JPS62132105A - Apparatus for detecting corrosion film quantity - Google Patents

Apparatus for detecting corrosion film quantity

Info

Publication number
JPS62132105A
JPS62132105A JP60272390A JP27239085A JPS62132105A JP S62132105 A JPS62132105 A JP S62132105A JP 60272390 A JP60272390 A JP 60272390A JP 27239085 A JP27239085 A JP 27239085A JP S62132105 A JPS62132105 A JP S62132105A
Authority
JP
Japan
Prior art keywords
test piece
temp
corrosion
corrosion film
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60272390A
Other languages
Japanese (ja)
Inventor
Yutaka Uruma
裕 閏間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP60272390A priority Critical patent/JPS62132105A/en
Publication of JPS62132105A publication Critical patent/JPS62132105A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To make it possible to continuously detect the corrosion film quantity of an area easy to generate a corrosion oxididation film, by detecting the corrosion film quantity of a test piece from the relational diagram of the predetermined temp. recovery time and corrosion film quantity of the test piece. CONSTITUTION:A cooling material 9 recirculates through primary system piping 2 and the test piece 2 present in the piping 1 comes to the same temp. and pressure as those of the piping 1 and, therefore, a corrosion films are formed at the almost same speed. Heat is applied to the test piece from a pulse heat source 5 so as to make the temp. thereof slightly higher than that of the cooling material 9 and said temp. change is observed on a transient oscilloscope 7. At this time, the temp. of the test piece 2 instantaneously and uniformly rises from the same temp. as the cooling material 9 by heating and, thereafter, returns to the original environmental temp. by the cooling material 9. This temp. recovery time is uniquely determined by the heat capacity of the test piece 2. However, said heat capacity continuously changes by the quantity of a corrosion oxidation film gradually growing on the surface of the test piece 2. Therefore, a calibration curve is preliminarily calculated to be inputted to a process computer 8 and corrosion film quantity is calculated from the measured value of the temp. recovery time on the basis of said calibration curve.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、腐食皮膜量の検出装置に係り、特に原子炉−
次系の構造材内表面に生成する腐食皮膜量を検出するの
に好適な腐食皮膜Rの検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus for detecting the amount of corrosion film, particularly for use in nuclear reactors.
The present invention relates to a corrosion film R detection device suitable for detecting the amount of corrosion film generated on the inner surface of a structural material of the following system.

(発明の技術的前日とその問題点〕 一般に、沸騰水型原子炉(BWR>の原子炉−次系では
粒子状およびイオン状の放射能が循環し、その放射能は
さまざまなメカニズムで原子炉−次系構造物の内表面に
蓄積され、その構造物の放射線分率を上界させている。
(Technical Prelude to the Invention and its Problems) In general, particulate and ionic radioactivity circulates in the reactor subsystem of a boiling water reactor (BWR), and the radioactivity is transferred to the nuclear reactor through various mechanisms. - Accumulates on the inner surfaces of secondary structures and limits the radiation fraction of the structures.

例えば原子炉−次系構造物のうら最も接液面積の大きな
ステンレス鋼では、高温高圧水との接触により鉄、クロ
ム、ニッケルを主成分とした腐食酸化皮膜が生成され、
その腐食酸化皮膜の成長時にイオン状の放射能が取りこ
まれる。また、このイオン状放射能は下記の同位体交換
によって6取りこまれることがある。
For example, on stainless steel, which has the largest surface area in contact with liquid at the back of nuclear reactor-related structures, a corrosive oxide film containing iron, chromium, and nickel as main components is formed when it comes into contact with high-temperature, high-pressure water.
Ionic radioactivity is taken in during the growth of the corrosive oxide film. In addition, this ionic radioactivity may be incorporated by the isotope exchange described below.

60CO24+Fe2C004 602十 −+Fe   Coo4+C。60CO24+Fe2C004 6020 -+Fe Coo4+C.

