JPS62131449A - Electromagnetic deflectional distortion corrector - Google Patents

Electromagnetic deflectional distortion corrector

Info

Publication number
JPS62131449A
JPS62131449A JP27083685A JP27083685A JPS62131449A JP S62131449 A JPS62131449 A JP S62131449A JP 27083685 A JP27083685 A JP 27083685A JP 27083685 A JP27083685 A JP 27083685A JP S62131449 A JPS62131449 A JP S62131449A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic flux
distortion correction
magnetic material
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27083685A
Other languages
Japanese (ja)
Inventor
Seiji Watabe
渡部 誠二
Masanori Sasaki
佐々木 正憲
Yotaro Toyoshima
豊島 陽太郎
Koichi Shibuya
幸一 渋谷
Tsutomu Maeda
努 前田
Kazuo Yokoyama
横山 効生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP27083685A priority Critical patent/JPS62131449A/en
Publication of JPS62131449A publication Critical patent/JPS62131449A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration in the quality of an image, by disposing a non-ferromagnetic material of a negative temperature coefficient for the saturated magnetic flux density, near a distortion correcting permanent magnet. CONSTITUTION:A distortion correcting permanent magnet 2 is attached to a support frame 8 by screw securing or the like. The magnet 2 is made of a magnetic material of high coercive force and residual magnetic flux density and stable structure, preferably made of a barium ferrite. A non-ferromagnetic material 4 is disposed near the magnet 2 nearly in parallel therewith. The material 4 is preferably a non-ferromagnetic steel such as an Ni-Zn ferrite and an Ni-Fe alloy. As a result, the magnetic flux phix in a space is made constant regardless of the change in the temperature, to enhance the quality of an image.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は陰極線管(CRT)ディスプレイ装置の偏向歪
補正装置に関し、特に永久磁石を使用する偏向歪補正装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a deflection distortion correction device for a cathode ray tube (CRT) display device, and more particularly to a deflection distortion correction device using a permanent magnet.

〔従来技術〕[Prior art]

CRTディスプレイ装置は、そのブラウン管のネック部
に偏向ヨークを装着し、電子銃から発生した電子ビーム
をこの偏向ヨークにより偏向する。
In a CRT display device, a deflection yoke is attached to the neck of the cathode ray tube, and the electron beam generated from the electron gun is deflected by the deflection yoke.

偏向された電子ビームは、CRT(陰極線管)管壁内面
のけい光面を発光させる。偏向ヨークには水平・垂直偏
向コイルが巻装され、この水平・垂直偏向コイルに電流
を流すことによって発生する偏向磁界が電子ビームを偏
向させる。偏向磁界解仕度と偏向歪の両立性のため、歪
磁界を発生させる例が多い。偏向磁界が均一でないと、
電子ビームは異なる場所で異なる方向に偏向される。そ
のため、画面(ラスタ)の歪みを生ずる。またカラーC
RTの場合3本の電子銃から発生した各電子ビームがけ
い光面中央で正しく集中するよう、各電子銃をCRTの
管軸に対し角度付ける。このため、各電子ビームは異な
る角度で偏向磁界に入射する。各電子ビームは異なる角
度で偏向磁界に入射するので、各電子ビームはそれぞれ
異なる偏向を受け、けい光面で色ずれを起こす。この種
の画面歪および色ずれは、例えば偏向中心と画面の曲率
中心とのずれによっても生じる。
The deflected electron beam causes a fluorescent surface on the inner surface of a CRT (cathode ray tube) tube wall to emit light. Horizontal and vertical deflection coils are wound around the deflection yoke, and a deflection magnetic field generated by passing current through the horizontal and vertical deflection coils deflects the electron beam. In order to achieve compatibility between deflection magnetic field resolution and deflection distortion, there are many cases in which a distorted magnetic field is generated. If the deflection magnetic field is not uniform,
The electron beam is deflected in different directions at different locations. Therefore, distortion of the screen (raster) occurs. Also color C
In the case of RT, each electron gun is angled with respect to the tube axis of the CRT so that the electron beams generated from the three electron guns are properly focused at the center of the fluorescent surface. Therefore, each electron beam is incident on the deflection magnetic field at a different angle. Since each electron beam is incident on the deflecting magnetic field at a different angle, each electron beam is deflected differently, causing a color shift in the phosphor plane. This type of screen distortion and color shift is also caused by, for example, a shift between the center of deflection and the center of curvature of the screen.

