JPS6213322A - Method for high frequency dielectric heating of synthetic resin plate - Google Patents

Method for high frequency dielectric heating of synthetic resin plate

Info

Publication number
JPS6213322A
JPS6213322A JP15232385A JP15232385A JPS6213322A JP S6213322 A JPS6213322 A JP S6213322A JP 15232385 A JP15232385 A JP 15232385A JP 15232385 A JP15232385 A JP 15232385A JP S6213322 A JPS6213322 A JP S6213322A
Authority
JP
Japan
Prior art keywords
synthetic resin
resin plate
plate
high frequency
frequency dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15232385A
Other languages
Japanese (ja)
Inventor
Naoyuki Murakami
村上 直行
Takashi Sonomura
隆志 薗村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15232385A priority Critical patent/JPS6213322A/en
Publication of JPS6213322A publication Critical patent/JPS6213322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain to uniformize temp. by preventing the rising in the circumferential temp. of a synthetic resin plate, by heating the synthetic resin plate in such a state that a specific heat insulating plate is interposed between a dielectric pole and the synthetic resin plate. CONSTITUTION:In applying high frequency dielectric heating to the synthetic resin plate inserted between parallel flat electrodes constituted as the resonance capacitor of a high frequency oscillation circuit, a heat insulating plate, which as an area larger than the flat area of the synthetic resin plate and of which the side surface in the side opposite to the electrodes is partially covered with a radio wave shielding material, is interposed between the electrodes and the synthetic resin plate so that 2mm or more of the shielding material is present over the entire periphery of the synthetic resin plate so as to be directed at least to an external side from the part corresponding to the circumference of the synthetic resin plate to apply high frequency dielectric heating to the synthetic resin plate. The heat insulating plate is pref. similar to the flat shape of the synthetic resin plate. By this method, because the intensity of the electric field between the circumference of the synthetic resin plate and the peripheries of the parallel flat electrodes becomes almost same to that of the interior of the synthetic resin plate as compared with the peripheral part thereof, the peripheral temp. and internal temp. of the synthetic resin plate being an article to be heated become equal to uniformly heat the synthetic resin plate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は合成樹脂板金均一に加熱昇温する、高周波誘電
加熱方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a high frequency dielectric heating method for uniformly heating a synthetic resin sheet metal.

〔従来の技術〕[Conventional technology]

従来より、合成樹脂板の加熱方法として、高周波発振回
路の共振用コンデンサーとして構成されている平行平板
電極間に、合成樹脂板を挿入して高周波誘電加熱する方
法が知られている。
Conventionally, as a method of heating a synthetic resin plate, a method is known in which a synthetic resin plate is inserted between parallel plate electrodes configured as a resonant capacitor of a high frequency oscillation circuit and subjected to high frequency dielectric heating.

しかしながら、この方法は技術的にも、経済的にも完全
に満足のできるものではない。
However, this method is not completely satisfactory both technically and economically.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

高周波発振回路の共振用コンデンサーとして構成されて
いる平行平板電極間に合成樹脂板を挿入して、合成樹脂
板を高周波誘電加熱する際、平行平板電極の周辺は内部
に比して電界強度は大きく、従って被加熱物の合成樹脂
板の周辺温度は上昇する欠点を持っている。
When a synthetic resin plate is inserted between parallel plate electrodes that are configured as a resonance capacitor for a high frequency oscillation circuit, and the synthetic resin plate is subjected to high frequency dielectric heating, the electric field strength is greater around the parallel plate electrodes than inside. Therefore, the temperature around the synthetic resin plate as the object to be heated increases.

〔問題点全解決するための手段及び作用〕本発明者らは
、このような従来方法の欠点を克服するべく鋭意研究し
た結果、高周波発振回路の共振用コンデンサーとして構
成されている平行平板電極間に合成樹脂板を挿入して高
周波誘電加熱する際、誘電極と合成樹脂板間に特定の断
熱板を介在させて゛加熱すると、合成樹脂板の周辺温度
は上昇せず5従って均一な温度の合成樹脂板が得られる
ことを見出して本発明を完成した。
[Means and effects for solving all the problems] As a result of intensive research to overcome the drawbacks of the conventional methods, the present inventors found that When a synthetic resin plate is inserted into a plastic plate and subjected to high-frequency dielectric heating, if a specific heat insulating plate is interposed between the dielectric electrode and the synthetic resin plate and heated, the surrounding temperature of the synthetic resin plate will not rise5. The present invention was completed by discovering that a resin plate can be obtained.

