JPS6213394B2 - - Google Patents

Info

Publication number
JPS6213394B2
JPS6213394B2 JP52084224A JP8422477A JPS6213394B2 JP S6213394 B2 JPS6213394 B2 JP S6213394B2 JP 52084224 A JP52084224 A JP 52084224A JP 8422477 A JP8422477 A JP 8422477A JP S6213394 B2 JPS6213394 B2 JP S6213394B2
Authority
JP
Japan
Prior art keywords
ester
formula
acid
carbon atoms
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52084224A
Other languages
Japanese (ja)
Other versions
JPS5420266A (en
Inventor
Tetsuya Sato
Yasuhisa Okazaki
Nobuyuki Watabe
Koji Onoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myoshi Oil and Fat Co Ltd
Original Assignee
Myoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myoshi Oil and Fat Co Ltd filed Critical Myoshi Oil and Fat Co Ltd
Priority to JP8422477A priority Critical patent/JPS5420266A/en
Publication of JPS5420266A publication Critical patent/JPS5420266A/en
Publication of JPS6213394B2 publication Critical patent/JPS6213394B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エステル潤滑油組成物に関し、更に
詳しくは、エステル潤滑油として、α―位側鎖脂
肪酸を含む飽和脂肪酸とネオペンタン骨格を持つ
2〜6価の多価アルコールとのエステルと、更に
これらに2〜13個の炭素数から成る脂肪族飽和ジ
カルボン酸を導入して得るネオペンチル系複合エ
ステルとの混合エステルから成る低温流動性、耐
熱、耐酸化安定性の改良されたエステル潤滑油組
成物に関するものである。本発明の特徴を生かし
た用途は、特に内燃機関すなわちエンジン用潤滑
剤であり、とりわけ自動車用エンジン油として、
そのすぐれた特性を発揮するものである。 近来、自動車の高速化は、高速道路の拡充化に
伴なつて一段と激しくなり、自動車エンジンの高
出力化への要求は年々苛酷になり、更に一方では
自動車排ガス規制等による公害対策としての浄化
装置の備え付け等によつて、従来の自動車用エン
ジン潤滑油の性能では、これらの要求を満たす事
は困難となつてきた。今後の自動車用エンジン油
に要求される性能は、すぐれた熱酸化安定性、低
温流動性、低温始動性、スラツジ分散性及び摩耗
防止性等の他にエンジン油寿命すなわちオイル交
換期の延長化あるいは不要化であり、更にはエン
ジン油への各種添加剤の低減化又は不要化が必要
となつてくる。 従来、エステル潤滑油としては多くの特許、報
文が出されているが、例えば特開昭46―6528、特
公昭48―27867、及び特開昭50―116865らがある
が、これらにはいずれも、エステル中の多価アル
コール成分として、ネオペンチルポリオールを使
用し、かつ、脂肪酸成分として比較的炭素数の小
さいC10以下の直鎖状飽和モノカルボン酸を用い
て、ネオペンチルポリオールエステルと成し、金
属加工用、あるいは鉱物油に混合して内燃機関
(自動車用エンジン)用潤滑剤として用いた例が
記載されている。これら、ネオペンチルポリオー
ルエステルをベースとした潤滑剤が、従来の鉱
油、一般エステル油に比較し、熱、酸化安定性に
すぐれているという事はすでに知られており、実
際にこの特性を生かした用途分野にグリース、合
成作動油、金属加工油(圧延油)エンジン油等の
ベース油あるいは添加剤としての使用がある。 このように、ネオペンチルポリオールエステル
は他のエステル系潤滑油に比較し、熱、酸化安定
性のすぐれたものであるが、反面、潤滑油ベース
として重要な性質である低温流動性については、
未だ不充分であり、ジオクチルセバケート(D.
O.S.)等のジエステル油に比較すると大きく劣
つている。又、この欠点を有するがために、従来
ネオペンチルポリオールエステルが、潤滑油とし
ての汎用性を失ない、特殊用途に限られていた。
更に潤滑性についても、エステルを構成する脂肪
酸のアルキル鎖長が、流動性保持の点から制約を
受け、炭素数10以下のものを主体に使用せざるを
得なく、従つて潤滑性、油性についても未だ充分
とは云えない。 本発明者等は特にこれらの点に着目し、改良す
べく鋭意研究した結果、α―位側鎖脂肪酸を30
〜70重量%含む脂肪族飽和モノカルボン酸とネオ
ペンチルポリオールとのエステル(以下エステル
と略す)及び、更にで用いたカルボン酸に
脂肪族飽和ジカルボン酸を混合したものとネオペ
ンチルポリオールとのエステル(以下エステル
と略す)の両者を適宜混合する事によつて、従来
のネオペンチル系エステルに比較し、更に低温流
動性、潤滑性及び熱酸化安定性の改良を見い出し
た。 本発明のこれらの特徴を生かした用途として
は、エンジン用潤滑油以外に、油圧作動油、低
温、高温用グリース、圧延油更にその他の工業用
潤滑油がある。本発明を更に詳しく述べるとエス
テルに供する脂肪族飽和モノカルボン酸の一般式
は(1)R1―CH2―COOH及び(2)
The present invention relates to an ester lubricating oil composition, and more specifically, the ester lubricating oil contains an ester of a saturated fatty acid containing an α-position side chain fatty acid and a di- to hexa-hydric polyhydric alcohol having a neopentane skeleton; An ester lubricating oil composition comprising a mixed ester with a neopentyl complex ester obtained by introducing an aliphatic saturated dicarboxylic acid having 2 to 13 carbon atoms into a lubricating oil composition having improved low-temperature fluidity, heat resistance, and oxidation resistance stability. It is something. Applications that take advantage of the features of the present invention are particularly lubricants for internal combustion engines, particularly engine oils for automobiles.