さらに、粒子状の放射能は腐食酸化皮膜上に沈積する形
で蓄積される。このような腐食酸化皮膜の存在が原子炉
−次系構造物の内表面にイオン状お−よび粒子状の放射
能を蓄積させ、配管廻りの空間・  線量率の上背をJ
R<のである。そして、この空間線量率の上昇が、定検
時等の作業員の被曝、ひいてはメンテナンスコストの増
大をもたらせることとなる。
Furthermore, particulate radioactivity accumulates in the form of deposits on corroded oxide films. The presence of such a corrosive oxide film causes the accumulation of ionic and particulate radioactivity on the inner surface of the reactor-related structures, causing the space around the pipes and the upper back of the dose rate to increase.
It is R<. This increase in the air dose rate leads to increased radiation exposure for workers during periodic inspections, etc., and an increase in maintenance costs.

従来、原子炉−次系構造物の腐食酸化皮膜量の評11I
liは、実機からの切出し配管の分析や、実験室におい
てBWRの原子炉−次系を模擬した試験装置(通常、ラ
ボループと呼ばれる)を用いて腐食試験を実施すること
により行なわれている。しかし、切出し配管データは試
料数が限られていたり、ラボループではプラントを完全
に模擬することができず、また、その完全模擬を実現す
るためには繁雑な準備が必要であるなどの事情があった
。また、それらのデータからは連続的に増加する皮膜量
を継続して測定することが不可能であった。
Conventionally, evaluation of the amount of corrosion oxide film on sub-reactor structures 11I
Li is conducted by analyzing pipes cut from actual equipment and by conducting corrosion tests in the laboratory using a testing device (usually called a lab loop) that simulates the BWR reactor system. However, the number of samples available for cut piping data is limited, the plant cannot be completely simulated in a laboratory loop, and complicated preparations are required to achieve a complete simulation. Ta. Furthermore, it was impossible to continuously measure the continuously increasing amount of film from these data.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事実を考慮してなされたものであり、原
子炉−次系の構jΔ物表面のように腐食酸化皮膜が生成
しつすい部位の腐食皮膜Mを継続して検出することがで
きる装置を提供することを目的としている。
The present invention has been made in consideration of the above-mentioned facts, and is capable of continuously detecting the corroded film M in areas where a corroded oxide film is likely to be formed, such as the surface of a structure in the sub-reactor system. The purpose is to provide a device that can.

〔発明の概要〕[Summary of the invention]

本発明は、測定対象とする部位に配置される試験片をそ
の環境温度と責なる温度とするための熱源と、前記試験
片が前記環境温度と異なる温度から環境温度に回復する
までの時間を測定し、予め定められた前記試験片の温度
回復時間と腐食皮膜用との関係図から前記試験片の腐食
皮膜量を検出する手段と、を備えたことを特徴とするも
のである。
The present invention provides a heat source for bringing a test piece placed in a part to be measured to a temperature corresponding to its environmental temperature, and a time required for the test piece to recover from a temperature different from the environmental temperature to the environmental temperature. The present invention is characterized by comprising means for measuring and detecting the amount of corrosion film on the test piece from a predetermined relationship diagram between the temperature recovery time of the test piece and the amount of corrosion film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の検出装置を原子炉−次系の配管に取り
付番ノたものである。第1図において、−次系配管1内
に試験片2が治具3により固定されている。試験片2は
一次系配管1と同一性状(材質および表面処理状態が同
一)からなっており、断熱性の治具3により固定され、
試験片2の温度が冶具3を介して熱伝導等により変化し
ないWllとなっている。
FIG. 1 shows how the detection device of the present invention is attached to the piping of the sub-reactor system. In FIG. 1, a test piece 2 is fixed in a secondary system piping 1 with a jig 3. The test piece 2 has the same properties as the primary pipe 1 (same material and surface treatment), and is fixed with a heat insulating jig 3.
The temperature of the test piece 2 remains at Wll, which does not change due to heat conduction or the like via the jig 3.

試験片2はケーブル4を介してパルス熱源5に接続され
ている。ケーブル4の先端部は試験片2内に網目状に埋
設され、パルス熱源5から発生した熱で試験片2が瞬時
にかつ均一に加熱できるようになっている。また試験片
2内には特に図示していないが、試験片2の表面または
内部の一点以上の部分の温度を測定できる熱雷対が設け
られている。
The test piece 2 is connected to a pulsed heat source 5 via a cable 4. The tip of the cable 4 is embedded in the test piece 2 in a mesh pattern so that the test piece 2 can be heated instantly and uniformly by the heat generated from the pulse heat source 5. Although not particularly shown in the drawings, the test piece 2 is provided with a thermal lightning pair that can measure the temperature at one or more points on the surface or inside of the test piece 2.

