JPS62132128A - Ultraviolet ray monitor - Google Patents

Ultraviolet ray monitor

Info

Publication number
JPS62132128A
JPS62132128A JP27139085A JP27139085A JPS62132128A JP S62132128 A JPS62132128 A JP S62132128A JP 27139085 A JP27139085 A JP 27139085A JP 27139085 A JP27139085 A JP 27139085A JP S62132128 A JPS62132128 A JP S62132128A
Authority
JP
Japan
Prior art keywords
ultraviolet
sensor
light
medium
ultraviolet ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27139085A
Other languages
Japanese (ja)
Inventor
Kenichi Kawasumi
川澄 健一
Akio Inada
稲田 暁男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27139085A priority Critical patent/JPS62132128A/en
Publication of JPS62132128A publication Critical patent/JPS62132128A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To enable the ultraviolet ray output of a light source to be detected while being scarcely affected by an ambient gas even when the light source is spaced apart from a sensor by connecting a light receiving surface close to an ultraviolet ray emitter to a sensor with a predetermined spectral sensitivity with a light path composed of a medium or the like wherein ultraviolet rays are not absorbed. CONSTITUTION:The end light receiving surface 2 of a light path 3 composed of synthetic quartz fibers is brought into nearly close contact with an ultraviolet ray source 1. On the other hand, the other end of the light path 3 is connected to a sensor 4 composed of CsI having the spectral sensitivity, for example, at a wavelength 185nm as a photoelectron emitting material. The sensor 4 is covered by a shielding box 5 made of stainless steel. By inputting a photocurrent detected by the sensor 4 to an output display via an amplifier, an ultraviolet ray output with the wavelength 185nm can be read. The light path 3 is shielded by a shielding film 6 to shield light.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空気やオゾンにより吸収される波長の紫外線
を簡便に測定できる紫外線モニタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultraviolet monitor that can easily measure ultraviolet rays at wavelengths that are absorbed by air and ozone.

〔発明の背景〕[Background of the invention]

紫外線光源は、ランプの経年変化が進むと1通常、スペ
クトルの紫外線部分c4可視部より早く劣化するため、
光源が点灯していても紫外線出力が著しく減衰している
場合がある。したがって紫外線の使用に際しては、所定
の紫外線出力に対する監視を行う必要がある。しかしな
がら、真空紫外線の測定は、従来、光源およびセンサを
真空中またはN2などの不活性ガス中に保持した状態で
測定するため、光源を用途に応じて使用したままの状態
では紫外線モニタができないという欠点があった(特開
昭59−154327号および特開昭59−16242
2号)。さらに紫外線検出センサには1例えばCsIな
どのように、高温で使用できない光電子放出物質が使わ
れている。このため紫外線発生源の温度が高い場合には
、上記紫外線発生源とセンサとの間の距離を離すか、セ
ンサを強制冷却するしか方法がなかった。紫外線発生源
とセンサとの間の距離を離すと、空気やオゾンによる紫
外線の吸収が大きくなり測定ができなくなる。またセン
サを強制冷却すると、紫外線発生源の温度を低下させる
ことにもなり、紫外線出力そのものが変化してしまう。
Ultraviolet light sources typically degrade faster in the ultraviolet part of the spectrum than in the visible part of the spectrum as the lamp ages.
Even if the light source is on, the UV output may be significantly attenuated. Therefore, when using ultraviolet light, it is necessary to monitor a predetermined ultraviolet output. However, conventionally, vacuum ultraviolet rays are measured with the light source and sensor kept in vacuum or in an inert gas such as N2, so it is not possible to monitor ultraviolet rays while the light source is used for its intended purpose. There were drawbacks (Japanese Patent Application Laid-Open No. 59-154327 and JP-A No. 59-16242)
No. 2). Further, ultraviolet detection sensors use photoelectron-emitting materials such as CsI, which cannot be used at high temperatures. For this reason, when the temperature of the ultraviolet radiation source is high, the only methods available are to increase the distance between the ultraviolet radiation source and the sensor, or to forcefully cool the sensor. If the distance between the ultraviolet radiation source and the sensor is increased, the absorption of ultraviolet rays by air and ozone will increase, making measurement impossible. Furthermore, forced cooling of the sensor also lowers the temperature of the ultraviolet radiation source, which changes the ultraviolet output itself.

〔発明の目的〕[Purpose of the invention]

本発明は、空気やオゾン、あるいは光源とセンサとの間
に存在する雰囲気ガスの影響をほとんど受けずに、簡便
な方法で紫外線の出力を検出できる紫外線モニタを得る
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ultraviolet monitor that can detect the output of ultraviolet rays by a simple method without being affected by air, ozone, or atmospheric gases existing between a light source and a sensor.