It exhibits its excellent properties. In recent years, the speed of automobiles has become even faster due to the expansion of expressways, and the demand for higher output from automobile engines has become more severe year by year.On the other hand, the need for purification devices as a countermeasure against pollution due to automobile exhaust gas regulations, etc. It has become difficult to meet these demands with the performance of conventional automotive engine lubricating oils. In addition to excellent thermal oxidation stability, low-temperature fluidity, low-temperature startability, sludge dispersibility, and anti-wear properties, the performance required of future automobile engine oils will include extension of engine oil life, that is, oil change intervals, and Furthermore, it is necessary to reduce or eliminate the need for various additives to engine oil. Conventionally, many patents and reports have been published regarding ester lubricating oils, such as JP-A No. 46-6528, JP-A No. 48-27867, and JP-A No. 50-116865. Also, neopentyl polyol is used as the polyhydric alcohol component in the ester, and a linear saturated monocarboxylic acid with relatively small carbon number of C10 or less is used as the fatty acid component to form neopentyl polyol ester. However, examples of its use as a lubricant for metal processing or for internal combustion engines (automobile engines) by mixing it with mineral oil are described. It is already known that these neopentyl polyol ester-based lubricants have superior thermal and oxidative stability compared to conventional mineral oils and general ester oils, and in fact, they have been developed to take advantage of this property. Application fields include use as a base oil or additive for grease, synthetic hydraulic oil, metal processing oil (rolling oil), engine oil, etc. In this way, neopentyl polyol ester has superior thermal and oxidative stability compared to other ester-based lubricating oils, but on the other hand, it has poor low-temperature fluidity, which is an important property as a lubricating oil base.
Dioctyl sebacate (D.
It is significantly inferior to diester oils such as OS). Furthermore, due to this drawback, neopentyl polyol ester has conventionally been limited to special uses without losing its versatility as a lubricating oil.
Furthermore, regarding lubricity, the alkyl chain length of the fatty acids constituting the esters is restricted from the viewpoint of maintaining fluidity, and it is necessary to mainly use fatty acids with carbon numbers of 10 or less. However, it is still not enough. The present inventors focused on these points in particular, and as a result of intensive research to improve the α-position side chain fatty acids, 30
An ester of an aliphatic saturated monocarboxylic acid containing ~70% by weight and neopentyl polyol (hereinafter referred to as ester); By appropriately mixing both esters (hereinafter abbreviated as esters), we have found further improvements in low-temperature fluidity, lubricity, and thermo-oxidative stability compared to conventional neopentyl esters. Applications that take advantage of these features of the present invention include, in addition to engine lubricating oils, hydraulic oils, low-temperature and high-temperature greases, rolling oils, and other industrial lubricating oils. To describe the present invention in more detail, the general formula of the aliphatic saturated monocarboxylic acid used for esterification is (1) R 1 -CH 2 -COOH and (2)

