polymerisation of olefines containing the vinyl group
JPH04318006A (en) Production of propylene-styrene copolymer
JP3171644B2 (en) Heat resistant insulation film
JPH0333107A (en) Syndiotactic vinylcyclohexane polymer
JP2818284B2 (en) Molded product of polypropylene and method for producing the same
JPH089650B2 (en) Method for producing styrenic polymer
JPH0672191B2 (en) Method for modifying polyolefin
JP2000186175A (en) Propylene-based polymer or polymer composition for biaxially oriented blow molding and vessel