この熱雷対からのリード線6は、温度変化を記録・表示
する1〜ランジエン1へオシロスコープ7に接続されて
いる。パルス熱源5とトランジェントオシロスコープ7
はプロセスコンピュータ8により制御されている。この
プロセスコンピュータ8は、後)ホの如く、オシロスコ
ープ7からのデータを入力して試験片2の腐食皮膜量を
検出する。
A lead wire 6 from this thermal lightning pair is connected to an oscilloscope 7 from 1 to 1 to 1 to record and display temperature changes. Pulse heat source 5 and transient oscilloscope 7
is controlled by a process computer 8. The process computer 8 receives data from the oscilloscope 7 and detects the amount of corrosion film on the test piece 2, as described in (e) below.

次にこのような構成からなる腐食皮膜量の検出装置の作
用について説明する。
Next, the operation of the apparatus for detecting the amount of corrosion film having such a configuration will be explained.

一次系配管1内には冷却材(水)9が循環している。試
験片2は一次系配管1内に設置されるため、−次系配管
1と同様の温度・圧力となり、したがって、−次系配管
1とほぼ同一速度で腐食度WAが生成される。
A coolant (water) 9 circulates within the primary system piping 1. Since the test piece 2 is installed in the primary system piping 1, it has the same temperature and pressure as the secondary system piping 1, and therefore the degree of corrosion WA is generated at almost the same rate as the secondary system piping 1.

試験片2には、冷却材9の温度よりも僅かに高くなるよ
うにパルス熱源5から熱が与えられる。
Heat is applied to the test piece 2 from the pulse heat source 5 so that the temperature is slightly higher than the temperature of the coolant 9.

このときの試験片2の温度変化は第2図に示すように1
−ランジエントオシロスコープ7上で観察される。すな
わら、冷却1,19と同じであった試験片2の温度が、
パルス熱源5による加熱によって瞬間的にかつ均一に上
昇する。その後は、試験片2の熱が冷却材9によって奪
われ元の環境温度に戻る。ここで、加熱した時点から元
のレベルに戻るまでを温度回復時間と呼ぶ。この温度回
復時間は、与える熱間と環境温度が一定であるとすると
試験片2の熱容量で一義的に決まる値である。ところで
、試験片の熱容量は試験片表面に徐々に成長する腐食酸
化皮膜のけによって連続的に変化する。
At this time, the temperature change of test piece 2 is 1 as shown in Figure 2.
- observed on a transient oscilloscope 7; In other words, the temperature of test piece 2, which was the same as cooling 1 and 19, is
The heating by the pulse heat source 5 raises the temperature instantaneously and uniformly. Thereafter, the heat of the test piece 2 is removed by the coolant 9 and the test piece 2 returns to its original environmental temperature. Here, the period from the point of heating until the temperature returns to the original level is called the temperature recovery time. This temperature recovery time is a value uniquely determined by the heat capacity of the test piece 2, assuming that the applied hot temperature and the environmental temperature are constant. By the way, the heat capacity of a test piece changes continuously due to the removal of a corrosive oxide film that gradually grows on the surface of the test piece.

そこで、例えば第3図に示ずような校正曲線を予め求め
てプロセスコンピュータ8に入力しておき、このプロセ
スコンピュータ8において、上記°  校正曲線に基き
温度回復時間の測定値から試験片2に生成された腐食皮
膜帛を求める。このJ:うにある時間間隔毎に試験片2
の温度回復「、1間を測定し、腐食皮膜吊を継続して検
出することにより、試験片2と同材質である一次系配管
1に生成される腐食皮膜りを継続して監視することがで
きる。
Therefore, for example, a calibration curve as shown in FIG. Find the corroded film. This J: 2 test pieces for each time interval
It is possible to continuously monitor the corrosion film formed on the primary system piping 1, which is made of the same material as the test piece 2, by measuring the temperature recovery period of 1 and continuously detecting the corrosion film hanging. can.