【式】で 示される混合物であり、これはオキソ法によりオ
レフインより合成したもので、その中に(2)式で示
される側鎖脂肪酸を30%以上70%以下含有するも
のとして得られ、式中のR1は炭素数10〜17個、
好ましくは10〜13個、R2は炭素数7〜16個、好
ましくは7〜12個、R3は炭素数1〜8個、好ま
しくは1〜6個を有するアルキル基である。ま
た、更にエステルに供する脂肪族飽和ジカルボ
ン酸の一般式は(3)HOOC―(CH2)n―COOHで
あり、nは0、または1〜11の自然数、好ましく
は4〜8の自然数で、分子中の炭素数2〜13個、
好ましくは6〜10個からなるものであり、用いる
ジカルボン酸の例としては、シユウ酸、マロン
酸、コハク酸、グルタル酸、アジピン酸、ピメリ
ン酸、スベリン酸、アゼライン酸、セバシン酸等
である。一方上記エステル及びエステルに供
する多価アルコールとしては、その分子中のβ―
位炭素に水素原子を持たない2〜6価のネオペン
チルポリオールであり、例えば、ネオペンチルグ
リコール、トリメチロールエタン、トリメチロー
ルプロパン、トリメチロールブタン、トリメチロ
ールヘキサン、ペンタエリスリトール、ジペンタ
エリスリトール等である。 上述のこれらエステル及びエステルに用い
る脂肪族飽和モノカルボン酸は、その中に含まれ
る(2)式で示されるα―位側鎖脂肪酸の混合比率が
30%以下になると、低温流動性が不充分となり、
また逆に70%以上になれば、熱酸化安定性、特に
粘度変化が激しく、また潤滑性の低下を招き、本
発明を満足し得ない。また、更にエステルとエ
ステルとの混合比はエステル:エステル=
40〜90重量%:60〜10重量%が必要であり、この
エステルが40%以下の場合は、熱酸化安定度が
低下し、特に製品の酸価増加が激しくなり、また
潤滑性(耐荷重能)及び酸化による粘度変化が大
きくなり、本発明には適当でない。 また、本発明エステル及びエステルの製造
方法については、従来公知の方法、すなわち、通
常用いる酸触媒(硫酸、パラトルエンスルホン酸
等)又は、アルカリ触媒(水酸化カリウム、水酸
化ナトリウム等)存在下、エステル化脱水反応に
より得る事が出来るが、本発明のエステルに用
いる最適触媒として、塩化第一スズがあり、ま
た、エステルにはテトラブトキシチタンが好適
である。また、本発明に供するカルボン酸類をあ
らかじめメチルエステルにして、従来公知のエス
テル交換触媒(例、ソデイウムメチラート)を用
いて、上述の多価アルコール類との間でエステル
交換を行ない、副生するメタノールを反応系外に
除去する方法によつても容易に製造し得る。 一般にエステル化反応の通例として、原料の
酸、あるいはアルコールの分子中に立体障害基
(置換アルキル基)を有するものは、持たないも
のよりも、その遮蔽効果によつて反応が阻害され
る。 本発明エステルに用いる原料モノカルボン酸
は、前述の如く、その分子中のα―位炭素にアル
キル側鎖を持つ飽和脂肪酸((2)式)を30〜70%含
むものである事、かつ、反応の相手であるネオペ
ンチル系多価アルコールも、その分子中のカルビ
ノール炭素原子に置換アルキル基を持つ事などの
点から、本発明が従来の直鎖型脂肪酸のエステル
生成速度に比較し、上述のエステル化反応の通例
より考え、かなり困難であろうとの予測であつた
が、エステル潤滑油としての種々の合成検討を行
なつた結果、前記した如く、本発明のエステル
及びエステルの生成には各々、塩化第一スズ及
びテトラブトキシチタンを触媒として用いる事に
よつて通常のエステル化触媒よりも更に反応が容
易に進行し、その立体障害性を解消した。 これらの方法によつて得られたエステルの混合
物である、本発明エステルは、その構成脂肪酸及
び多価アルコール両者の構造特異性により、従来
公知の天然油脂系脂肪酸のネオペンチルポリオー
ルエステルよりも、極めて低温流動性にすぐれ、
熱酸化安定性、潤滑性(耐荷重能)が更に改良さ
れたものである。本発明組成物は、また、必要に
より極圧添加剤、酸化防止剤、粘度指数向上剤、
清浄分散剤等を添加して用いてもさしつかえな
い。 次に本発明のエステルを、一般構造式で説明す
ると下記のようになる。 構造式(エステルの構造式) ただし(A)又は(A′)は ―CH3,―CH2CH3,―CH2CH2CH3,―(CH24
―CH3,―CH2OOCR及び
This is a mixture represented by the formula [Formula], which is synthesized from olefin by the oxo method, containing 30% to 70% of the side chain fatty acid represented by the formula (2), and is obtained by the formula R 1 in the middle has 10 to 17 carbon atoms,
R2 is an alkyl group having preferably 10 to 13 carbon atoms, R2 is an alkyl group having 7 to 16 carbon atoms, preferably 7 to 12 carbon atoms, and R3 is an alkyl group having 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms. Furthermore, the general formula of the aliphatic saturated dicarboxylic acid to be subjected to the ester is (3) HOOC-( CH2 )n-COOH, where n is 0 or a natural number from 1 to 11, preferably a natural number from 4 to 8, 2 to 13 carbon atoms in the molecule,
It preferably consists of 6 to 10 dicarboxylic acids, and examples of dicarboxylic acids used include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. On the other hand, as for the above-mentioned ester and the polyhydric alcohol used for the ester, β-
A divalent to hexavalent neopentyl polyol that does not have a hydrogen atom at the carbon position, such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, trimethylolhexane, pentaerythritol, dipentaerythritol, etc. . These esters and aliphatic saturated monocarboxylic acids used in the esters mentioned above have a mixing ratio of α-position side chain fatty acids represented by formula (2).
If it is less than 30%, the low temperature fluidity will be insufficient,