これらの歪を除去するために電子ビームの補正を行う必
要があり、大別して2種の方式が用いられる。1つは電
子回路方式であり、これは水平。
In order to remove these distortions, it is necessary to correct the electron beam, and two types of methods are used. One is the electronic circuit method, which is horizontal.

垂直偏向コイルに流す電流を画面の縦横の各座標位亀ご
とに最適値に調整するというもので・ある。
The current flowing through the vertical deflection coil is adjusted to the optimum value for each coordinate position in the vertical and horizontal directions of the screen.

他の1つは、永久磁石方式であり、これは、歪補正永久
磁石を偏向ヨークの近傍に配置して、その空間発生磁界
により歪を補正する。特に高精度の歪補正を行う場合に
は、2つの方式の結合方式が用いられる。本発明はこの
永久磁石方式に関する。
The other method is a permanent magnet method, in which a distortion correction permanent magnet is placed near the deflection yoke, and distortion is corrected by the magnetic field generated in the space. Particularly when performing highly accurate distortion correction, two combination methods are used. The present invention relates to this permanent magnet system.

第5図〜第7図および本発明の効果を例示する第3図を
参照しながら永久磁石方式の問題点を説明する。
Problems with the permanent magnet system will be explained with reference to FIGS. 5 to 7 and FIG. 3, which illustrates the effects of the present invention.

第5図は従来のCRTディスプレイ装置のブラウン管の
ネック部を示す断面図である。また第6図はCRT全体
を示す断面図である。電子銃から発生した電子ビーム4
4は、偏向ヨーク46により偏向・走査されCRTWq
40のけい光面を発光させる。偏向磁界が一様でないこ
と等により、先に述べたようにこの電子ビーム44はけ
い光面周辺で歪む傾向がある。そのため画面は、たとえ
ば第7図(a)のように糸巻き形に歪む。第7図色)の
ような画面を得るためには、電子ビーム44を補正する
必要があり、これは第5図の歪補正永久磁石34により
行っていた。ところが、この歪補正永久磁石方式では、
たとえば長時間CRTディスプレイ装置を使用する時な
どに、画面が、第7図Cb)に示される形から元の第7
図(a)に示される糸巻き形に歪むという問題点があっ
た。この様子は、本発明の効果を示す第3図(a)を参
照されたい。現在CRTディスプレイ装置の高精細度化
に伴い画像品質を高めることが要求されており、この種
の画面歪は側底許容できない。
FIG. 5 is a sectional view showing the neck portion of a cathode ray tube of a conventional CRT display device. Further, FIG. 6 is a sectional view showing the entire CRT. Electron beam 4 generated from an electron gun
4 is deflected and scanned by the deflection yoke 46, and the CRTWq
40 fluorescent surfaces are made to emit light. As mentioned above, this electron beam 44 tends to be distorted around the fluorescent surface due to the non-uniformity of the deflection magnetic field. Therefore, the screen is distorted into a pincushion shape, as shown in FIG. 7(a), for example. In order to obtain a screen like that shown in FIG. 7 (color), it is necessary to correct the electron beam 44, and this is done using the distortion correction permanent magnet 34 shown in FIG. However, with this distortion-corrected permanent magnet method,
For example, when using a CRT display device for a long time, the screen may change from the shape shown in Figure 7Cb) to the original
There was a problem in that it was distorted into the pincushion shape shown in Figure (a). For this situation, please refer to FIG. 3(a) which shows the effect of the present invention. Currently, as the definition of CRT display devices becomes higher, there is a demand for higher image quality, and this type of screen distortion cannot be tolerated.

