JPS62131142A - Deflection of airflow direction of air-conditioning machine - Google Patents

Deflection of airflow direction of air-conditioning machine

Info

Publication number
JPS62131142A
JPS62131142A JP60271818A JP27181885A JPS62131142A JP S62131142 A JPS62131142 A JP S62131142A JP 60271818 A JP60271818 A JP 60271818A JP 27181885 A JP27181885 A JP 27181885A JP S62131142 A JPS62131142 A JP S62131142A
Authority
JP
Japan
Prior art keywords
air
temperature
compressor
motor
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60271818A
Other languages
Japanese (ja)
Inventor
Yasuhiko Ebata
江端 泰彦
Yasunori Himeno
姫野 保則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60271818A priority Critical patent/JPS62131142A/en
Publication of JPS62131142A publication Critical patent/JPS62131142A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the comfortableness of a living space upon starting heating operation by a method wherein the revolving number of a compressor is increased while the direction of ventilating air is directed to norizontal or upward direction and is branched to left and right before the temperature of ventilating air arrives at a predetermined value, however, the rotating number of the compressor is reduced while the direction of ventilating air is directed to downward direction and is branched to left and right when the temperature of ventilating air has arrived at the predetermined value. CONSTITUTION:When the temperature of blow-off air which is detected by a thermistor 21 is lower than a set temperature, a revolving number variable compressor 17 is driven at large rotating number, a central motor 3 is turned right to drive an upper and lower deflecting vane 1 to horizontal position, a left motor 9a is turned right to drive a left deflecting vane 5a to the left side and a right motor 9b is turned left to drive a right deflecting vane 5b to the right side thereof. Accordingly, blow-off sir becomes horizontally branched airflow. When the temperature of the thermistor 21 is higher than the set temperature, the compressor 17 is driven at low revolving number, the central motor 3 is turned left, the left motor 9b is turned left and stopped, whereby the blow-off air becomes downward branched airflow.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和機の吹き出し方向を制犯lする風向
偏向方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a wind direction deflection method for controlling the blowing direction of an air conditioner.

従来の技術 現在まで、居住空間の・決適性の向上を図るfニジ)に
空気調和機の風向1扁向方法を((hえた装置として、
種々の装置が考えられてきた。
Conventional Technology Until now, the method of blowing air conditioners in one direction has been used to improve the suitability of living spaces.
Various devices have been considered.

例えば、吹出口を水平方向とif直右方向3!にr了し
、吹き出し温度が設定温度よりも低い時には水平方向に
吹き出し、設定温度、よりも高い時には垂直方向に吹き
出す装置がある。(特公昭55−10813月公報) すなわちこの第1の従来例の構成は、いわゆるコール1
!ドラフトを・防止するもので、暖旧2III果を高め
ることができる。
For example, if the air outlet is horizontal and right-hand direction 3! There is a device that blows out horizontally when the blowing temperature is lower than the set temperature, and blows vertically when it is higher than the set temperature. (Japanese Patent Publication No. 10813/1983) In other words, the configuration of this first conventional example is the so-called call 1
! It prevents drafts and can increase the temperature and temperature.

まf、:さらに、広い居住空間内の快j魯filを向上
させる。rコめに、左右偏向羽根と上下9111向羽根
を一定周1υ1でスウィングさせる装置がある。3 (
米国特許第3,257,931号明細書) この第2の従来例を第11図、第12図に示す、っ同図
において、吹出II 101DrrlJ面部)こは、垂
1白方向に吹き出し空気を偏向する上下偏向羽根102
、水平方向に吹き出し空気を偏向7t′る左右偏向羽根
103,104が設けられている。そして上下偏向羽根
102は連結FR105a 、レバーアーム106aを
介してベローズ10了atこ接続されている。まtコ左
右偏向羽根103,104は、それぞれ連結機105b
、105c、レバーアーム106b、106cを介して
ベローズ107b。
Maf: Furthermore, it improves the comfort in a wide living space. On the other hand, there is a device that swings the left and right deflection blades and the top and bottom 9111 direction blades at a constant circumference of 1υ1. 3 (
(U.S. Pat. No. 3,257,931) This second conventional example is shown in FIGS. 11 and 12. Deflecting upper and lower deflection blades 102
, left and right deflection vanes 103 and 104 are provided for deflecting the blown air 7t' in the horizontal direction. The upper and lower deflection blades 102 are connected to the bellows 10 via a coupling FR 105a and a lever arm 106a. The matco left and right deflection blades 103 and 104 are connected to the coupling machine 105b, respectively.
, 105c, bellows 107b via lever arms 106b, 106c.