すなわち本発明は、高周波発振回路の共振用コンデンサ
ーとして構成されている平行平板電極間に、合成樹脂板
を挿入して高周波誘電加熱するに際して、該電極と合成
樹脂板間に、合成樹脂板の平爾積より大なる面積を有し
かつ電極と反対側の側面を部分的に電波シー・ルド材料
で被覆してなる断熱板を1合成樹脂板の周囲に該当する
部分よロタくとも外方に向っては全周にわたって2−以
上該シールド材料が存在するように該断熱板を介在させ
て高周波誘電加熱することを特徴とする合成樹脂板の高
周波誘電加熱方法を提供する。
That is, the present invention provides a method for inserting a synthetic resin plate between parallel plate electrodes configured as a resonance capacitor of a high frequency oscillation circuit and performing high frequency dielectric heating. 1. Place a heat insulating board having a larger area than the original size and having the side opposite to the electrode partially covered with radio wave shielding material at least outwardly from the corresponding area around the synthetic resin board. Another object of the present invention is to provide a method for high-frequency dielectric heating of a synthetic resin plate, characterized in that high-frequency dielectric heating is performed with the heat insulating plate interposed so that two or more of the shielding materials are present over the entire circumference.

一般的に、平行平板電極を用いた高周波誘電加熱は、熱
伝導に関係なく高周波電力に比例して。
In general, high-frequency dielectric heating using parallel plate electrodes is independent of heat conduction, which is proportional to the high-frequency power.

物質自身の分子運動を利用して急速加熱できることから
、合成樹脂の成形前加熱処理の一つとして使用されてい
るが、平行平板電極の周辺部は内部に比して電界強度は
大きく、従って被加熱物の合成樹脂板の周辺温度は上昇
すること1周囲の条件によっては、被加熱物の合成樹脂
板の表面から、熱放散を生じ物質内部のほうが温度上昇
が大きくなること六どの欠点を持つことから、均一な温
度の合成樹脂板を得ることは困難で要求品質の厳しい用
途には適用できない。
It is used as a pre-molding heat treatment for synthetic resins because it can be heated rapidly using the molecular motion of the material itself. The temperature around the synthetic resin plate of the object to be heated will rise.1 Depending on the surrounding conditions, heat will be dissipated from the surface of the synthetic resin plate of the object to be heated, and the temperature increase will be greater inside the substance.6. Therefore, it is difficult to obtain a synthetic resin plate with a uniform temperature, and it cannot be applied to applications with strict quality requirements.

本発明は、高周波発振回路の共振用コンデンサーとして
構成されている平行平板電極間に1合成樹脂板を挿入し
て高周波誘電加熱するに際して、該電極と合成樹脂板間
に、合成樹脂板の面積より大々る面積を有しかつ電極と
反対側の側面を部分的に電波シールド材料で被覆してな
る断熱板を、合成樹脂板の周囲に該当する部分より少く
とも外方に向っては全周にわたって2−以上該シールド
材料が存在するように該断熱板を介在させることにより
合成樹脂板の周囲と平行平板電極の周辺間の電界強度は
1合成樹脂板の周辺部より内部とほぼ同じとなるので、
被加熱物の合成樹脂板の周辺温度と内部温度も等しくな
り均一加熱されることになる。
In the present invention, when a synthetic resin plate is inserted between parallel plate electrodes configured as a resonance capacitor of a high frequency oscillation circuit and subjected to high frequency dielectric heating, the area of the synthetic resin plate is A heat insulating plate having a large area and partially covered with a radio wave shielding material on the side opposite to the electrode is installed at least all the way outward from the area corresponding to the periphery of the synthetic resin plate. By interposing the heat insulating plate so that two or more of the shielding materials exist throughout the area, the electric field strength between the periphery of the synthetic resin plate and the periphery of the parallel plate electrode becomes approximately the same as that inside the periphery of the synthetic resin plate. So,
The surrounding temperature and the internal temperature of the synthetic resin plate of the object to be heated become equal, resulting in uniform heating.

従って、平行平板電極と合成樹脂板間に介在させる断熱
板の構造は重要であり、先ずその形状は。
Therefore, the structure of the heat insulating plate interposed between the parallel plate electrodes and the synthetic resin plate is important, and the first consideration is its shape.