〔発明の目的〕[Purpose of the invention]

したがって、本発明の主たる目的は、CRTディスプレ
イ装置の画倹品質の劣化を防止することである。
Therefore, a primary objective of the present invention is to prevent deterioration of the picture quality of a CRT display device.

本発明の他の目的は、以上の目的を達成することのでき
ろ1ド磁偏向歪補正装訂を提供することである。
Another object of the present invention is to provide a single-mode magnetic deflection distortion correction system capable of achieving the above objects.

〔発明の概要〕[Summary of the invention]

本発明者は、この種の画像品質の劣化が、歪補正永久磁
石から発生する磁界の温度変化によるものとの知見を得
て、この知見に基づいて本発明を創作した。本発明の一
実施例を示す第1図および本発明の原理を示す第4図を
参照しながら本発明の詳細な説明する。
The present inventor obtained the knowledge that this type of image quality deterioration is caused by temperature changes in the magnetic field generated from the distortion correction permanent magnet, and created the present invention based on this knowledge. The present invention will be described in detail with reference to FIG. 1 showing an embodiment of the invention and FIG. 4 showing the principle of the invention.

第1図(a)を参照するに、CRTディスプレイ装置の
ブラウン管のネック部の上半分の断面図が示される。下
半分も同様とする。このネック部には偏向ヨーク12が
支持枠8を介して装着される。
Referring to FIG. 1(a), a sectional view of the upper half of the neck of a cathode ray tube of a CRT display device is shown. The same goes for the lower half. A deflection yoke 12 is attached to this neck portion via a support frame 8.

偏向ヨーク12には水平・垂直偏向コイルが巻装される
亥持枠8を介してブラウン管壁周囲には歪補正永久磁石
2が装着される。本発明では、この歪補正永久磁石2に
近接して飽和磁束密度の温度係数が負の軟磁性材料4を
配置することを特徴とする。歪補正永久磁石2と軟磁性
材料4との配置の様子を第1図(b)および第4図に示
す。図から明らかな通り、軟磁性材料4を歪補正永久磁
石2に近接してほぼ平行に配置する。
A distortion correction permanent magnet 2 is attached to the deflection yoke 12 around the wall of the cathode ray tube via a holding frame 8 around which horizontal and vertical deflection coils are wound. The present invention is characterized in that a soft magnetic material 4 having a negative temperature coefficient of saturation magnetic flux density is disposed close to the distortion correction permanent magnet 2. The arrangement of the distortion correction permanent magnet 2 and the soft magnetic material 4 is shown in FIG. 1(b) and FIG. 4. As is clear from the figure, the soft magnetic material 4 is disposed close to and substantially parallel to the strain correction permanent magnet 2.

〔発明の詳細な説明〕[Detailed description of the invention]

発明の原理 第2図〜第4図を参照しながら本発明の詳細な説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to FIGS. 2 to 4.

歪補正永久磁石の材料としては、保持力が高く、残留磁
束密度が高く、組織的に安定であることが要求される。
Materials for strain-correcting permanent magnets are required to have high coercive force, high residual magnetic flux density, and structural stability.

この種の磁性体にはたとえばBaフェライト(MO−6
Fe203 、M=Ba)が望まし〈従来から使用され
ている。Ba 7エライトは、いわゆる7工リ磁性体で
あり、温度一定の条件の下では外部の空間に一定の磁力
線を放出する。電子銃から発生した電子ビームは、この
磁力線による磁界により補正されることになる。ところ
が温度が変化すれば、B&フェライトの磁化状態が変化
し、そのため外部の空間の磁力線が変化して外部の空間
の磁界の強さが変化する。磁力線を定量的に表わすため
に通常は磁束密度〔単位はWb/m”)が使用され、第
4図の歪補正永久磁石の断面30の断面積を人。〔m!
〕とし、歪補正永久磁石から放出される磁力線の磁束密
度をBoとすれば、歪補正永久磁石から発生する磁束φ
□は、 φ =  FmA、TI(Wb)    (1)となる
Examples of this type of magnetic material include Ba ferrite (MO-6
Fe203, M=Ba) is desirable (and has been conventionally used). Ba 7 elite is a so-called 7-magnetic material, and emits certain lines of magnetic force into the external space under conditions of constant temperature. The electron beam generated from the electron gun is corrected by the magnetic field created by these lines of magnetic force. However, if the temperature changes, the magnetization state of B & ferrite changes, and as a result, the lines of magnetic force in the outside space change, and the strength of the magnetic field in the outside space changes. Magnetic flux density (unit: Wb/m") is usually used to quantitatively represent lines of magnetic force.
], and if Bo is the magnetic flux density of the lines of magnetic force emitted from the strain-compensated permanent magnet, then the magnetic flux φ generated from the strain-compensated permanent magnet is
□ becomes φ = FmA, TI(Wb) (1).