On the other hand, if it exceeds 70%, thermal oxidative stability, especially viscosity changes will be severe, and lubricity will deteriorate, making it impossible to satisfy the present invention. Furthermore, the mixing ratio of esters to esters is ester:ester=
40-90% by weight: 60-10% by weight is required; if this ester is less than 40%, the thermal oxidative stability will decrease, especially the acid value of the product will increase sharply, and the lubricity (load capacity) will decrease. oxidation) and viscosity change due to oxidation, making it unsuitable for the present invention. In addition, the ester of the present invention and the method for producing the ester can be produced using a conventionally known method, that is, in the presence of a commonly used acid catalyst (sulfuric acid, para-toluenesulfonic acid, etc.) or an alkali catalyst (potassium hydroxide, sodium hydroxide, etc.). Although it can be obtained by an esterification dehydration reaction, stannous chloride is the most suitable catalyst for use in the ester of the present invention, and tetrabutoxytitanium is suitable for the ester. In addition, the carboxylic acids to be used in the present invention are converted into methyl esters in advance, and then transesterified with the above-mentioned polyhydric alcohols using a conventionally known transesterification catalyst (e.g., sodium methylate). It can also be easily produced by a method in which methanol produced is removed from the reaction system. In general, in the esterification reaction, if the raw acid or alcohol has a sterically hindered group (substituted alkyl group) in its molecule, the reaction is inhibited more than one without it due to its shielding effect. As mentioned above, the raw material monocarboxylic acid used for the ester of the present invention must contain 30 to 70% of a saturated fatty acid (formula (2)) having an alkyl side chain at the α-carbon in its molecule, and The partner neopentyl polyhydric alcohol also has a substituted alkyl group on the carbinol carbon atom in its molecule, so the present invention has a higher ester production rate than the conventional linear fatty acid ester production rate. Although it was predicted that it would be quite difficult based on the usual chemical reaction, as a result of various synthetic studies for ester lubricating oil, as mentioned above, the ester of the present invention and the production of the ester each require the following steps: By using stannous chloride and tetrabutoxytitanium as catalysts, the reaction proceeded more easily than with ordinary esterification catalysts, and their steric hindrance was eliminated. The ester of the present invention, which is a mixture of esters obtained by these methods, is much more effective than conventional neopentyl polyol esters of natural fat-based fatty acids due to the structural specificity of both its constituent fatty acids and polyhydric alcohols. Excellent low-temperature fluidity,
It has further improved thermal oxidation stability and lubricity (load-bearing capacity). The composition of the present invention may also contain extreme pressure additives, antioxidants, viscosity index improvers,
There is no problem even if a cleaning dispersant or the like is added. Next, the ester of the present invention will be explained using the general structural formula as follows. Structural formula (structural formula of ester) However, (A) or (A') is -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -(CH 2 ) 4
-CH 3 , -CH 2 OOCR and