合成樹脂板の平面形状と相似であり1合成樹脂板よりも
大きいことが好ましい。
It is preferable that the planar shape is similar to that of the synthetic resin plate and that it is larger than one synthetic resin plate.

又、合成樹脂板の周囲に該当する部分より外方に向って
は少くとも251m以上被覆してなる電波シールド材料
の位置は、電極側の部分を被覆すると電極の一部として
機能するだけであり、電極の反対側の部分を被覆するこ
とによってはじめて合成樹脂板の周囲と平行平板電極の
周辺間の電界強度を、合成樹脂板の周辺部と内部とをほ
ぼ同じにすることができる。
In addition, the position of the radio wave shielding material covering at least 251 m outward from the corresponding part of the synthetic resin plate will only function as a part of the electrode if it covers the part on the electrode side. By covering the opposite side of the electrode, the electric field strength between the periphery of the synthetic resin plate and the periphery of the parallel plate electrode can be made almost the same between the periphery and the inside of the synthetic resin plate.

合成樹脂板の周囲に該当する部分より外方に向っては、
電極の反対側の部分を電波シールド材料を被覆する巾が
2−未満では1合成樹脂板の周囲と平行平板電極の周辺
間の電界強度は1合成樹脂板の内部よりも周辺部のほう
が大きくなるので、被加熱物の合成樹脂板の周辺部温度
より高くなるので好ましく々い。
From the area corresponding to the periphery of the synthetic resin plate, towards the outside,
If the width of covering the opposite side of the electrode with the radio wave shielding material is less than 2 -, the electric field strength between the periphery of the synthetic resin plate 1 and the periphery of the parallel plate electrode will be larger at the periphery than inside the synthetic resin plate 1. Therefore, the temperature is preferably higher than the temperature of the peripheral part of the synthetic resin plate of the object to be heated.

又1合成樹脂板の周囲に該当する部分より外方に向って
少くとも2箇以上電波シールド材料で被覆してなる場合
には、合成樹脂板の周囲に該当する部分より内方の部分
を、電極板と合成樹脂板の大きさなどによっても異なる
が1本発明の目的を損わない程度に(例えばIO−程度
)電波シールド材料で被覆しても構わない。
In addition, in the case where at least two or more parts of the synthetic resin plate are coated with radio wave shielding material outward from the area corresponding to the periphery, the area inward from the area corresponding to the periphery of the synthetic resin plate is covered with radio wave shielding material. Although it varies depending on the size of the electrode plate and the synthetic resin plate, they may be coated with a radio wave shielding material to the extent that the object of the present invention is not impaired (for example, about IO-).

合成樹脂板の周辺部温度と内部温度を等しくするだめに
は、電波シールド材料で被覆する巾は10−以上とする
のが更に好ましい。
In order to equalize the peripheral temperature and internal temperature of the synthetic resin plate, it is more preferable that the width of the radio wave shielding material is 10 or more.

平行平板電極と被加熱物の合成樹脂板の大きさの関係は
、平行平板電極の大きさに比し1合成樹脂板の大きさは
小さいほうが均一加熱上は好ましいが経済的には好まし
くない。
Regarding the relationship between the sizes of the parallel plate electrodes and the synthetic resin plates of the object to be heated, it is preferable for each synthetic resin plate to be smaller than the size of the parallel plate electrodes for uniform heating, but economically unfavorable.

従って、一般的には合成樹脂板の面積は、平行平板電極
の面積の4割以上を一つの目安としている。
Therefore, in general, the area of the synthetic resin plate is set to be 40% or more of the area of the parallel plate electrodes.

本発明の効果を十分に発揮しうる前述の面積の関係は5
割以上のときでおる。
The above-mentioned area relationship that can fully exhibit the effects of the present invention is 5
It's more than a percentage of the time.

断熱板そのものの材質は、クッション性を持つ非誘電性
の断熱材であれば何でもよく1例えば。
The material of the heat insulating board itself may be any non-dielectric heat insulating material with cushioning properties.

テフロン、シリコーン、ガラス繊m補強シリコーン、ポ
リエチレンなどが上げられる。
Examples include Teflon, silicone, glass fiber reinforced silicone, and polyethylene.