本発明者は、永久磁石方式におけるCRTディスプレイ
装置の先の画面歪が、この発生磁束φmの温度変化によ
るものとの知見を得て、歪補正永久磁石に近接して軟磁
性材料を配置した。以下歪補正永久磁石2および軟磁性
材料4の作用・条件等を説明する。
The inventor of the present invention found that the screen distortion at the end of a CRT display device using a permanent magnet method is caused by a temperature change in the generated magnetic flux φm, and arranged a soft magnetic material close to the distortion correction permanent magnet. The effects, conditions, etc. of the distortion correction permanent magnet 2 and the soft magnetic material 4 will be explained below.

軟磁性材料4は、磁路断面積を温度補償に必要な最小限
に設計しておけば、歪補正永久磁石から発生する磁界に
より容易に磁気飽和まで磁化される。
The soft magnetic material 4 can be easily magnetized to magnetic saturation by the magnetic field generated from the strain correction permanent magnet if the magnetic path cross-sectional area is designed to be the minimum required for temperature compensation.

この場合の磁気飽和した時の軟磁性材料の磁束密度を飽
和磁束密度と呼び、記号Bs (wb/mt)で表わす
。軟磁性材料4の断面28の断面積を磁路断面積hmc
m!〕 とすれば、軟磁性材料に吸収される磁束φ3は
、 φ、 =n m A @ (W b )      (
21となる。空間の磁束をφ、とすると、第4図から明
らかなように φ工= φ。−φ、  (Wb)      +31が
成り立つ。この空間の磁束φ工が、電子銃から発生した
電子ビームを補正することになる。
In this case, the magnetic flux density of the soft magnetic material when magnetically saturated is called the saturation magnetic flux density, and is expressed by the symbol Bs (wb/mt). The cross-sectional area of the cross-section 28 of the soft magnetic material 4 is defined as the magnetic path cross-sectional area hmc
m! ] Then, the magnetic flux φ3 absorbed by the soft magnetic material is φ, = nm A @ (W b ) (
It will be 21. Assuming that the magnetic flux in space is φ, as is clear from Figure 4, φ = φ. −φ, (Wb) +31 holds true. The magnetic flux φ in this space corrects the electron beam generated from the electron gun.