〔発明の概要〕 本発明による紫外線モニタは、紫外線発光部に近接する
受光面と所定の分光感度を有するセンサとの間を、紫外
線の吸収がない媒体または所望の分光透過率を有する媒
体よりなる光導路で連結したことにより、紫外線発生源
に受光面を近接させ、室温部に設けたセンサとにより、
簡便で、かなり精度がよい検出ができる紫外線モニタを
得たものである。例えば、水銀の放射線185nmまで
測定する場合は、光導路を合成石英の窓を両端に設けた
遮光円筒の内部を、真空または不活性ガスで満たすか、
あるいは合成石英の無空棒またはガラスファイバにする
ことによって目的を達することができる。つぎに波長1
85nmの紫外線は測定せず、254nI11の紫外線
出力を測定したい場合は、上記光導路を通常の石英を用
いた円筒、または無空棒、あるいはガラスファイバにす
ることによって目的が達せられる。さらにまた、例えば
185nmと254nmの紫外線の比を?1111定す
る場合には、上記光導路を2個用い、一方は185nn
+の紫外線を通すものとし、他は254nmの紫外線を
通し185nmの紫外線を通さないものとし、上記それ
ぞれの波長に分光感度を有する2個のセンサを組合わせ
、増幅器および演算回路を使用することによって、両者
の出力比を知ることができる。
[Summary of the Invention] The ultraviolet monitor according to the present invention includes a medium that does not absorb ultraviolet rays or a medium that has a desired spectral transmittance between the light receiving surface that is close to the ultraviolet light emitting part and the sensor that has a predetermined spectral sensitivity. By connecting them with an optical guide, the light-receiving surface is brought close to the ultraviolet radiation source, and the sensor installed in the room temperature area allows
This is a simple ultraviolet monitor that can detect with high accuracy. For example, when measuring mercury radiation up to 185 nm, the light guide can be filled with a vacuum or an inert gas inside a light-shielding cylinder with synthetic quartz windows on both ends.
Alternatively, the purpose can be achieved by making it a blank rod of synthetic quartz or glass fiber. Next, wavelength 1
If it is desired to measure the ultraviolet output of 254 nI11 without measuring the ultraviolet light of 85 nm, the purpose can be achieved by making the optical guide a cylinder made of ordinary quartz, a hollow rod, or a glass fiber. Furthermore, for example, what is the ratio of 185 nm and 254 nm ultraviolet rays? 1111, use two of the above optical guides, one of which is 185nn.
By combining two sensors with spectral sensitivities to each of the above wavelengths and using an amplifier and an arithmetic circuit. , the output ratio between the two can be known.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による紫外線モニタの第1実施例および
第2実施例を示す構成図、第2図は本発明の第3実施例
を示す構成を示す図である。第1図において1は紫外線
光源の断面を示し、合成石英ファイバよりなる光導路3
の端部受光面2を上記紫外線光源1にほぼ密着させてい
る。上記光導路3の他端は、波長185nmに分光感度
を有するCsIを光電子放出物質としたセンサ4に結合
し、該センサ4はステンレス製の遮光箱5により蔽われ
ている。上記センサ4で検出された光電流を増幅器を介
して出力表示装置(図示せず)に入力し、波長185n
mの紫外線出力を読取ることができた。上記光導路3は
遮光のためにステンレスの遮光膜6で蔽った。なお、上
記光導路3の媒体が、真空、N2ガスなどの場合は、上
記光導路3の両端に合成石英の窓2をそれぞれ設けたス
テンレス製の管を用い、その内部を真空、N2ガスなど
で満たして光導路3とする。
FIG. 1 is a block diagram showing the first and second embodiments of an ultraviolet monitor according to the present invention, and FIG. 2 is a block diagram showing the structure of a third embodiment of the present invention. In Fig. 1, 1 shows the cross section of the ultraviolet light source, and the optical guide 3 is made of synthetic quartz fiber.
The end light-receiving surface 2 of the ultraviolet light source 1 is brought into close contact with the ultraviolet light source 1. The other end of the optical guide 3 is coupled to a sensor 4 whose photoelectron emitting substance is CsI having spectral sensitivity at a wavelength of 185 nm, and the sensor 4 is covered by a light-shielding box 5 made of stainless steel. The photocurrent detected by the sensor 4 is input to an output display device (not shown) via an amplifier, and the wavelength is 185 nm.
I was able to read the ultraviolet light output of m. The optical guide path 3 was covered with a stainless steel light shielding film 6 for light shielding. When the medium of the optical guide 3 is a vacuum, N2 gas, etc., a stainless steel tube with synthetic quartz windows 2 provided at both ends of the optical guide 3 is used, and the inside of the tube is filled with a vacuum, N2 gas, etc. to form the optical guide path 3.