107cに接続されている。また各ベローズ107a、
107b、107cにはそれぞれヒータ108a、10
8b、108cが巻かれている。109は)ニー<p 
108a 、108b、108cの通電ヲ制6A+する
マイクロスイッチである。
107c. In addition, each bellows 107a,
Heaters 108a and 10 are installed in 107b and 107c, respectively.
8b and 108c are wound. 109) Knee<p
This is a microswitch that controls the current flow of 108a, 108b, and 108c by 6A+.

上記構成において、ヒータ108a、108b。In the above configuration, heaters 108a and 108b.

108clこ通電を行4Cうこと;こ1士り・ベローズ
107a、107b、107cは伸び、このベローズ1
07bの伸びによりマイクロスイッチを動作させヒータ
108a  108b108c”−の1FTtを停止す
る。その結果、ベローズ107a、107b、107c
は冷却され縮むっ そしてこの動作を繰り返すことによf)吹き出し空気の
ゆらぎ効果を得ることができる。
108cl is energized 4C; the bellows 107a, 107b, and 107c are extended, and this bellows 1
The expansion of bellows 107b operates a microswitch to stop 1FTt of heaters 108a, 108b, and 108c''.
is cooled and contracted, and by repeating this operation f) the effect of fluctuating blown air can be obtained.

発明が解決しようとする問題点 しかしlcがら上記第1の従来構成では、単に垂直方向
の偏向制御しかできないので、例えば暖房時の冷風は直
接人体にあtこらないようにすることができるが、一方
向(+3iJ方向)への吹き出しとなるために居住空間
内の空気の移動が大きくなり、体感的には実際の室温以
下の温度に感じてしょうつまた下方吹き出しは直接人体
に3′)f:るtコめ、十分に吹き出し温度がLかつて
からでなければならず、持に運転開始から下方吹き出し
までに時間を?L、暖房q七t)が遅くなるという問題
を何していた。
Problems to be Solved by the Invention However, in the first conventional configuration, it is only possible to control the deflection in the vertical direction, so that, for example, cold air during heating can be prevented from directly hitting the human body. Since the air blows out in one direction (+3iJ direction), the movement of air in the living space becomes large, and the temperature feels lower than the actual room temperature, and the downward air blows directly into the human body. : Please note that the blowing temperature must be sufficiently low, and the time from the start of operation to the downward blowing must be long enough. L, what was the problem with the heating q7t) slowing down?

まfコ第2の従来構成では、水平方向への吹き出1、偏
向可能なものではあるが、吹き出し温度に無関係;こス
イングするたy)、持に暖房運転時のケト?)時間の短
縮や、効率的な暖房を行なうことかで\fζいという問
題を合しでいた。
In the second conventional configuration, the air outlet 1 can be deflected in the horizontal direction, but it is independent of the air outlet temperature; ) We combined the problems of shortening the time and performing efficient heating.

、・1り発明は、空気、凋和機を用いた居住空間の快適
外の向上、持に暖房運転開始時の快適性の向J:e図る
ことを目的とする。
The object of the invention is to improve the comfort level of a living space using an air cooling device, and to improve the comfort level at the start of heating operation.