【式】等の基のいずれか から成る。 Rは、―CH2―R1又は及びConsisting of any of the groups such as [Formula]. R is -CH 2 -R 1 or and

【式】 〔ただし、R1は炭素数10〜17、 R2は炭素数7〜16、 R3は炭素数1〜8、 の各々混合アルキル基〕 構造式(エステルの構造式) ただし、nは0、または1〜11の自然数 R、(A)(A′)は構造式に同じ、 更に本発明エステルの製造例を下記に示す。 製造例A エステルの製造 エステル化装置として、窒素気流管、スターラ
ー、温度計、検水管、還流冷却器を取付けた2
容量の四つ口反応フラスコに、一般式(1)で示され
る直鎖状飽和モノカルボン酸(但し、R1は炭素
数10〜13からなるアルキル基)と、一般式(2)で示
されるα―側鎖飽和モノカルボン酸(但し、R2
は炭素数7〜12、R3は炭素数1〜5からなるア
ルキル基)との混合比率が30:70の直鎖、側鎖混
合モノカルボン酸を990重量部、トリメチロール
プロパン211重量部及び塩化第一スズ2水塩6重
量部を仕込み、撹拌し、窒素気流下180〜200℃で
8時間エステル化反応を行なつた。粗エステルの
酸価は1.4であつた。この後、活性白土1重量%
にて吸着脱色後、濾過した。得られたエステルの
酸価は0.4、水酸基価1.2であつた。 製造例B エステルの製造 製造例Aと同様な反応装置を用い、モノカルボ
ン酸として、製造例Aと同組成のものを440重量
部、一般式(3)の脂肪族飽和ジカルボン酸としてア
ゼライン酸(式中のn=7)188重量部、ネオペ
ンチルグリコール229重量部、テトラブトキシチ
タン(触媒)3.2重量部、及び共沸溶媒としてキ
シレン126重量部を仕込み還流温度にて約9時間
反応を行なつた。粗エステルの酸価は1.2であ
つた。脱溶剤後、活性白土1.0%にて吸着脱色
後、濾過を行なつた。得られたエステルの酸価
は0.3、水酸基価0.8であつた。 製造例 C 製造例Aで得たエステル及び製造例Bで得た
エステルにつき、エステル:エステル=
45:55重量部の混合比率で常温にて均一混合せし
めた。 これらの製造例によつて得られた本発明の特徴
等は後述する。 上記、製造例A(エステル)、B(エステル
)に従つて、エステル〜を製造し、それら
のエステルを混合して、以下の実施例に用いた。
[Formula] [However, R 1 has 10 to 17 carbon atoms, R 2 has 7 to 16 carbon atoms, and R 3 has 1 to 8 carbon atoms, each of which is a mixed alkyl group] Structural formula (Structural formula of ester) However, n is 0 or a natural number from 1 to 11. R, (A) and (A') are the same as in the structural formula. Further, production examples of the ester of the present invention are shown below. Production example A Production of ester Esterification equipment equipped with a nitrogen flow tube, stirrer, thermometer, water test tube, and reflux condenser 2
In a four-necked reaction flask, add a linear saturated monocarboxylic acid represented by the general formula (1) (wherein R 1 is an alkyl group having 10 to 13 carbon atoms) and a linear saturated monocarboxylic acid represented by the general formula (2). α-side chain saturated monocarboxylic acid (however, R 2
990 parts by weight of linear, side chain mixed monocarboxylic acid with a mixing ratio of 30:70 ( R3 is an alkyl group consisting of 7 to 12 carbon atoms and R3 is an alkyl group consisting of 1 to 5 carbon atoms), 211 parts by weight of trimethylolpropane, and 6 parts by weight of stannous chloride dihydrate was added, stirred, and an esterification reaction was carried out at 180 to 200° C. for 8 hours under a nitrogen stream. The acid value of the crude ester was 1.4. After this, 1% by weight of activated clay
After decolorizing by adsorption, the mixture was filtered. The obtained ester had an acid value of 0.4 and a hydroxyl value of 1.2. Production Example B Production of Ester Using the same reaction apparatus as Production Example A, 440 parts by weight of the same composition as Production Example A was used as a monocarboxylic acid, and azelaic acid ( n=7 in the formula), 229 parts by weight of neopentyl glycol, 3.2 parts by weight of tetrabutoxytitanium (catalyst), and 126 parts by weight of xylene as an azeotropic solvent, and the reaction was carried out at reflux temperature for about 9 hours. Ta. The acid value of the crude ester was 1.2. After removing the solvent, the mixture was adsorbed and decolorized using 1.0% activated clay, followed by filtration. The obtained ester had an acid value of 0.3 and a hydroxyl value of 0.8. Production Example C For the ester obtained in Production Example A and the ester obtained in Production Example B, ester:ester=
They were uniformly mixed at room temperature at a mixing ratio of 45:55 parts by weight. The features of the present invention obtained through these production examples will be described later. According to the above-mentioned Production Examples A (ester) and B (ester), esters ~ were produced, and the esters were mixed and used in the following examples.