第2実施例は通常の石英ファイバをたばねたものを光導
路3の媒体として用い、波長254nmに分光感度を有
するCsIを光電子放射物質としたしセンサ4に光を導
き、検出した光電流を増幅したのち、出力表示装置によ
って波長254nmの紫外線出力を読取ることができた
In the second embodiment, an ordinary sprung quartz fiber is used as the medium of the optical guide path 3, CsI having spectral sensitivity at a wavelength of 254 nm is used as the photoelectron emitting material, and light is guided to the sensor 4 and the detected photocurrent is amplified. After that, it was possible to read the ultraviolet output at a wavelength of 254 nm using the output display device.

第2図に示す第3実施例は、上記第1実施例と第2実施
例との組合わせにより、それぞれの波長の紫外線強度比
を求める場合を示すもので、2本の平行した光導路3,
3′と、¥れぞれの光導路3.3′に結合したセンサ4
.4′とを備えている。
The third embodiment shown in FIG. 2 shows the case where the intensity ratio of ultraviolet rays of each wavelength is determined by a combination of the first embodiment and the second embodiment. ,
3' and a sensor 4 coupled to each optical guide 3.3'.
.. 4'.

上記光導路3には第1実施例と同様に合成石英ファイバ
を媒体とし、波長185nmに分光感度を有するCsl
を光電子放出物質としたセンサ4を使用し、光導路3′
は通常の石英ファイバを媒体とし、波長254nmに分
光感度を有するCsIを光電子放出物質とするセンサ4
′を用いた。それぞれのセンサ4および4′からの光’
RWE、を増幅したのち、演算回路(図示せず)で両者
の比を計算し、出力表示装置によりI i8S / I
 254の紫外線強度比を読取ることができた。
Similar to the first embodiment, the optical guide path 3 uses a synthetic silica fiber as a medium, and has a Csl fiber having spectral sensitivity at a wavelength of 185 nm.
is used as a photoelectron emitting material, and the optical guide 3'
The sensor 4 uses an ordinary quartz fiber as a medium and uses CsI as a photoelectron emitting material, which has spectral sensitivity at a wavelength of 254 nm.
' was used. Light from each sensor 4 and 4'
After amplifying RWE, an arithmetic circuit (not shown) calculates the ratio of the two, and an output display shows I i8S / I
254 ultraviolet light intensity ratios could be read.

また上記紫外線強度比は、光導路に185nmおよび2
54nmの周波長の紫外線を通す媒質を用いた1本の光
導路を使用し、センサに185nmおよび254nmに
それぞれ分光感度を有する2種のセンサを用い、これら
センサを切替えて出力を検出し、それぞれの出力を記憶
させ演算することによって得ることもできる。
In addition, the above ultraviolet light intensity ratio is 185 nm and 2
A single optical guide path using a medium that transmits ultraviolet light with a wavelength of 54 nm is used, and two types of sensors having spectral sensitivities at 185 nm and 254 nm are used, and the output is detected by switching between these sensors. It can also be obtained by storing and calculating the output of