問題点を解決するにめの手段 に記問題点ヤ解決するf:、1ノ)lこ本発明は、冷媒
を圧縮し、室内熱交換器、室内熱交換器とともに冷凍サ
イクルを構成する回転数可変型圧縮機と、前記室内熱交
換器を内部に有する室内ユニットと、この室内ユニット
に設けられ前記室内熱交換器を通過した空気j・吹き出
す吹出口とこの吹出[」から吹き出される空気を上下方
向に偏向する上下11司向羽根と、[]1J記吹田口の
左右fこ独立して設けられかつ11■記吹田口から吹き
出される空気を左右方向に分岐して制量する左右偏向上
(Rと、1)jJ記七下1114向羽限と左右偏向羽根
をそれぞれ往復駆動するLF駆動手段および左右駆動手
段と、前記回転数可変型圧縮機の回転数を変更する圧縮
画駆動手段と、rIil記吹出口からの送風温度;i 
f:は室温が所定値に到達したときに前記各駆動手段・
入出力する出力手段を備え、前記送風温度まtコは室温
が所定値に到達する以前は、前記回転数可変型圧縮機の
回転数を高くする。ととも;こ送風方向を水平方向もし
くは上方向でかつ左右に分岐した方向とし、if記送風
温度まtこは室温が所定1直をこ到達しにときに回私数
司変型圧縮機の回転数を低くするととも;こ送風方向を
F方向でかつ左右へ分岐しt二方向と(Cる、土うEこ
したものである。
The present invention compresses a refrigerant and improves the rotation speed of an indoor heat exchanger, which together with the indoor heat exchanger constitutes a refrigeration cycle. A variable compressor, an indoor unit having the indoor heat exchanger inside, an air outlet provided in this indoor unit that blows out the air that has passed through the indoor heat exchanger, and an air outlet that blows out the air that has passed through the indoor heat exchanger. Upper and lower 11 directing vanes that deflect in the vertical direction, and left and right deflectors that are independently provided on the left and right f of the Suita exit described in 1J and that branch and control the air blown out from the Suita exit described in 11 in the left and right directions. LF drive means and left and right drive means for reciprocating the direction blade limit and left and right deflection blades, respectively, and compressed image drive means for changing the rotation speed of the variable rotation speed compressor. and temperature of air from the air outlet; i
f: is when the room temperature reaches a predetermined value.
An input/output output means is provided, and the air blowing temperature increases the rotation speed of the variable rotation speed compressor before the room temperature reaches a predetermined value. With this, the blowing direction is horizontal or upward and branched to the left and right, and if the blowing temperature is the rotation of the deformed compressor, the air blowing temperature is determined by the number of times the room temperature reaches a predetermined shift. When the number is lowered, the air blowing direction is branched to the left and right in the F direction, and the two directions are (C and E).

作   用 上記手段により、本発明の空気調和筬の風向偏向力、去
は、吹き出し温度または室温かある設定温IWに4.−
っtコとき、回転数TiJ変型圧縮機の回転数を・低く
するとともjこ水平分流吹き出しから下方分流吹き出し
となるために、1唖り月運転時吹き出し温度が低い時f
こは、回転数r+J麦鼎圧縮機の回転数を高くすること
で吹き出し温度の上昇を促進させるとともに居住空間上
部のyネで空気の此合作用を行ない、体感的に寒さを感
じることなく暖房を行なうことができる。っまた吹き出
し温度が高い時には、回転数可変型圧縮機の回転数を低
くすることによl)吹き出し温度を抑えつつ居住空間下
部の周辺部から暖房を行なうjコめ、温度分布の向上、
快適性の向上を図るとともに低入力の効率的な暖房がで
きる。
Effect: By the above-mentioned means, the wind direction deflection force of the air conditioning reed of the present invention can be adjusted to a certain set temperature IW, which is either the outlet temperature or the room temperature. −
When the rotational speed of the TiJ modified compressor is lowered, the horizontal branch outlet becomes a downward branch outlet, so when the outlet temperature is low during one-month operation,
This is done by increasing the rotation speed of the r+J barley compressor to promote the rise in the temperature of the air outlet, and also to combine the air in the upper part of the living space, heating the room without making you feel cold. can be done. Furthermore, when the temperature of the air outlet is high, by lowering the rotation speed of the variable speed compressor, heating is performed from the periphery of the lower part of the living space while suppressing the temperature of the air outlet, improving temperature distribution,
This improves comfort and enables efficient heating with low input.

実施例 以下、本発明の一実施例による空気調和機の風向偏向方
法および同方法を備えた装置を図面を用いて説明する。
EXAMPLE Hereinafter, a method for deflecting the wind direction of an air conditioner and an apparatus equipped with the same method according to an example of the present invention will be described with reference to the drawings.

第1図は同装置の要部分解斜視図である。FIG. 1 is an exploded perspective view of the main parts of the device.