電波シールド材料としては、 AA、Cuなどの金属箔
や同薄板、金属薄膜を蒸着した合成樹脂の薄板などがあ
げられるがこれに限定されるものではない。
Examples of the radio wave shielding material include, but are not limited to, metal foils and thin plates of AA, Cu, etc., and thin plates of synthetic resin with vapor-deposited metal thin films.

合成樹脂板は、誘電性樹脂であれば何でもよく。The synthetic resin board can be any dielectric resin.

例えばPET、POM、Ny6.Ny6G、PMMA、
フェノールかとが上げられるが、ポリエチレンやポリプ
ロピレンなどの本来的に極性基をもたず、それ自体高周
波誘電加熱のできなrポリオレフィンなどでも、あらか
じめ極性分子を分散させたものでもよい。
For example, PET, POM, Ny6. Ny6G, PMMA,
Examples include phenol, but polyolefins such as polyethylene and polypropylene, which inherently do not have polar groups and cannot be subjected to high-frequency dielectric heating, may also be used, in which polar molecules are preliminarily dispersed.

又、カーボンのような伝導電子が混合された非誘電性の
合成樹脂は、誘電損による発熱ではなぐ6伝導電流によ
る損失によって発熱するが、この種の合成樹脂も適用可
能である。
Furthermore, a non-dielectric synthetic resin mixed with conduction electrons such as carbon generates heat not due to dielectric loss but due to loss due to conduction current, and this type of synthetic resin is also applicable.

合成樹脂板の積層形態としては1合成樹脂板一枚又は合
成樹脂板と合成樹脂板の間に介在して、該樹脂板相互の
熱接着を防止する合成樹脂シート。
The laminated form of the synthetic resin plates is one synthetic resin plate or a synthetic resin sheet interposed between two synthetic resin plates to prevent thermal adhesion between the resin plates.

紙などのいわゆる合紙とで構成されている積層板。A laminate made of paper or other so-called interleaf paper.

又は接着しない異種の合成樹脂板の積層体などが上げら
れる。
Alternatively, a laminate of different types of synthetic resin plates that are not bonded together may be used.

金紙は一般的に非誘電性のポリエチレンやポリプロピレ
ンなどのポリオレフィンシートが用いられるが、合成樹
脂板の加熱温度に悪影響を与えない範囲で、PET’、
Ny6゜紙などの誘電性シート1用いてもよい。
Gold paper is generally a non-dielectric polyolefin sheet such as polyethylene or polypropylene, but PET',
A dielectric sheet 1 such as Ny6° paper may also be used.

合成樹脂板と合成樹脂板の間に介在して、該樹脂板相互
の熱接着を防止する合成樹脂シート、紙などのいわゆる
金紙とで構成されている積層板であって、合成樹脂板と
金紙の熱膨張率や熱収縮率の異なるもの、具体的には、
合成樹脂板ヤ合紙の加工条件、高周波誘電加熱条件など
の違いによっても異なるのでこれに限定されるものでは
ないが合成樹脂板と金紙との線膨張率比で2以上又は0
.5以下、熱収縮率比で1゜5以上又は0.67以下と
なると、8R層板の一部が変形したり、皺が発生したり
して好ましくなく1表面が平滑で且つ均一な温度の積層
板を得ることは困難であるが、積層板を加圧状態で高周
波誘電加熱すると、積層板を構成する合成樹脂板と台紙
との熱膨張率や熱収縮率が異なっても、加圧力により強
制的に積層板の熱膨張や熱収縮による変化を抑制できる
ので、高周波誘電加熱中に、被加熱物の積層板の一部が
変形したり、皺が発生したりすることが極めて少なくな
り1表面平滑で且つ均一な温度の積層板を得ることがで
きるので好ましい。
A laminate consisting of a synthetic resin sheet and so-called gold paper such as paper, which is interposed between synthetic resin plates and prevents thermal adhesion between the resin plates, and the synthetic resin plate and the gold paper. Those with different coefficients of thermal expansion and contraction, specifically,
Although the linear expansion coefficient ratio between the synthetic resin board and gold paper is 2 or more or 0, although it is not limited to this as it varies depending on the processing conditions of the synthetic resin board or paper, high frequency dielectric heating conditions, etc.
.. If the heat shrinkage rate ratio is 1°5 or more or 0.67 or less, a part of the 8R laminate may be deformed or wrinkles may occur, which is undesirable. Although it is difficult to obtain a laminate, if the laminate is heated by high frequency dielectric under pressure, even if the coefficient of thermal expansion and thermal contraction of the synthetic resin plate and the mount which make up the laminate are different, the pressure will change depending on the applied pressure. Changes due to thermal expansion and thermal contraction of the laminate can be forcibly suppressed, so it is extremely unlikely that a part of the laminate to be heated will be deformed or wrinkled during high-frequency dielectric heating. This is preferable because a laminate with a smooth surface and a uniform temperature can be obtained.