歪補正永久磁石の材料としては前述のようにたとえばB
a 7エライトが好ましく、この場合歪補正永久磁石は
温度が変化するとその発生する磁束が変化する。第2図
は、歪補正永久磁石から発生する磁束φ。と温度τ(’
C)との関係を示す。第2図から明らかな通り、歪補正
永久磁石から発生する磁束φ。は、温度が上昇するにつ
れて減少する。このことを歪補正永久磁石の発生磁束は
負の温度係数をもつという。ここで、温度の変化にかか
わらず空間の磁束φ工が変化しない条件を式(3)から
導出すると、式(3)の両辺を温度Tで微分すると dT       dT      dTとなり、左辺
のdφx/dT がゼロとなればよいのであるから、条
件は dT   dT となる。先に述べたように、歪補正永久磁石の発生磁束
φ□は負の温度係数をもつのであるからである。式(5
)と式(6)から また、式(2)を式(力に代入して dT 磁路断面積A、は正数であり、また温度に依存せず一定
とすれば となる。先の式(5)および式(9)が軟磁性材料に要
求される条件となる。B、は軟磁性材料の飽和磁束密度
であるから、式(9)は物理的にいえば、軟磁性材料の
飽和磁束密度B、は温度が上昇するにつれて減少しなけ
ればならない。このことを軟磁性材料の飽和磁束密度は
負の温度係数をもつという。
As mentioned above, the material for the distortion-correcting permanent magnet is, for example, B.
A7 elite is preferable, and in this case, the magnetic flux generated by the strain-correcting permanent magnet changes as the temperature changes. Figure 2 shows the magnetic flux φ generated from the distortion-correcting permanent magnet. and temperature τ('
C) shows the relationship. As is clear from Fig. 2, the magnetic flux φ generated from the distortion-correcting permanent magnet. decreases as temperature increases. This means that the magnetic flux generated by the strain-correcting permanent magnet has a negative temperature coefficient. Here, if we derive the condition that the magnetic flux φ in the space does not change regardless of the temperature change from equation (3), if we differentiate both sides of equation (3) with respect to temperature T, we get dT dT dT, and dφx/dT on the left side is Since it only needs to be zero, the condition is dT dT. This is because, as described above, the magnetic flux φ□ generated by the distortion correction permanent magnet has a negative temperature coefficient. Formula (5
) and Equation (6), we can also substituting Equation (2) into Equation (by substituting force into dT, the magnetic path cross-sectional area A is a positive number, and if it is constant without depending on temperature, we get the above equation. (5) and equation (9) are the conditions required for soft magnetic materials.Since B is the saturation magnetic flux density of the soft magnetic material, equation (9) is physically speaking the saturation magnetic flux density of the soft magnetic material. The magnetic flux density B must decrease as the temperature increases. This is said to mean that the saturation magnetic flux density of a soft magnetic material has a negative temperature coefficient.