そして、この監視結果をフィードバックすることにJ:
す、−次系構造物における放射能蓄積ら1の減少A3 
J:び−次系構造物の点検時における作業員の被曝低減
を達成することができる。
Then, to feed back the monitoring results, J:
-Reduction of radioactivity accumulation in secondary structures A3
J: It is possible to reduce radiation exposure of workers during inspection of secondary structures.

なお、上記実施例ではパルス熱源5を用いて試験片2を
加熱し温度変化を測定したが、パルス冷源を用いて試験
片2を冷却させ、その温度変化からも同様な結果が19
られる。
In addition, in the above example, the test piece 2 was heated using the pulsed heat source 5 and the temperature change was measured, but the test piece 2 was cooled using the pulsed cold source and similar results were obtained from the temperature change.
It will be done.

また、本発明はBWRプラントにJ3いて放射能が循環
しでいる系につき説明したが、そのような実機の系ばか
りでなく、腐食酸化皮膜が形成されやずいあらゆる系、
例えば−次系配管の材質試験装置(ラボループ)の系に
適用してもよい。この場合には、試験ハの材質や試験片
の前処理あるいは試験片の内表面状態を配管と胃ならし
め、水質条イ′[を実機の水質条件として同様に試験片
に生成された腐食皮膜吊を検出する。このような試験に
より、配管の材質や表面状態あるいは配管の前処理がM
食に与える影響などを定量的にかつ継続的に評価づるこ
とができ、配管代替材の選定や前処理法の開発に有益と
なる。
Furthermore, although the present invention has been described with reference to a system in which radioactivity circulates in J3 in a BWR plant, it is applicable not only to such an actual system but also to any system where a corrosive oxide film is likely to be formed.
For example, it may be applied to a material testing device (laboratory loop) for sub-system piping. In this case, the material of the test C, the pretreatment of the test piece, or the condition of the inner surface of the test piece should be made similar to that of the pipe, and the corrosion film formed on the test piece should be Detect hanging. Through such tests, it is possible to determine whether the material and surface condition of the piping or the pretreatment of the piping is
It is possible to quantitatively and continuously evaluate the impact on food, which will be useful in selecting alternative materials for piping and developing pretreatment methods.

(発明の効果〕 以上のように本発明にJ、れば、熱源からの熱によって
試験片の温度を変化させ、試験片の温度回復時間を測定
して試験片に生成された腐食皮膜mを検出することから
、連続的に増加する腐食皮119吊を継続して検出する
ことができる。
(Effects of the Invention) As described above, according to the present invention, the temperature of the test piece is changed by heat from the heat source, the temperature recovery time of the test piece is measured, and the corrosion film m generated on the test piece is evaluated. By detecting this, it is possible to continuously detect the corroded skin 119 which increases continuously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子炉−次系の配管に取り付りられた本発明の
一実施例を示す概略構成図、第2図は測定時にお1ノる
試験片の温度変化を示す絵図、第3図は温度回復時間か
ら腐食酸化皮膜榎求めるためのキレリプレージョンカー
ブの一例を示す線図である。 1・・・−次系配管、2・・・試験片、3・・・冶具、
4・・・ケーブル、5・・・パルス熱源、6・・・リー
ド線、7・・・トランジェントオシロスコープ、8・・
・プロセスコンピュータ、9・・・除材1材。
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention attached to the piping of the reactor subsystem, Fig. 2 is a pictorial diagram showing the temperature change of one test piece during measurement, and Fig. 3 The figure is a diagram showing an example of a sharpening erosion curve for determining corrosion oxide film thickness from temperature recovery time. 1... - secondary system piping, 2... test piece, 3... jig,
4... Cable, 5... Pulse heat source, 6... Lead wire, 7... Transient oscilloscope, 8...
・Process computer, 9...1 material removed.

