JPS6213341B2 - - Google Patents

Info

Publication number
JPS6213341B2
JPS6213341B2 JP10456278A JP10456278A JPS6213341B2 JP S6213341 B2 JPS6213341 B2 JP S6213341B2 JP 10456278 A JP10456278 A JP 10456278A JP 10456278 A JP10456278 A JP 10456278A JP S6213341 B2 JPS6213341 B2 JP S6213341B2
Authority
JP
Japan
Prior art keywords
reaction
acid
present
benzoic acid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10456278A
Other languages
Japanese (ja)
Other versions
JPS5531045A (en
Inventor
Yoshuki Takeda
Mineo Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP10456278A priority Critical patent/JPS5531045A/en
Publication of JPS5531045A publication Critical patent/JPS5531045A/en
Publication of JPS6213341B2 publication Critical patent/JPS6213341B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はモノニトロ−低級アルコキシ−安息香
酸(以下、MABAと略称する。)の製造法に関す
るものである。 MABAは医薬、染料、顔料などの中間体とし
て広く利用されているが、その製造法としては、
低級アルコキシ−安息香酸を加熱下、硝酸中にて
ニトロ化する方法が一般的である。(例えば、ジ
ヤーナル、オブ、オルガニツク、ケミストリー、
第71巻第1221頁参照)しかしながら、この反応
は、従来知られている反応条件の下では、例え
ば、ジニトロ化合物、脱カルボキシル化物及びそ
の他副生物の生成が著しいため、高収率且つ高純
度でMABAを得ることが出来ず、更に、脱カル
ボキシル反応が起ると炭酸ガスが発生するため、
反応系内が発泡状態となり均一撹拌ができなくな
り良好な反応を行なうことができず、工業的には
不満足な点が多かつた。ジニトロ化物の副生のみ
を抑制するための方法としては、例えば原料に対
する硝酸の割合を低下させる方法が考えられる
が、この方法ではその他の副生物の生成抑制及び
反応系内の発泡抑制は困難である。 本発明者等は上記実情に鑑み、反応系内の発泡
を抑制し且つ副反応が極めて少なく、高収率且つ
高純度でMABAを製造することを目的として
種々検討した結果、反応系内の水分濃度及び温度
をある特定の範囲に保持することにより、この目
的が達成されることを知見し本発明を完成した。 すなわち、本発明の要旨は、低級アルコキシ−
安息香酸を硫酸中にて硝酸でニトロ化して
MABAを製造するに当り、反応系内の水分と硫
酸の和に対する水分の存在量を3〜20重量%と
し、しかも、反応温度を−20〜10℃に保持して反
応を行なうことを特徴とするMABAの製造法に
存する。 以下、本発明を詳細に説明する。 本発明で原料として使用する低級アルコキシ−
安息香酸としては、下記一般式〔〕 (式中、Rは低級アルキル基を示す)で表わさ
れる化合物であり、例えば、パラ−メトキシ−安
息香酸(アニス酸)、オルト−メトキシ−安息香
酸、パラ−エトキシ−安息香酸、オルト−エトキ
シ−安息香酸、パラ−プロポキシ−安息香酸、オ
ルト−ブトキシ−安息香酸などが挙げられ、本発
明は、パラ−メトキシ−安息香酸に適用すると特
に好ましい。 一方、ニトロ化のために使用する硝酸の使用量
は通常、原料をモノニトロ化するのに必要な理論
量の0.98〜1.20モル倍、好ましくは1.01〜1.05モ
ル倍である。硝酸量があまり多いとジニトロ体の
副生物生成が多くなり好ましくない。硝酸の濃度
は通常、20〜80重量%、好ましくは40〜70重量%
であり、あまり低濃度の場合には反応系内の水分
が多くなり反応速度が低下し、また、あまり高濃
度の場合には局部的に急激なニトロ化が起り、副
反応が進むので好ましくない。 本発明ではニトロ化反応を硝酸中にて行なう
が、使用する硫酸は少なくとも80重量%以上の高
濃度のものが使用される。すなわち、本発明では
反応系内の水分と硫酸との和に対する水分の存在
量を3〜20重量%、好ましくは3〜15重量%、更
に好ましくは3〜10重量%に保持することを必須
の要件とするものである。反応系内の水分量が上
記範囲より高いとニトロ化反応が本発明の温度範
囲では良好に進行しないので好ましくない。ま
た、硫酸の使用量は反応原料を分散させ十分に撹
拌できる程度の量であればよく、通常、反応原料
に対して3〜20重量倍である。 本発明における反応温度は−20〜10℃以下、好
ましくは−20〜5℃、更に好ましくは−5〜5℃
の範囲に保持することが必要である。反応温度が
10℃より高い場合には、副反応の進行が著しくな
り、また、反応系内が発泡状態となるので好まし
くない。逆に、低温では反応おそく、特に−20℃
より低い温度では反応速度が極めて遅くなり実用
的でない。反応時間は、上記反応温度で反応を行
う場合、通常1〜20時間である。 本発明は、例えば、反応原料を分散させた硫酸
中に撹拌下、硝酸を添加混合することにより容易
に行なうことができる。 以上、本発明によれば特定の水分濃度及び反応
温度を選ぶことにより副生物の生成が少なく高収
率でMABAを得ることができる。また、反応途
中で系内が発泡し撹拌不能となるようなこともな
いので好ましい。 次に、本発明を実施例により更に詳細に説明す
るが、本発明はその要旨を超えない限り以下の実
施例に限定されるものではない。 実施例 1 撹拌機及び冷却器を設置した200mlガラス製フ
ラスコに96%硫酸134.2g及びP−メトキシ安息
香酸30.42gを仕込み、−7〜−5℃にスラリーの
温度を調節した。 これに撹拌下、65.5%硝酸20.20g(モノニト
ロ化合物を得るための理論量の1.05モル倍)を2
時間かけて滴下混合したのち、液温を−7℃にて
7時間反応を行なつた。 反応終了後のスラリーに対し5℃の氷水300ml
を混合し撹拌処理して副生物を水に溶解させたの
ち、ケーキをろ過した。 このようにして得たケーキ(3−ニトロ−4−
メトキシ安息香酸)の収量、収率及び純度を測定
し第1表に示す結果を得た。 実施例2〜3及び比較例1〜2 実施例1の方法において、温度、反応原料、硫
酸濃度などの条件を第1表に示すように代えて同
様な反応を行なつた。(実施例3の生成物は3−
ニトロ−4−エトキシ安息香酸であり、それ以外
は実施例1と同様3−ニトロ−4−メトキシ安息
香酸である。)
The present invention relates to a method for producing mononitro-lower alkoxy-benzoic acid (hereinafter abbreviated as MABA). MABA is widely used as an intermediate for medicines, dyes, pigments, etc., but its production method is as follows.
A common method is to nitrate lower alkoxybenzoic acid in nitric acid under heating. (For example, journal, of, organ, chemistry,
(Refer to Vol. 71, p. 1221) However, under the conventionally known reaction conditions, this reaction is difficult to achieve in high yield and purity because, for example, dinitro compounds, decarboxylated products, and other by-products are produced significantly. MABA cannot be obtained, and carbon dioxide gas is generated when decarboxylation occurs, so
The inside of the reaction system became bubbling, making it impossible to stir uniformly, making it impossible to carry out a good reaction, and there were many unsatisfactory points from an industrial perspective. One possible method for suppressing only the dinitrate by-product is, for example, reducing the ratio of nitric acid to the raw materials, but this method is difficult to suppress the production of other by-products and foaming in the reaction system. be. In view of the above circumstances, the present inventors conducted various studies with the aim of suppressing foaming in the reaction system, producing extremely few side reactions, and producing MABA with high yield and high purity. The present invention was completed based on the finding that this objective can be achieved by maintaining the concentration and temperature within a certain range. That is, the gist of the present invention is that lower alkoxy