加熱中に被加熱物の積層板の一部が変形したり、皺が発
生したりすることを防止する加圧力は、積層板の種類に
よって異るが少くとも2Kg/elJ、以上であって、
加熱中にその圧力によって積層板が圧縮延伸されない範
囲の圧力とする必要がある。
The pressing force to prevent part of the laminate of the object to be heated from being deformed or wrinkled during heating varies depending on the type of laminate, but is at least 2 Kg/elJ or more,
The pressure must be within a range that does not cause the laminate to be compressed and stretched during heating.

加圧力が2 Kf/−未満では、十分に被加熱物の積層
板の一部が変形したり、皺が発生したりすることを防止
することはできない。
If the pressing force is less than 2 Kf/-, it is not possible to sufficiently prevent a part of the laminate plate of the object to be heated from being deformed or wrinkled.

周囲の条件によって、合成樹脂板の表面から熱放散を生
じて合成樹脂板の内部のほうが温度上昇が大きくなる場
合には、高周波誘電加熱後、引き続き加熱プレスを用い
て合成樹脂板を再加熱するとよい。
If heat dissipates from the surface of the synthetic resin board due to ambient conditions and the temperature rises larger inside the synthetic resin board, reheat the synthetic resin board using a heating press after high-frequency dielectric heating. good.

又、高周波誘電加熱する際、加熱ヒータ・−付きの平行
平板電極を用いた沙、平行平板電極を持つ加熱室に熱風
を吹込んだりして熱放散を減少してもよい。
Furthermore, when performing high-frequency dielectric heating, heat dissipation may be reduced by blowing hot air into a heating chamber that uses parallel plate electrodes with heaters or parallel plate electrodes.

高周波発振回路の発振周波数は1合成樹脂板の平面積に
おける最大長の少くとも2倍以上となるような波長を有
する周波数を撰択するとよい。
The oscillation frequency of the high frequency oscillation circuit is preferably selected to have a wavelength that is at least twice the maximum length of one synthetic resin plate in plan area.

加熱中に合成樹脂板の分子切断又は側鎖の結合のゆるみ
などを狙う場合には、それぞれの結合エネルギー以上の
高周波エネルギーを加えて高周波誘電加熱するとよい。
When aiming at molecular cleavage or loosening of side chain bonds in a synthetic resin plate during heating, high frequency dielectric heating is preferably performed by applying high frequency energy greater than the respective bond energies.

〔実施例1〕 11 KVA 、 62 MHz ノ低圧(s、5oo
V)、!:高圧(a、5oQV)切替型、出力sKW、
平行平板電極の大きさ36の×363の高周波誘電加熱
装置を用いて、大きさ21mX253m厚さ40wのP
MMA板を第1表に示す条件で加熱した結果は、板の周
辺部(第1図の1〜4)と板の中心部(第1図の5)と
の温度差は第1図に示すように極めて小さい。
[Example 1] 11 KVA, 62 MHz low pressure (s, 5oo
V),! : High voltage (a, 5oQV) switching type, output sKW,
Using a high-frequency dielectric heating device with parallel plate electrodes of size 36 x 363, P of size 21 m x 253 m and thickness of 40 w
As a result of heating the MMA plate under the conditions shown in Table 1, the temperature difference between the peripheral part of the plate (1 to 4 in Figure 1) and the center part of the plate (5 in Figure 1) is shown in Figure 1. It's extremely small.

以下余白 〔比較例1〕 実施例1と同一の装置及び合成樹脂板を用いて、第2表
に示す条件で加熱した結果は、板の周辺部(第2図の1
〜4)と板の中心部(第2図の5)との温度差は大きい
The following margins [Comparative Example 1] Using the same equipment and synthetic resin plate as in Example 1, heating was performed under the conditions shown in Table 2.
There is a large temperature difference between 4) and the center of the plate (5 in Figure 2).