また式(5)に式(2)を代入して dT         dT dB。Also, by substituting equation (2) into equation (5), dT dT dB.

=As□     叫 dT 左辺のdφm/dTは歪補正永久磁石に使われる磁性体
により既知である。式αGで、軟磁性材料が決決りその
磁路断面積A、は式α1で決定される。
=As□ dT dφm/dT on the left side is known depending on the magnetic material used in the distortion correction permanent magnet. The soft magnetic material is determined by the formula αG, and its magnetic path cross-sectional area A is determined by the formula α1.

実施例の説明 第1図を参照しながら本発明の詳細な説明する。Description of examples The present invention will be described in detail with reference to FIG.

偏向ヨーク16は仮焼成された粉末磁性材料(たとえば
フェライト)に適当なバインダーを混練りし加圧・成形
しその後焼結し、水平・垂直偏向コイル16を巻装して
得られる。偏向ヨーク12は、支持枠8を介してブラウ
ン管のネック邪に装着される。歪補正永久磁石2は、た
とえばねじ止め等により支持枠8に装着される。歪補正
永久磁石2の材料としては、保磁力が高く、残留磁束密
度が高く、組織的に安定な磁性体、好ましくは Ba 
 7エライ) (MO・6FetO8,M= B &)
を使用する。この歪補正永久磁石2に近接して、これと
ほは平行に軟磁性材料4を配置する。軟磁性材料4とし
ては、好ましくはNi−Zn7エライ) (MO−F 
@2 o、 、 M=N i、Zn)またはl’Ll−
Fs金合金の整磁鋼を使用する。第1置市)に示される
ように、歪補正永久磁石2と軟磁性材料4との組合せ部
材3を支持枠8の上・下、左・右のほぼ対称位置に装着
する。表1には、歪補正永久磁石2と軟磁性材料4の形
状・構成材料・装着位置の組合せ実施例A2〜&4を示
す。表1で、厘1は比較のための従来例を示す。
The deflection yoke 16 is obtained by kneading a pre-sintered powdered magnetic material (for example, ferrite) with a suitable binder, pressurizing and shaping the material, sintering it, and then winding the horizontal and vertical deflection coils 16. The deflection yoke 12 is attached to the neck of the cathode ray tube via the support frame 8. The distortion correction permanent magnet 2 is attached to the support frame 8 by screwing, for example. The material for the strain-correcting permanent magnet 2 is a magnetic material that has high coercive force, high residual magnetic flux density, and is structurally stable, preferably Ba.
7 Eli) (MO・6FetO8, M= B &)
use. A soft magnetic material 4 is placed close to and parallel to the distortion correction permanent magnet 2. The soft magnetic material 4 is preferably Ni-Zn7 (MO-F
@2 o, , M=N i, Zn) or l'Ll-
Fs gold alloy magnetic shunt steel is used. As shown in Fig. 1), the combination member 3 of the strain correction permanent magnet 2 and the soft magnetic material 4 is mounted at approximately symmetrical positions on the upper and lower, left and right sides of the support frame 8. Table 1 shows examples A2 to &4 of combinations of the shapes, constituent materials, and mounting positions of the distortion correction permanent magnet 2 and the soft magnetic material 4. In Table 1, Rin 1 indicates a conventional example for comparison.