【表】 前記表―1に記載したエステルを市販の自動車
用エンジン油(鉱油系)と比較した場合の特長を
以下の実施例によつて説明する。 実施例 表―1に記載のエステル〜を表―2のよう
に配合し、それらの低温流動性、潤滑性、粘度〜
温度特性を各々、流動点(℃)、耐荷重能(Kg/
cm)、粘度指数(VIE)より求めた。また、市販
の自動車エンジン油として、鉱油系エンジン油
SAE―30、JIS―K―2216記載の陸用内燃機関用
潤滑油2種2号及び市販の油脂系脂肪酸であるカ
プリン酸のトリメチロールプロパントリエステル
を用いて、比較した。それらの結果を表―2に示
す。 表―2の結果から明らかなように、本発明エス
テル油は、市販エンジン油に比較し流動点が低
く、高粘度指数、高耐荷重能を示し、エンジン油
として、すぐれた特性を示した。 なお、試験は各々下記の方法で行なつた。 1 流動点(℃):JIS―K―2269(石油製品流
動点試験法)による。 2 動粘度(CST):JIS―K―2283(石油製品
動粘度試験法)による。 3 粘度指数(VIE):JIS―K―2284(石油製
品粘度指数算出法)による。 4 耐荷重能(Kg/cm):シエル式高速四球摩擦
試験機にて、試料油温度150℃、立軸回転数
1200r.p.m.のもとで焼付荷重(Kg/cm)を測
定。
[Table] The features of the esters listed in Table 1 above when compared with commercially available automotive engine oils (mineral oil-based) will be explained using the following examples. Example: The esters listed in Table 1 were blended as shown in Table 2, and their low temperature fluidity, lubricity, and viscosity were
Temperature characteristics are determined by pour point (℃) and load capacity (Kg/
cm) and viscosity index (VI E ). In addition, mineral oil-based engine oil is used as a commercially available automobile engine oil.
A comparison was made using lubricating oil type 2, No. 2 for land internal combustion engines as described in SAE-30 and JIS-K-2216, and trimethylolpropane triester of capric acid, which is a commercially available fat-based fatty acid. The results are shown in Table 2. As is clear from the results in Table 2, the ester oil of the present invention had a lower pour point, higher viscosity index, and higher load carrying capacity than commercially available engine oils, and exhibited excellent characteristics as an engine oil. In addition, each test was conducted in the following manner. 1 Pour point (°C): According to JIS-K-2269 (Petroleum products pour point test method). 2 Kinematic viscosity (CST): According to JIS-K-2283 (Petroleum products kinematic viscosity test method). 3 Viscosity index (VI E ): According to JIS-K-2284 (Petroleum product viscosity index calculation method). 4 Load-bearing capacity (Kg/cm): Tested using a Shell type high-speed four-ball friction tester, sample oil temperature 150℃, vertical axis rotation speed.
Seizure load (Kg/cm) was measured at 1200rpm.