第1表は本発明の紫外線モニタにより、紫外線強度を検
出する際の光導路の媒体とセンサの分光感度との組合わ
せの例を示したものである。
Table 1 shows examples of combinations of optical guide medium and sensor spectral sensitivity when detecting ultraviolet intensity using the ultraviolet monitor of the present invention.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による紫外線モニタは、紫外線発光
部に近接する受光面と所定の分光感度を有するセンサと
の間を、紫外線の吸収がない媒体または所望の分光透過
率を有する媒体よりなる光導路で連結したことにより、
光源とセンサとの距離を離しても紫外線を吸収する雰囲
気ガスの影響をほとんど受けることなく、簡便な方法に
より動作中の光源の紫外線出力を検出することができる
As described above, the ultraviolet monitor according to the present invention provides a light guide made of a medium that does not absorb ultraviolet rays or a medium that has a desired spectral transmittance between the light receiving surface close to the ultraviolet light emitting part and the sensor having a predetermined spectral sensitivity. By connecting by road,
Even if the distance between the light source and the sensor is increased, the ultraviolet output of the operating light source can be detected by a simple method without being affected by atmospheric gas that absorbs ultraviolet rays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による紫外線モニタの第1実施例および
第2実施例を示す構成図、第2図は本発明の第3実施例
を示す構成図である。
FIG. 1 is a block diagram showing a first and second embodiment of an ultraviolet monitor according to the present invention, and FIG. 2 is a block diagram showing a third embodiment of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)紫外線発光部に近接する受光面と所定の分光感度
を有するセンサとの間を、紫外線の吸収がない媒体また
は所望の分光透過率を有する媒体よりなる光導路で連結
した紫外線モニタ。
(1) An ultraviolet monitor in which a light receiving surface close to an ultraviolet light emitting part and a sensor having a predetermined spectral sensitivity are connected by an optical guide made of a medium that does not absorb ultraviolet rays or a medium that has a desired spectral transmittance.
(2)上記媒体は、ガラスファイバ、ガラス棒、石英ガ
ラスのいずれかであることを特徴とする特許請求の範囲
第1項に記載した紫外線モニタ。
(2) The ultraviolet monitor according to claim 1, wherein the medium is any one of a glass fiber, a glass rod, and a quartz glass.
(3)上記媒体は、真空、不活性ガスで、石英ガラスの
窓を有する容器で保護されていることを特徴とする特許
請求の範囲第1項に記載した紫外線モニタ。
(3) The ultraviolet monitor according to claim 1, wherein the medium is protected in a vacuum, inert gas, and in a container having a quartz glass window.
(4)上記光導路は、2個のセンサと結合する2本の光
導路であって、それぞれ異った出力を検出するように、
上記各センサの分光感度とともに媒体の分光透過率を選
んだものであることを特徴とする特許請求の範囲第1項
に記載した紫外線モニタ。
(4) The optical guide path is two optical guide paths coupled to two sensors, so that each detects a different output,
The ultraviolet monitor according to claim 1, wherein the spectral transmittance of the medium is selected as well as the spectral sensitivity of each of the sensors.
(5)上記センサは、分光感度が異った2個のセンサで
あって、広い分光透過率を有する媒体よりなる1本の光
導路に、それぞれ選択結合させたものであることを特徴
とする特許請求の範囲第1項に記載した紫外線モニタ。
(5) The above sensor is characterized in that it is two sensors with different spectral sensitivities, each selectively coupled to a single optical guide made of a medium having a wide spectral transmittance. An ultraviolet monitor according to claim 1.
JP27139085A 1985-12-04 1985-12-04 Ultraviolet ray monitor Pending JPS62132128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27139085A JPS62132128A (en) 1985-12-04 1985-12-04 Ultraviolet ray monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27139085A JPS62132128A (en) 1985-12-04 1985-12-04 Ultraviolet ray monitor

Publications (1)

Publication Number Publication Date
JPS62132128A true JPS62132128A (en) 1987-06-15

Family

ID=17499399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27139085A Pending JPS62132128A (en) 1985-12-04 1985-12-04 Ultraviolet ray monitor

Country Status (1)

Country Link
JP (1) JPS62132128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129632U (en) * 1988-02-19 1989-09-04
JPH06147974A (en) * 1992-11-04 1994-05-27 Japan Storage Battery Co Ltd Ultraviolet intensity sensor
JP2014001950A (en) * 2012-06-15 2014-01-09 Photoscience Japan Corp Ultraviolet relay

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129632U (en) * 1988-02-19 1989-09-04
JPH06147974A (en) * 1992-11-04 1994-05-27 Japan Storage Battery Co Ltd Ultraviolet intensity sensor
JP2014001950A (en) * 2012-06-15 2014-01-09 Photoscience Japan Corp Ultraviolet relay

Similar Documents

Publication Publication Date Title
US5315673A (en) Optical waveguide vapor sensor
US5923035A (en) Infrared absorption measuring device
US4794255A (en) Absorption analyzer
US6642522B2 (en) Optical gas sensor
CA1122812A (en) Gas measuring apparatus with standardization means, and method therefor
US4247205A (en) Gas measuring apparatus with standardization means, and method therefor
ATE112852T1 (en) CALIBRATION DEVICE FOR A NON-DISPERSIVE INFRARED PHOTOMETER.
US3471698A (en) Infrared detection of surface contamination
US5818598A (en) Nondispersive optical monitor for nitrogen-oxygen compounds
JPS6217183B2 (en)
JPS62132128A (en) Ultraviolet ray monitor
US3854045A (en) Measuring the dust concentration in air
US20090086191A1 (en) Optical gas detector
US4627284A (en) Ultraviolet absorption hygrometer
US5055692A (en) System for measuring ambient pressure and temperature
JPS58156837A (en) Measuring device for optical gas analysis
DE50001263D1 (en) Optical measuring arrangement for determining the transmission and scattered radiation
JPH05249038A (en) Oil mist concentration measuring apparatus
US4431315A (en) Determination of heat transfer from a surface
GB2066947A (en) Gas measuring apparatus with adjustable path length, and method for operation and standardization therefor
JPH0222687Y2 (en)
US5464980A (en) Flame sensors and methods of sensing flame
JPH01206236A (en) Discriminating apparatus of quality of quartz
JPH06308027A (en) Light measuring apparatus and ozone water concentration meter
JPH10332579A (en) Golay cell and 13c measuring apparatus using the same