同図に示すように、吹き出し方向にイ)ずかにわ1”L
曲し、コアンダ効果によって上下の風向偏向を行う上下
偏向羽根1は、その長平方向にシャフト2jJ)有し、
このシャフト2は中モータ(ステッピングモータ)3に
接続されている。まtこ吹き出し空気をコアンダ効果に
よって水平方向に偏向才る左右偏向羽根は、連結Q4a
に連結、された左偏向羽根5aと、連結機4bに連結さ
オL f: Li偏向羽(145bとから+1ζ成され
ている。そして左偏向羽根5aは、羽根用レバーアーム
6a、ロ、ドアa、モータ用レバーアーム8aを介して
左モータ(ステッピングモータ)9aに接続I〜、右偏
向羽根5bは、羽根用レバーアーム6b、ロッド7b、
モータ用レバーアーム8bを介して右モータ(ステ、ノ
ビングモータ)9bに接続している。ここで左+tni
向羽根5aはこの左偏向羽根5aよりも左側に中心を有
するようにわずか〔こわん曲し、右偏向羽根5bはこの
右偏向羽根5bよりも右側に中心へ・有するようにわず
かにわん曲している。才なわT、後述する吹出口120
両側部13a ・13bとで[]11述のコアンダ現象
を発生させ、風向偏向を行うfコめである。前記コアン
ダ効果については、従来5より周知の技術であるtコめ
、説明を省略する。
As shown in the figure, a) Slightly 1"L in the direction of the balloon.
The vertical deflection blade 1 which is bent and deflects the wind direction upward and downward by the Coanda effect has a shaft 2jJ) in its elongated direction,
This shaft 2 is connected to a medium motor (stepping motor) 3. The left and right deflection vanes that deflect the blown air in the horizontal direction by the Coanda effect are connected by the connecting Q4a.
The left deflection vane 5a is connected to the left deflection vane 5a connected to the coupling machine 4b, and the left deflection vane 5a is connected to the coupling machine 4b. a. Connected to the left motor (stepping motor) 9a via the motor lever arm 8a I~; The right deflection blade 5b is connected to the blade lever arm 6b, the rod 7b,
It is connected to a right motor (steel, knobbing motor) 9b via a motor lever arm 8b. Here left + tni
The deflecting blade 5a is slightly curved so that its center is to the left of this left deflecting blade 5a, and the right deflecting blade 5b is slightly curved to have its center to the right of this right deflecting blade 5b. ing. Sainawa T, air outlet 120 described later
The Coanda phenomenon described in []11 is generated between the side portions 13a and 13b, and the wind direction is deflected. Since the Coanda effect is a well-known technique from the prior art, its explanation will be omitted.

なお本実施例では、中モータ3、左モータ9a、台モー
タ9bで偏向羽根の駆動手段を構成しているが、左右偏
向羽根を駆動するモータを一つとすることも可能で、さ
らにはギヤあるいはクラッチ等の切換手段を用いること
により上下偏向羽根1と左右偏向羽根を単一のモータで
制御することもo■能である。またモータはステッピン
グモータに限らず、誘導電動機等でもよい。
In this embodiment, the drive means for the deflecting blades is composed of the middle motor 3, the left motor 9a, and the base motor 9b, but it is also possible to use a single motor for driving the left and right deflecting blades, and it is also possible to use gears or It is also possible to control the upper and lower deflection vanes 1 and the left and right deflection vanes with a single motor by using a switching means such as a clutch. Further, the motor is not limited to a stepping motor, but may be an induction motor or the like.

まtコモータのかわりに、周囲温度によって変化する形
状記憶合金製バネを用いることも考えられ、この場合に
は本発明の必須要件である温度検出手段や設定温度記憶
手段をこの合金自体が有することになる。また左右偏向
羽根を左偏向羽根5aと右偏向羽根5bに2分割にした
のは、本発明の目的とする分流動作を容易fこ行なえる
上にそれぞれ独立して風向制御できるためであり、さら
に微妙な風向制御を行なうためにはさらに細分割する構
成であってもよく、逆に分割せずに第2図に示すように
単一の連結機4で連接してもよい。まtこ左偏向羽根5
a、右偏向羽根5bをオ〕ん曲させtコのは、コアンダ
効果によって風向偏向を行う他に、本発明の目的とする
分流効果を高めるための形状であり、自IJ記コアンタ
効果を考慮しなければたとえわん曲していない平面的f
(形状でも、よく、さらにはわん面方向をそれぞれ逆]
こしjこものであ−でもよい。
It is also possible to use a spring made of a shape memory alloy that changes depending on the ambient temperature instead of the motor, and in this case, the alloy itself must have temperature detection means and set temperature storage means, which are essential requirements of the present invention. become. Furthermore, the reason why the left and right deflection blades are divided into two parts, the left deflection blade 5a and the right deflection blade 5b, is that the flow dividing operation that is the object of the present invention can be easily performed, and the wind direction can be controlled independently of each other. In order to perform delicate wind direction control, the structure may be further divided into smaller sections, or conversely, the structure may be connected by a single coupling device 4 as shown in FIG. 2 without being divided. Matko left deflection blade 5
a. The right deflection blade 5b is bent to deflect the wind direction by the Coanda effect, and is also shaped to enhance the shunting effect that is the objective of the present invention, taking into account the Coanda effect described in IJ. If not, even if it is not curved, the plane f
(In terms of shape, even the direction of each side is reversed)
It may be small or small.