【表】 実施例 2 実施例1に用いたと同じ試料を用い、それらの
酸化安定度の試験を行なつた。試験の方法は、
300c.c.容量の四つ口フラスコ中に試料油200gを入
れ、次に10×20×1mmの清浄な銅板を試料油中に
投入し、油温200℃、空気注入量15/hrで5時
間空気酸化法にて実施した。試験後の油の酸化安
定度を、酸価増加量、粘度変化、スラツジ発生の
有無、揮発減量及び銅片の腐蝕減量等によつて評
価した。それらの結果を表―3に示した。 なお、市販のエンジン油として実施例1に記載
のものを用い、本発明と比較した。 表―3で明らかなように本発明エステル油は、
市販エンジン油に比較し、酸価増加量、粘度変
化、揮発減量、銅板腐蝕減量いずれも少なく、ま
た、スラツジ発生が認められず、酸化安定度の極
めてすぐれている事が判明した。
[Table] Example 2 The same samples used in Example 1 were used to test their oxidation stability. The test method is
Put 200 g of sample oil into a four-necked flask with a capacity of 300 c.c., then put a clean copper plate of 10 x 20 x 1 mm into the sample oil, and heat it for 5 minutes at an oil temperature of 200°C and an air injection rate of 15/hr. It was carried out using the time air oxidation method. The oxidation stability of the oil after the test was evaluated based on the increase in acid value, change in viscosity, presence or absence of sludge generation, loss by volatilization, loss by corrosion of copper pieces, etc. The results are shown in Table 3. The commercially available engine oil described in Example 1 was used for comparison with the present invention. As is clear from Table 3, the ester oil of the present invention is
Compared to commercially available engine oils, the increase in acid value, change in viscosity, loss of volatilization, and loss of copper plate corrosion were all small, and no sludge formation was observed, indicating that it has extremely excellent oxidation stability.

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式が、(1)R1―CH2―COOH及び(2)
【式】であり、かつ(1)と(2)が重量で 30:70〜70:30の比率で混合して成る脂肪族飽和
モノカルボン酸(但し、式中のR1は炭素数10〜
17個、R2は炭素数7〜16個、R3は炭素数1〜8
個を有するアルキル基である。)と、分子中のβ
―位炭素に水素原子を含まない2〜6価のネオペ
ンチルポリオールとを反応して得られる多価アル
コール脂肪酸エステルの1種又は2種以上より成
るエステル40〜90重量%と上記脂肪族飽和モノカ
ルボン酸、上記多価アルコール及び、一般式(3)
HOOC―(CH2)n―COOH(但し、式中のnは
0、または1〜11の自然数)で示される炭素数2
〜13個の脂肪族飽和ジカルボン酸とから得られる
複合エステル10〜60重量%とからなる低温流動
性、熱、酸化安定性及び潤滑性の改良されたエス
テル潤滑油組成物。
[Claims] 1 The general formula is (1) R 1 —CH 2 —COOH and (2)
[Formula] and an aliphatic saturated monocarboxylic acid formed by mixing (1) and (2) in a weight ratio of 30:70 to 70:30 (however, R 1 in the formula has 10 to 70 carbon atoms)
17, R 2 has 7 to 16 carbons, R 3 has 1 to 8 carbons
It is an alkyl group having . ) and β in the molecule
40 to 90% by weight of an ester consisting of one or more types of polyhydric alcohol fatty acid esters obtained by reacting a di- to hexavalent neopentyl polyol that does not contain a hydrogen atom at the - position carbon and the above aliphatic saturated monomer. Carboxylic acid, the above polyhydric alcohol, and general formula (3)
HOOC-( CH2 )n-COOH (where n in the formula is 0 or a natural number from 1 to 11) with 2 carbon atoms
10 to 60% by weight of a complex ester obtained from ~13 aliphatic saturated dicarboxylic acids.
JP8422477A 1977-07-15 1977-07-15 Ester lubricating oil composition Granted JPS5420266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8422477A JPS5420266A (en) 1977-07-15 1977-07-15 Ester lubricating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8422477A JPS5420266A (en) 1977-07-15 1977-07-15 Ester lubricating oil composition