Benzoic acid is nitrated with nitric acid in sulfuric acid.
In producing MABA, the amount of water present in the reaction system is 3 to 20% by weight relative to the sum of water and sulfuric acid, and the reaction temperature is maintained at -20 to 10°C. The method of manufacturing MABA consists in the following. The present invention will be explained in detail below. Lower alkoxy used as raw material in the present invention
As benzoic acid, the following general formula [] (In the formula, R represents a lower alkyl group.) For example, para-methoxy-benzoic acid (anisic acid), ortho-methoxy-benzoic acid, para-ethoxy-benzoic acid, ortho-ethoxy-benzoic acid. Examples include benzoic acid, para-propoxy-benzoic acid, ortho-butoxy-benzoic acid, and the present invention is particularly preferably applied to para-methoxy-benzoic acid. On the other hand, the amount of nitric acid used for nitration is usually 0.98 to 1.20 times, preferably 1.01 to 1.05 times by mole, the theoretical amount required to mononitrate the raw material. If the amount of nitric acid is too large, a large amount of dinitro by-products will be produced, which is not preferable. The concentration of nitric acid is usually 20-80% by weight, preferably 40-70% by weight
Therefore, if the concentration is too low, water in the reaction system will increase and the reaction rate will be reduced, and if the concentration is too high, localized rapid nitration will occur and side reactions will proceed, which is undesirable. . In the present invention, the nitration reaction is carried out in nitric acid, and the sulfuric acid used has a high concentration of at least 80% by weight. That is, in the present invention, it is essential to maintain the amount of water present in the reaction system at 3 to 20% by weight, preferably 3 to 15% by weight, and more preferably 3 to 10% by weight. This is a requirement. If the amount of water in the reaction system is higher than the above range, the nitration reaction will not proceed well within the temperature range of the present invention, which is not preferred. Further, the amount of sulfuric acid used is sufficient as long as it can disperse and sufficiently stir the reaction raw materials, and is usually 3 to 20 times the weight of the reaction raw materials. The reaction temperature in the present invention is -20 to 10°C, preferably -20 to 5°C, more preferably -5 to 5°C.
It is necessary to maintain it within the range of . The reaction temperature is
If the temperature is higher than 10°C, the progress of side reactions will be significant and the inside of the reaction system will be in a foaming state, which is not preferable. On the other hand, the reaction is slow at low temperatures, especially at -20℃.
At lower temperatures, the reaction rate becomes extremely slow and is not practical. The reaction time is usually 1 to 20 hours when the reaction is carried out at the above reaction temperature. The present invention can be easily carried out, for example, by adding and mixing nitric acid into sulfuric acid in which reaction raw materials are dispersed, while stirring. As described above, according to the present invention, by selecting a specific water concentration and reaction temperature, MABA can be obtained in high yield with less generation of by-products. Further, it is preferable because the system does not foam during the reaction and become unable to stir. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 A 200 ml glass flask equipped with a stirrer and a cooler was charged with 134.2 g of 96% sulfuric acid and 30.42 g of P-methoxybenzoic acid, and the temperature of the slurry was adjusted to -7 to -5°C. To this was added 20.20 g of 65.5% nitric acid (1.05 mol times the theoretical amount to obtain a mononitro compound) under stirring.
After dropping and mixing over a period of time, the reaction was carried out at a liquid temperature of -7°C for 7 hours. Add 300ml of ice water at 5℃ to the slurry after the reaction is completed.
After mixing and stirring to dissolve the by-products in water, the cake was filtered. The cake thus obtained (3-nitro-4-
The yield, yield and purity of methoxybenzoic acid) were measured and the results shown in Table 1 were obtained. Examples 2 to 3 and Comparative Examples 1 to 2 Similar reactions were carried out in the method of Example 1 except that conditions such as temperature, reaction raw materials, and sulfuric acid concentration were changed as shown in Table 1. (The product of Example 3 is 3-
This is nitro-4-ethoxybenzoic acid, and 3-nitro-4-methoxybenzoic acid is the same as in Example 1 except for that. )