Claims (1)

【特許請求の範囲】 1、測定対象とする部位に配置される試験片をその環境
温度と異なる温度とするための熱源と、前記試験片が前
記環境温度と異なる温度から環境温度に回復するまでの
時間を測定し、予め定められた前記試験片の温度回復時
間と腐食皮膜量との関係図から前記試験片の腐食皮膜量
を検出する手段と、を備えたことを特徴とする腐食皮膜
量の検出装置。 2、試験片が測定対象の構造材と同一性状からなる特許
請求の範囲第1項記載の腐食皮膜量の検出装置。
[Scope of Claims] 1. A heat source for bringing a test piece placed in a region to be measured to a temperature different from its environmental temperature, and a heat source until the test piece recovers from the temperature different from the environmental temperature to the environmental temperature. and means for measuring the amount of corrosion film on the test piece and detecting the amount of corrosion film on the test piece from a predetermined relationship diagram between the temperature recovery time of the test piece and the amount of corrosion film. detection device. 2. The apparatus for detecting the amount of corrosion film according to claim 1, wherein the test piece has the same properties as the structural material to be measured.
JP60272390A 1985-12-05 1985-12-05 Apparatus for detecting corrosion film quantity Pending JPS62132105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60272390A JPS62132105A (en) 1985-12-05 1985-12-05 Apparatus for detecting corrosion film quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272390A JPS62132105A (en) 1985-12-05 1985-12-05 Apparatus for detecting corrosion film quantity

Publications (1)

Publication Number Publication Date
JPS62132105A true JPS62132105A (en) 1987-06-15

Family

ID=17513216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272390A Pending JPS62132105A (en) 1985-12-05 1985-12-05 Apparatus for detecting corrosion film quantity

Country Status (1)

Country Link
JP (1) JPS62132105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483153A (en) * 1990-07-26 1992-03-17 Hitachi Ltd Corrosion detecting system and water quality control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483153A (en) * 1990-07-26 1992-03-17 Hitachi Ltd Corrosion detecting system and water quality control system

Similar Documents

Publication Publication Date Title
Coffin Jr et al. Apparatus for study of effects of cyclic thermal stresses on ductile metals
JPS62132105A (en) Apparatus for detecting corrosion film quantity
FR2417096A1 (en) DEVICE FOR CORROSION MONITORING
Wilde Technique for Studying the Kinetics of Intergranular Crack Nucleation on AISI Type 304 Stainless Steel in Oxygenated Water at 289 C
US3620068A (en) Quench calorimeter
Takamatsu et al. Evaluation of SG crevice environment by directly sampled method using an on-site autoclave facility
US20050155678A1 (en) Method of nondestructive examination of chromium-containing nickel-based alloy for grain boundary corrosion and examination apparatus
Brehm Effect of oxygen in sodium upon radionuclide release from austenitic stainless steel
Baum Experimental Evaluation of Tude Support Plate Crevice Chemistry
Davis Development of a rapid-operating plugging meter
JPS62165146A (en) Apparatus for monitoring quantity of corrosion oxide film
Rothwell Corrosion monitoring: some techniques and applications
Thibault et al. A heat flux meter to determine the local boiling heat flux density during a quenching experiment
McMurtrey et al. MRS: Surveillance Test Article Development
Yatabe et al. Fast reactor fuel assembly thermal hydraulic development program: sodium heat transfer
Huntley SNAP-8 Corrosion program Summary report
Richman Continuous On-reactor Measurement of Instantaneous Corrosion Rates
Strain et al. RESULTS OF IRRADIATION OF NICKEL-REFLECTOR TEST SUBASSEMBLIES.
Braun Review of in-service surveillance methods applicable to liquid sodium piping
Jaske et al. 14. NEW OR EMERGING METHODS FOR INSPECTION AND LIFE ASSESSMENT
Hsu et al. Reinforcement of perforated metal sheets by thermal shock with laser beams: Experimental and numerical investigations have demonstrated the value of applying thermal shocking on perforated metal sheets in order to reduce the severity of the stress concentration at the hole, and hence to improve the fatigue life of the sheets
윤재영 Development of On-Line Monitoring System for Cracking in Nuclear Piping based on Equipotential Switching Array Probe Direct Current Potential Drop
Mueller Relationships among the metallurgical condition, hardness, and the electrical conductivity of aluminum alloys
Kupperman et al. Acoustic emission from fuel pellets in a simulated reactor environment
Forbes et al. Scoping Emergency Cooling Heat Transfer (SECHT) Test Project