Publications (2)

Publication Number Publication Date
JPS5420266A JPS5420266A (en) 1979-02-15
JPS6213394B2 true JPS6213394B2 (en) 1987-03-26

Family

ID=13824497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8422477A Granted JPS5420266A (en) 1977-07-15 1977-07-15 Ester lubricating oil composition

Country Status (1)

Country Link
JP (1) JPS5420266A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62592A (en) * 1985-06-27 1987-01-06 Nippon Oil & Fats Co Ltd Highly viscous oil for refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB971901A (en) * 1959-11-11 1964-10-07 Geigy Co Ltd Improvements in organic esters and in lubricants consisting of or containing them
JPS5261674A (en) * 1975-11-14 1977-05-21 Henkel & Cie Gmbh High viscosity neautral ester and synthetic lubricant of the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB971901A (en) * 1959-11-11 1964-10-07 Geigy Co Ltd Improvements in organic esters and in lubricants consisting of or containing them
JPS5261674A (en) * 1975-11-14 1977-05-21 Henkel & Cie Gmbh High viscosity neautral ester and synthetic lubricant of the like

Also Published As

Publication number Publication date
JPS5420266A (en) 1979-02-15

Similar Documents

Publication Publication Date Title
CN1093851C (en) High stability and low metals esters based on 3,5,5-trimethyl-1-hexanol
US6197731B1 (en) Smokeless two-cycle engine lubricants
US6177387B1 (en) Reduced odor and high stability aircraft turbine oil base stock
JPS5928239B2 (en) Lubricants and hydraulic fluids using new ester oils
JP3340231B2 (en) Synthetic lubricant base oil
JPS6057480B2 (en) Lubricant for internal combustion engines using neopentyl polyol ester as a base oil
JPS58201894A (en) Lubricating oil composition with improved friction-reducing properties
JP3894983B2 (en) Tertiary carboxylic acid ester compound and lubricating oil composition containing the compound
JP4478471B2 (en) Grease base oil
CN111378516A (en) Organic friction modifier with different isomeric alkyl end chains and preparation method thereof
Ahmed et al. Lubricity characterizations of sebacic acid based ester
JPS6213394B2 (en)
EP1051465A4 (en) Biodegradable oleic estolide ester base stocks and lubricants
JPH07305079A (en) Lubricating oil
JP2004162067A (en) High-temperature stable lubricant composition containing short-chain acid and its manufacturing method
JP2001003070A (en) Grease composition
JP2021515816A (en) Modified oil-soluble polyalkylene glycol
JP3001680B2 (en) Lubricant or heat transfer fluid containing ester compound
JPH02214795A (en) Synthetic ester-based lubricating oil
EP0927151B1 (en) Reduced odor and high stability aircraft turbine oil base stock
JPS6366294A (en) Synthetic lubricant containing high viscosity neutral complex ester
JPH0321697A (en) Synthetic ester-based lubricating oil
WO2014148412A1 (en) Composite polyester composition and lubricant
US3870643A (en) Petroleum hydrocarbon compositions
JP3944999B2 (en) Biodegradable lubricant