【表】 実施例 4 撹拌機及び冷却器を設置したガラス製フラスコ
に98%硫酸271g及びP−メトキシ安息香酸38.0
g及び水41.5gを仕込み、これに撹拌下、70%硝
酸23.7g(モノニトロ化物を得るための理論量の
1.51モル倍)を滴下混合したのち、液温を6℃に
て7時間反応を行なつた。 反応終了後のスラリーに対し5℃の氷水を混合
し撹拌処理して副生物を水に溶解させたのち、ケ
ーキをろ過した。 このようにして得たケーキの収量、収率及び純
度を測定し第2表に示す結果を得た。 実施例 5 撹拌機及び冷却器を設置したガラス製フラスコ
に98%硫酸260g及びP−メトキシ安息香酸30.42
gを仕込み、これに撹拌下、75%硝酸18g(モノ
ニトロ化物を得るための理論量のモル倍)を滴下
混合したのち、液温を−16℃にて9時間反応を行
なつた。 反応終了後のスラリーに対し5℃の氷水を混合
し撹拌処理して副生物を水に溶解させたのち、ケ
ーキをろ過した。 このようにして得たケーキの収量、収率及び純
度を測定し第2表に示す結果を得た。
[Table] Example 4 271 g of 98% sulfuric acid and 38.0 g of P-methoxybenzoic acid were placed in a glass flask equipped with a stirrer and a condenser.
23.7 g of 70% nitric acid (the theoretical amount to obtain a mononitrate) was added to this while stirring.
After dropping and mixing 1.51 mol times the solution, the reaction was carried out at a liquid temperature of 6° C. for 7 hours. After the reaction, the slurry was mixed with ice water at 5° C. and stirred to dissolve the by-products in water, and then the cake was filtered. The yield, yield and purity of the cake thus obtained were measured and the results shown in Table 2 were obtained. Example 5 260 g of 98% sulfuric acid and 30.42 g of P-methoxybenzoic acid were placed in a glass flask equipped with a stirrer and a condenser.
After stirring, 18 g of 75% nitric acid (mole times the theoretical amount to obtain a mononitrate) was added dropwise to the mixture, and the reaction was carried out at a temperature of -16° C. for 9 hours. After the reaction, the slurry was mixed with ice water at 5° C. and stirred to dissolve the by-products in water, and then the cake was filtered. The yield, yield and purity of the cake thus obtained were measured and the results shown in Table 2 were obtained.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 低級アルコキシ−安息香酸を硫酸中にて硝酸
でニトロ化してモノニトロ−低級アルコキシ−安
息香酸を製造するに当り、反応系内の水分と硫酸
の和に対する水分の存在量を3〜20重量%とし、
しかも、反応温度を−20〜10℃に保持して反応を
行なうことを特徴とするモノニトロ−低級アルコ
キシ−安息香酸の製造法。
1. When producing mononitro-lower alkoxy-benzoic acid by nitrating lower alkoxy-benzoic acid with nitric acid in sulfuric acid, the amount of water present in the reaction system should be 3 to 20% by weight based on the sum of water and sulfuric acid. ,
Moreover, the method for producing mononitro-lower alkoxy-benzoic acid is characterized in that the reaction temperature is maintained at -20 to 10°C.
JP10456278A 1978-08-28 1978-08-28 Preparation of mononitro-lower alkoxy-benzoic acid Granted JPS5531045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10456278A JPS5531045A (en) 1978-08-28 1978-08-28 Preparation of mononitro-lower alkoxy-benzoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10456278A JPS5531045A (en) 1978-08-28 1978-08-28 Preparation of mononitro-lower alkoxy-benzoic acid