次に、第1図に示した風向偏向方法を備えt:装置を装
着する室内ユニット10の斜視図を第3図に示す。
Next, FIG. 3 shows a perspective view of the indoor unit 10 equipped with the wind direction deflection method shown in FIG. 1 and equipped with the device.

同図において、室内二二ノ1へ10の前面には室内空気
を吸い込む1々込口11をイイし、この吸込[−111
の下部に上下偏向羽根1と左右1扁向羽根5a。
In the same figure, there is an inlet 11 on the front of the indoor room 10 that sucks indoor air, and this inlet [-111
At the bottom thereof are a vertical deflection blade 1 and a left and right deflection blade 5a.

5bを何する吹出口12が設(すられている。この吹出
口12の両側部13a、13bはそれぞれ外方向へ前述
の如くコアンダ効果にて風向偏向を行うtこめに漸次拡
大する曲面とi(つている。まtこ下面部14も前述の
如くコアンダ効果にて風向關向を行うにめに漸次拡大す
る曲面とtイっている。
5b is provided with an air outlet 12. Both sides 13a and 13b of this air outlet 12 have a curved surface that gradually expands outward to deflect the wind direction by the Coanda effect as described above, and i. (As mentioned above, the lower surface portion 14 also has a curved surface that gradually expands in order to control the wind direction due to the Coanda effect.

この室内ユニット10の鋸断[笛図を第4図に示オ。吸
込口11に対向才る位11qに室内熱交換器15を汀し
、この室内熱交換器15から吹出口12に至る通風路中
に送風機16を付している、次に本実施例の冷凍す・イ
クルを第5図に示−t0同図Iこむいて、回転数”J 
変型圧縮磯17、四方弁18、室内熱交換器15、キャ
ピラリチューブ19、室外熱交換器20か環状に連結さ
れている。
This indoor unit 10 is sawed off (a whistle diagram is shown in FIG. 4). An indoor heat exchanger 15 is placed at a position 11q opposite to the suction port 11, and a blower 16 is provided in the ventilation path from the indoor heat exchanger 15 to the air outlet 12. The rotation speed is shown in Figure 5.
A modified compression rock 17, a four-way valve 18, an indoor heat exchanger 15, a capillary tube 19, and an outdoor heat exchanger 20 are connected in a ring.

ここで冷媒は、暖房運転時には、回転数可変型圧縮機1
7.四方弁18.室内熱交換器15.キャピラリチュー
ブ19.室外熱交換器20の順に流れ、冷房運転時には
、回転数可変型圧縮機17゜四方弁18.室外熱交換器
20.キャピラリチュー719.室内熱交換器15の順
に流れる。
Here, the refrigerant is supplied to the variable rotation speed compressor 1 during heating operation.
7. Four-way valve 18. Indoor heat exchanger 15. Capillary tube 19. The flow goes through the outdoor heat exchanger 20 in this order, and during cooling operation, the rotation speed variable compressor 17° four-way valve 18. Outdoor heat exchanger 20. capillary chew 719. The heat flows through the indoor heat exchanger 15 in this order.

また21は吸込み温1yを検出する温度検出器であり、
室温を検出する温度検出手段の一例であり、室温検出場
所は吸込近辺に限るものではない。
Further, 21 is a temperature detector that detects the suction temperature 1y,
This is an example of a temperature detection means for detecting room temperature, and the room temperature detection location is not limited to the vicinity of the suction.