第  2  表 〔実施例2〕 実施例1と同一の装置を用いて、大きさ27にHX Q
 7 cm−、厚さ25Mのフェノール板を第3表に示
す条件で加熱した結果は、板の周辺部(第3図の1〜4
)と板の中心部(第3図の5)との温度麓Ift&払で
/1%も1八〜 〔比較例2〕 実施例2と同一の装置及び合成樹脂板を用いて、第4表
に示す条件で加熱した結果は、板の周辺部(第4図の1
〜4)と板の中心部(第4図の5)との温度差は大きい 第  4  表 〔実施例3〕 11 KVA 、 62MHz ノ低圧(5,500V
 )  ト高圧(6,500V)切替型、出力5KW、
平行平板電極の大きさ363X36crII%最大加圧
力6 tonの高周波誘電加熱装置を用いて、大きさ2
7tMX27m、厚さ2+uOPMMA板18枚、その
間に介在する厚さ0.2 wf) PPシート17枚、
合計39.4 lJ厚さの積層板全第5表に示す条件で
加熱した結果は、各板共(第5図の1〜18は積層板の
階と上から順に示す。)板の周辺部(第5図のΔ印)と
板の中心部(第5図の○印)との温度差は極めて小さい
Table 2 [Example 2] Using the same equipment as in Example 1, HX Q of size 27
The results of heating a phenol plate of 7 cm- and thickness of 25M under the conditions shown in Table 3 are as follows:
) and the center of the plate (5 in Figure 3), the temperature at the foot of Ift & 1% is also 18 ~ [Comparative Example 2] Using the same equipment and synthetic resin plate as in Example 2, Table 4 shows The results of heating under the conditions shown in Figure 4 are as follows:
Table 4 [Example 3] 11 KVA, 62 MHz low pressure (5,500 V)
) High voltage (6,500V) switching type, output 5KW,
Using a high-frequency dielectric heating device with a parallel plate electrode size of 363 x 36 crII% and a maximum pressing force of 6 tons,
7tMX27m, 18 2+u OPMMA plates, 17 PP sheets (thickness 0.2 wf) interposed between them,
All laminates with a total thickness of 39.4 lJ were heated under the conditions shown in Table 5. The results for each board (1 to 18 in Fig. 5 are the floors of the laminates and are shown in order from the top) are as follows: The temperature difference between the plate (marked Δ in FIG. 5) and the center of the plate (marked ○ in FIG. 5) is extremely small.

以下余白 〔比較例3〕 実施例3と同一の装置及び積層板を用いて、第6表に示
す条件で加熱した結果は、各板共(第6図の1〜18)
板の周辺部(第6図のΔ印)と板の中心部(第6図のO
印)との温度差は大きい。
The following margins [Comparative Example 3] Using the same equipment and laminated plates as in Example 3, heating was performed under the conditions shown in Table 6. The results for each plate (1 to 18 in Figure 6)
The peripheral part of the plate (marked with Δ in Figure 6) and the center of the plate (marked with O in Figure 6)
There is a large temperature difference between the

又、PMMA板の間に介在するPPシートには皺に入り
、一部PMMA板に僅かながら跡がついていた0 第  6  表 〔実施例4〕 実施例3と同一の装置を用いて、大きさ25cm X 
25 cm、厚さ2mmOPMMA板18板、その間に
介在する厚さ0゜2IIJIIのppシート17枚、合
計39.4.厚さの積層板を第7表に示す条件で加熱し
、引き続き面圧s Kr/csi %温度150℃の加
熱プレスを用いて積層板を再加熱した結果は、第7図に
示すように、1〜5分加熱プレスで再加熱すると、積層
板の表面部と中心部の温度の差は小さい。
In addition, the PP sheet interposed between the PMMA plates was wrinkled, and some of the PMMA plates had slight marks.
18 25 cm, 2 mm thick OPMMA plates, 17 PP sheets with a thickness of 0°2 IIJII interposed between them, total 39.4. The results of heating a laminate of the thickness shown in Table 7 under the conditions shown in Table 7 and then reheating the laminate using a hot press at a temperature of 150° C. as shown in FIG. When reheated using a hot press for 1 to 5 minutes, the difference in temperature between the surface and center of the laminate is small.

以下余白 〔実施例5〕 実施例3と同一の装置及び条件で積層板を加熱する際、
平行平板電極を持つ加熱室に温度50℃の熱風を吹込み
ながら加熱した。
The following margin [Example 5] When heating the laminate using the same equipment and conditions as Example 3,
Heating was carried out while blowing hot air at a temperature of 50°C into a heating chamber having parallel plate electrodes.