〔発明め作用効果〕[Invention effect]

以上説明の通り歪補正永久磁石の発生磁束の温度変化は
、軟磁性材料により保償され、その結果空間の磁束φ工
は温度の変化にかかわらず一定となり、温度変化による
画面の歪の変化がほぼ除去され、CRTディスプレイ装
置の画像品質を向上させることができる。表1を参照す
ると、画面の上・下、左・右の各最大張長さの平均値△
X、△yの温度変化の比較において、本発明による実施
例(42〜黒4)は、従来例(&1)に比べ向上してい
ることが理解されよう。
As explained above, temperature changes in the magnetic flux generated by the distortion-correcting permanent magnet are compensated for by the soft magnetic material, and as a result, the magnetic flux φ in the space remains constant regardless of temperature changes, and the screen distortion changes due to temperature changes. It can be almost eliminated and the image quality of the CRT display device can be improved. Referring to Table 1, the average value of the maximum tension length at the top, bottom, left, and right of the screen is △
In comparing the temperature changes of X and Δy, it will be understood that the examples according to the present invention (42 to black 4) are improved compared to the conventional example (&1).

以上説明の通り、本発明の技債思想から逸脱することな
く様々の応用・変更が可能であることは当業者には明ら
かであろう。たとえば、軟磁性材料としてNi−Zn7
エライト又は整磁鋼を例示したけれども、本発明は飽和
磁束密度B、が負の温度係数をもつ上記以外の軟磁性材
料によっても実現可能である。また歪補正永久磁石およ
び軟磁性材料の形状、配vi関係、装着位置、装着数な
どは必要に応じ変更できることは明らかであろう。
As explained above, it will be obvious to those skilled in the art that various applications and modifications can be made without departing from the technical bond concept of the present invention. For example, Ni-Zn7 is used as a soft magnetic material.
Although ELITE or magnetic shunt steel is shown as an example, the present invention can also be realized using soft magnetic materials other than those mentioned above whose saturation magnetic flux density B has a negative temperature coefficient. It is also obvious that the shape, VI arrangement, mounting position, number of mounting, etc. of the distortion correction permanent magnet and the soft magnetic material can be changed as necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図4m)は本発明による電磁偏向歪補正装置の縦断
面図である。第1図(b)は第1図(&)のA−A軸線
から見た場合の横断面図である。第2図は本発明におけ
る歪補正永久磁石の発生磁束φ。の温度特性を示すグラ
フ図である。第3図(a)、(b)は本発明による1!
磁偏向歪補正装置の作用効果を示す画面歪の変化図であ
る。第4図は本発明の原理を示す模式図である。第5図
は従来技術による永久磁石方式のCRTディスプレイ装
置のブラウン管のネック部を示す断面図である。第6図
は従来技術によるブラウン管の全体を示す断面図である
。第7図(a)は糸巻き形に歪んだ画面を示す概念図で
あり、第7図(b)は望ましい画面の形状を示す概念図
である。 以下図中の各参照番号が示す名称を以下に挙げる。なお
図で同一参照番号は同一部位を示すものとする。 2:歪補正永久磁石 4:(温度保償用)軟磁性材料 8:支持枠 10:陰極線管(CRT) 12:偏向目−り 13:垂直偏向コイル 16:水平偏向コイル 24:歪補正永久磁石から発生する磁束φ□26:空間
の磁束φ工 28:軟磁性材料の磁路断面積A3 30:歪補正永久礎石の断面積Am 32:軟磁性材料に吸収される磁束φ。 54:歪補正永久磁石 38:支持枠 40:陰極線管(CRT)の管壁 42:陰極線管 4A:vL子ビーム 46:偏向ヨーク t−−)。 代理人の氏名 倉 内 基 弘  ; 、/=−一\ 同      風  間  弘  志(′第1図 (a )         (b ) 第2図 第3図 ((1)         (b) ^v1 第4図 第5図 第7図 (Q)      (b)
FIG. 1 (4m) is a longitudinal sectional view of the electromagnetic deflection distortion correction device according to the present invention. FIG. 1(b) is a cross-sectional view when viewed from the A-A axis in FIG. 1(&). FIG. 2 shows the magnetic flux φ generated by the distortion-correcting permanent magnet in the present invention. It is a graph diagram showing the temperature characteristics of. FIGS. 3(a) and 3(b) show 1! according to the present invention!
It is a change diagram of screen distortion showing the effect of the magnetic deflection distortion correction device. FIG. 4 is a schematic diagram showing the principle of the present invention. FIG. 5 is a sectional view showing the neck portion of a cathode ray tube of a conventional permanent magnet type CRT display device. FIG. 6 is a sectional view showing the entire conventional cathode ray tube. FIG. 7(a) is a conceptual diagram showing a screen distorted into a pincushion shape, and FIG. 7(b) is a conceptual diagram showing a desirable screen shape. The names indicated by each reference number in the figure are listed below. Note that the same reference numbers in the figures indicate the same parts. 2: Distortion correction permanent magnet 4: Soft magnetic material (for temperature guarantee) 8: Support frame 10: Cathode ray tube (CRT) 12: Deflection eye 13: Vertical deflection coil 16: Horizontal deflection coil 24: Distortion correction permanent magnet Magnetic flux generated from φ□ 26: Magnetic flux in space φ work 28: Cross-sectional area of magnetic path of soft magnetic material A3 30: Cross-sectional area of distortion correction permanent cornerstone Am 32: Magnetic flux φ absorbed by soft magnetic material. 54: Distortion correction permanent magnet 38: Support frame 40: Cathode ray tube (CRT) tube wall 42: Cathode ray tube 4A: vL beam 46: Deflection yoke t--). Name of agent: Motohiro Kurauchi; /=-1\ Hiroshi Kazama ('Figure 1 (a) (b) Figure 2 Figure 3 ((1) (b) ^v1 Figure 4 Figure 5 Figure 7 (Q) (b)

Claims (5)