Publications (2)

Publication Number Publication Date
JPS5531045A JPS5531045A (en) 1980-03-05
JPS6213341B2 true JPS6213341B2 (en) 1987-03-25

Family

ID=14383891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10456278A Granted JPS5531045A (en) 1978-08-28 1978-08-28 Preparation of mononitro-lower alkoxy-benzoic acid

Country Status (1)

Country Link
JP (1) JPS5531045A (en)

Also Published As

Publication number Publication date
JPS5531045A (en) 1980-03-05

Similar Documents

Publication Publication Date Title
US3752841A (en) Process for the preparation of carbamates of alkylthiolhydroxamates and intermediates
EP0296221B1 (en) Process for preparing 4,6-dinitroresorcinol
JPS6213341B2 (en)
US4028410A (en) Process of preparing 1,3-bis(2-chloroethyl)-1-nitrosourea
US5520757A (en) Low vulnerability propellants
US5482581A (en) Low vulnerability propellant plasticizers
US2758132A (en) Nitration of carbamate esters
US3023241A (en) Preparation of acyl hydrazine derivatives
EP0110559A1 (en) Process for the preparation of 4-chloro-2-nitrobenzonitrile
US2950312A (en) Process for producing n-trinitroethyl urethanes, amides, and ureas
JPS6318573B2 (en)
US2225893A (en) Production of secondary aliphatic nitrates
IL31463A (en) 1-formyl-3-nitro-azacycloalkan-2-ones and process for their production
US3719717A (en) Process for the production of aromatic dinitrohalogen compounds
SU897108A3 (en) Method of preparing 2,6-dinitroderivatives of n-alkyl or n,n-dialkylanilines
US2749372A (en) Trichlorodinitrobenzenes
US3390183A (en) Preparation of nitramines
US3155716A (en) Preparation of pure alpha-naphthalene sulfonic acid and alpha-naphthol
US2759963A (en) Substituted benzoates
US4052419A (en) Method of preparing 5-nitrofurfural diacetate
US2444023A (en) Preparation of dimethyl urea
EP0005280B1 (en) A process for the reduction of carboxylic acid halides to corresponding aldehydes
KR810000230B1 (en) Process for the preparation of nitro substitute amino benzoic acid amides
US3015674A (en) Process for the production of alkylacylamides
JPH0419987B2 (en)