その結果は、第8図に示すように平行平板電極及び積層
板周囲からの放熱が押さえられることによって、積層板
の表面部と内部の温度差は著しく減少した。
As a result, as shown in FIG. 8, the temperature difference between the surface and the inside of the laminate was significantly reduced by suppressing heat radiation from the parallel plate electrodes and the periphery of the laminate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の合成樹脂板の高周波誘電加
熱方法によれば、合成樹脂板を加熱する際、板の周辺部
と中心部とで温度差のない均一な温度の合成樹脂板が得
られること、又、加熱中に被加熱物の合成樹脂板の一部
が変形したり、皺が発生したりすることがないので外観
性の良好な合成樹脂板を製造できるという優れた効果を
奏する0
As explained above, according to the high frequency dielectric heating method for a synthetic resin board of the present invention, when heating a synthetic resin board, a synthetic resin board having a uniform temperature with no temperature difference between the periphery and the center of the board can be obtained. Furthermore, since the synthetic resin plate of the object to be heated does not partially deform or wrinkle during heating, it is possible to produce a synthetic resin plate with good appearance. 0

【図面の簡単な説明】[Brief explanation of drawings]

第1.3.5.7.8図は、本発明の実施例の結果を示
し、第2.4.6図は、比較例の実験結果を示す。第1
.3図はそれぞれ、実施例1.2における又第2.4図
はそれぞれ比較例1,2における板の中心部と板の周辺
部との温度を示す。第5゜6図はそれぞれ実施例3と比
較例3の板の中心部と端部との温度を示す。第7図は加
熱プレスしたときの板の温度を示す。第8図は熱風を吹
きこみながら加熱したときの板の温度を示す。 特許出願人 旭化成工業株式会社 第1図 +      234     5 第2図 +       234      5イヱL 置 第3図 +2345 イ立! 第4図 +2345 徨置 第5図 第6図 n1級の上r5のJすし) 第8図 123456789101臼213141516171
8二                   中   
                  下面%1 面 11瓶の上炉5めr−ノミ香 手続補正書(自発) 昭和60年1り月/7日
Fig. 1.3.5.7.8 shows the results of the example of the present invention, and Fig. 2.4.6 shows the experimental results of the comparative example. 1st
.. Figure 3 shows the temperature at the center of the plate and the peripheral area of the plate in Example 1.2 and Figure 2.4 in Comparative Examples 1 and 2, respectively. FIG. 5.6 shows the temperature at the center and end of the plates of Example 3 and Comparative Example 3, respectively. FIG. 7 shows the temperature of the plate during hot pressing. Figure 8 shows the temperature of the plate when heated while blowing hot air. Patent Applicant: Asahi Kasei Kogyo Co., Ltd. Figure 1 + 234 5 Figure 2 + 234 5 IeL Figure 3 + 2345 Irachi! Figure 4: +2345 Figure 5: Figure 6: N1 grade upper r5 J sushi) Figure 8: 123456789101 Mortar 213141516171
82 middle school
Lower surface % 1 Surface 11 Bottle upper furnace 5th grade - Flea procedure amendment (voluntary) January 7, 1985

Claims (1)