【特許請求の範囲】[Claims] (1)CRTディスプレイ装置のブラウン管壁周囲に配
置される複数個の永久磁石と、 永久磁石とほぼ平行に近接して配置され、飽和磁束密度
の温度係数が負である軟磁性材料とより成る電磁偏向歪
補正装置。
(1) An electromagnetic device consisting of a plurality of permanent magnets placed around the cathode ray tube wall of a CRT display device, and a soft magnetic material that is placed almost parallel to and close to the permanent magnets and has a negative temperature coefficient of saturation magnetic flux density. Deflection distortion correction device.
(2)軟磁性材料の飽和磁束密度の温度係数と同軟磁性
材料の磁路断面積の積が永久磁石の発生磁束の温度係数
とほぼ等しい特許請求の範囲第1項記載の電磁偏向歪補
正装置。
(2) Electromagnetic deflection distortion correction according to claim 1, wherein the product of the temperature coefficient of the saturation magnetic flux density of the soft magnetic material and the magnetic path cross-sectional area of the soft magnetic material is approximately equal to the temperature coefficient of the generated magnetic flux of the permanent magnet. Device.
(3)前記永久磁石の材料はバリウム(Ba)フェライ
トである特許請求の範囲第1項記載の電磁偏向歪補正装
置。
(3) The electromagnetic deflection distortion correction device according to claim 1, wherein the material of the permanent magnet is barium (Ba) ferrite.
(4)前記軟磁性材料はニッケル−亜鉛(Ni−Zn)
フェライトである特許請求の範囲第1項記載の電磁偏向
歪補正装置。
(4) The soft magnetic material is nickel-zinc (Ni-Zn)
The electromagnetic deflection distortion correction device according to claim 1, which is made of ferrite.
(5)前記軟磁性材料は整磁鋼である特許請求の範囲第
1項記載の電磁偏向歪補正装置。
(5) The electromagnetic deflection distortion correction device according to claim 1, wherein the soft magnetic material is magnetic shunt steel.
JP27083685A 1985-12-03 1985-12-03 Electromagnetic deflectional distortion corrector Pending JPS62131449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27083685A JPS62131449A (en) 1985-12-03 1985-12-03 Electromagnetic deflectional distortion corrector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27083685A JPS62131449A (en) 1985-12-03 1985-12-03 Electromagnetic deflectional distortion corrector

Publications (1)

Publication Number Publication Date
JPS62131449A true JPS62131449A (en) 1987-06-13

Family

ID=17491685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27083685A Pending JPS62131449A (en) 1985-12-03 1985-12-03 Electromagnetic deflectional distortion corrector

Country Status (1)

Country Link
JP (1) JPS62131449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362139A (en) * 1986-09-02 1988-03-18 Sony Corp Deflection yoke

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836172U (en) * 1971-08-30 1973-04-28
JPS5455164A (en) * 1977-10-12 1979-05-02 Hitachi Ltd Cathode-ray tube of electromagnetic focusing type
JPS5648039A (en) * 1979-09-28 1981-05-01 Hitachi Ltd Camera tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836172U (en) * 1971-08-30 1973-04-28
JPS5455164A (en) * 1977-10-12 1979-05-02 Hitachi Ltd Cathode-ray tube of electromagnetic focusing type
JPS5648039A (en) * 1979-09-28 1981-05-01 Hitachi Ltd Camera tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362139A (en) * 1986-09-02 1988-03-18 Sony Corp Deflection yoke

Similar Documents

Publication Publication Date Title
JPS62131449A (en) Electromagnetic deflectional distortion corrector
US5923131A (en) Compensating device for raster distortion of CRT
US6326745B1 (en) Cathode-ray tube apparatus
US5818158A (en) Deflection yoke with pivoting correcting magnet
US7119485B2 (en) Cathode-ray tube apparatus
US20060273708A1 (en) Display device comprising a deflection unit and a deflection unit for a display device
JPH02204947A (en) In-line type color deflection yoke device
US20050057694A1 (en) Color picture tube apparatus
JP3402073B2 (en) Picture tube device
US5736914A (en) Demagnetizing device for a cathode ray tube
US6630803B1 (en) Color display device having quadrupole convergence coils
US20050140263A1 (en) Color picture tube apparatus
KR100361836B1 (en) Deflection yoke
JP3436002B2 (en) Color picture tube equipment
KR100422047B1 (en) Deflection yoke
JPH07302557A (en) Deflection yoke
JPH0743931Y2 (en) Deflection yoke
KR100233984B1 (en) Distortion compensation device of deflection yoke
JP2886614B2 (en) Color cathode ray tube
US20070222359A1 (en) Color cathode-ray tube apparatus
KR20010084389A (en) Deflection yoke
JPS63266731A (en) Color crt display device
JPS63294656A (en) Deflection yoke
JPS62290034A (en) Magnetic transfer meethod for cathode-ray tube
JPH05234533A (en) Color picture tube