【特許請求の範囲】 1、高周波発振回路の共振用コンデンサーとして構成さ
れている平行平板電極間に、合成樹脂板を挿入して高周
波誘電加熱するに際して、該電極と合成樹脂板間に合成
樹脂板の平面積より大なる面積を有しかつ電極と反対側
の側面を部分的に電波シールド材料で被覆してなる断熱
板を、合成樹脂板の周囲に該当する部分より少くとも外
方に向つては全周にわたつて2mm以上該シールド材料
が存在するように該断熱板を介在させて高周波誘電加熱
することを特徴とする合成樹脂板の高周波誘電加熱方法 2、合成樹脂板を高周波誘電加熱する際、加圧状態で高
周波誘電加熱することを特徴とする特許請求の範囲第1
項記載の加熱方法 3、高周波発振回路の共振用コンデンサーとして構成さ
れている平行平板電極間に、合成樹脂板を挿入して高周
波誘電加熱するに際して、該電極と合成樹脂板間に合成
樹脂板の平面積より大なる面積を有しかつ電極と反対側
の側面を部分的に電波シールド材料で被覆してなる断熱
板を、合成樹脂板の周囲に該当する部分より少くとも外
方に向つては全周にわたつて2mm以上該シールド材料
が存在するように該断熱板を介在させて高周波誘電加熱
させた後、引き続き加熱プレスを用いて合成樹脂板を再
加熱することを特徴とする合成樹脂板の高周波誘電加熱
方法
[Claims] 1. When inserting a synthetic resin plate between parallel plate electrodes configured as a resonance capacitor of a high frequency oscillation circuit and performing high frequency dielectric heating, a synthetic resin plate is inserted between the electrode and the synthetic resin plate. A heat insulating board having an area larger than the planar area of Method 2 of high-frequency dielectric heating of a synthetic resin board, characterized in that high-frequency dielectric heating is performed with the insulation plate interposed so that the shielding material is present at least 2 mm over the entire circumference, a synthetic resin board is heated by high-frequency dielectric heating Claim 1, characterized in that high-frequency dielectric heating is performed in a pressurized state.
Heating method 3 described in section 3, when performing high frequency dielectric heating by inserting a synthetic resin plate between parallel plate electrodes configured as a resonance capacitor of a high frequency oscillation circuit, a synthetic resin plate is inserted between the electrode and the synthetic resin plate. A heat insulating plate having an area larger than a flat area and whose side surface opposite to the electrode is partially covered with a radio wave shielding material is placed at least outwardly from the area corresponding to the periphery of the synthetic resin plate. A synthetic resin board characterized in that the synthetic resin board is heated by high frequency dielectric with the heat insulating board interposed so that the shielding material is present at least 2 mm over the entire circumference, and then the synthetic resin board is subsequently reheated using a heating press. High frequency dielectric heating method
JP15232385A 1985-07-12 1985-07-12 Method for high frequency dielectric heating of synthetic resin plate Pending JPS6213322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15232385A JPS6213322A (en) 1985-07-12 1985-07-12 Method for high frequency dielectric heating of synthetic resin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15232385A JPS6213322A (en) 1985-07-12 1985-07-12 Method for high frequency dielectric heating of synthetic resin plate

Publications (1)

Publication Number Publication Date
JPS6213322A true JPS6213322A (en) 1987-01-22

Family

ID=15538015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15232385A Pending JPS6213322A (en) 1985-07-12 1985-07-12 Method for high frequency dielectric heating of synthetic resin plate

Country Status (1)

Country Link
JP (1) JPS6213322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290490A (en) * 1990-06-29 1994-03-01 General Electric Company Method and apparatus for differentially heating and thermoforming a polymer sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290490A (en) * 1990-06-29 1994-03-01 General Electric Company Method and apparatus for differentially heating and thermoforming a polymer sheet

Similar Documents

Publication Publication Date Title
US3185432A (en) Low-temperature, low-pressure mold
EP0563235B1 (en) Temperature controlled microwave susceptor structure
EP0596996A1 (en) Method for induction heating of composite materials
US2922865A (en) Process and apparatus for dielectric heating
US2463054A (en) Apparatus for heating insulating material by subjecting it to a highfrequency field of electric force
EP0350056A3 (en) Electroconductive thermoplastic resin sheets and molded articles
JPS6213322A (en) Method for high frequency dielectric heating of synthetic resin plate
JPS62133694A (en) Radio frequency induction heating of synthetic resin plate
CN106427145A (en) Super-flexible base film served as graphene film carrier, and preparation method thereof
KR20160113929A (en) Forming device and its forming method of built skin agent for car using hot melt film
SE8202828L (en) DEVICE FOR HIGH-FREQUENCY SEALING PACKAGING LAMINATE
GB964539A (en) Production of coated sheet materials
JPS59135125A (en) Method and device for stretching multilayer film structure
TW342363B (en) Process and device for producing laminates
JPS63242627A (en) High-frequency welder
JPH0444349Y2 (en)
RU2094957C1 (en) Multiple-layer heater
JPS6063267A (en) Method for bonding and laminating flexible membrane material
JP4061096B2 (en) Method for producing metal foil laminated sheet
JPS62923Y2 (en)
JPS63205218A (en) Manufacture of laminated sheet
JPS60500155A (en) Method and apparatus for producing electret materials
JPH0445916A (en) Thermoplastic deformation of plastic material
JPS63288738A (en) High-frequency fusion
Ku et al. Processing of polymer matrix composites using variable frequency microwave (VFM)