次9こ本実施例の要部回路図を第6図に示す。マイクロ
コンピュータ22内には、あらかじめ設定した温度を記
憶する記憶部23、この記憶部23に記憶された設定値
と人力値との比較から適宜出力信号を発生する駆動信号
発生手段24を有している。このマイクロコンピュータ
の入力側にはコノパレータ25を介して温度検出手段で
あるサーミスタ21が接続され、出力側には回転数可変
型圧縮機17.各モータ3.9a、9b\ペルス出力を
供給するバッファ26を介し、て駆動手段である回転数
町変型圧縮磯17、中モータ3、左モータ9a、右モー
タ9bが接続されてける。ここで27はバイアス抵抗、
28はスキャン抵抗である13次に本実施例の動作を第
7図に示す。同図は暖房運転時のフローチャートである
FIG. 6 shows a circuit diagram of the main parts of this embodiment. The microcomputer 22 includes a storage section 23 that stores a preset temperature, and a drive signal generation means 24 that generates an appropriate output signal from a comparison between the set value stored in the storage section 23 and a human power value. There is. A thermistor 21 serving as temperature detection means is connected to the input side of this microcomputer via a conoparator 25, and a variable rotation speed compressor 17. Each motor 3.9a, 9b is connected via a buffer 26 which supplies the pulse output to the rotational speed variable compressor 17, which is a driving means, the middle motor 3, the left motor 9a, and the right motor 9b. Here, 27 is a bias resistor,
28 is a scan resistor 13 Next, the operation of this embodiment is shown in FIG. This figure is a flowchart during heating operation.

吹き出し温度tはサーミスタ21で検出しt、:温度で
ありtlは設定温度である。この吹き出し温度tが設定
温度t1よりも低い時をこは、回転敬用変型圧縮機17
を高い回転数とし中モータ3をG回転、左モータ9aを
右回転、右モータ9bを左回転させて停止する。ここで
中モータ3を右回転させることは上下部向羽根1を水平
位置(必要に応じては上方位置)に、左モータ9aを右
L[]1転させることは左偏向羽根5aを左側に、右モ
ータ9bを左回転させることは右偏向羽根5bを右側i
こ駆動することを示す。tなわち吹き出し空気は水平分
流となり第8図に示すようになる。このとき、を下部向
羽根1、左偏向羽根5a、右偏向羽根5bは、それぞれ
どのような初期状態にあるかわからIfいが、各モータ
9a・9b・9cの駆動後は必ず上記のような位置に回
動するものである。すtCわら、初期状態において駆動
後の位置と同位置;こすでに偏向しているときには、ス
トッパー等の負荷抵抗でモータの回転をさせないか、あ
るいはモータを空回転させる。そして各モータ9a・9
b・9cの回転後(必要に応じて回転前あるいは回転中
)は再びサーミスタ21の温度と設定温度とを比較する
The blowout temperature t is detected by the thermistor 21, and t is the temperature, and tl is the set temperature. When this blowing temperature t is lower than the set temperature t1, the rotating modified compressor 17
is set to a high rotation speed, the middle motor 3 is rotated at G, the left motor 9a is rotated clockwise, and the right motor 9b is rotated counterclockwise, and then stopped. Here, rotating the middle motor 3 to the right means moving the vertical blade 1 to the horizontal position (upward position if necessary), and rotating the left motor 9a to the right L[]1 means moving the left deflecting blade 5a to the left side. , rotating the right motor 9b to the left moves the right deflection blade 5b to the right side i.
This indicates that this is driven. In other words, the blown air becomes horizontally divided as shown in FIG. At this time, it is difficult to know what initial state the lower deflection vane 1, left deflection vane 5a, and right deflection vane 5b are in, but after driving each motor 9a, 9b, and 9c, they are always in the above state. It rotates into position. In the initial state, the motor is at the same position as after being driven; if it is already deflected, the motor is prevented from rotating by a load resistance such as a stopper, or the motor is allowed to rotate idly. And each motor 9a.9
After rotation of parts b and 9c (before or during rotation as required), the temperature of the thermistor 21 and the set temperature are compared again.

次にサーミスタ21の温度tが設定温度t1よりも、傷
い場合には、回転数可変型圧縮機17を低い回転数とし
中モータ3を左回転、左モータ9aを右回転、右モータ
9bを左回転させて停止する。
Next, if the temperature t of the thermistor 21 is lower than the set temperature t1, the variable speed compressor 17 is set to a lower speed, the middle motor 3 is rotated to the left, the left motor 9a is rotated to the right, and the right motor 9b is turned to a lower speed. Rotate to the left and stop.

才CCわら吹き出し空気は下方分流とな()第9図に不
才ようになる。この動作前にすでに第8図のように水平
分流状態にあるときは、実質的には上下偏向羽根1のみ
が偏向することになる。
The air blown out from the CC straw is diverted downward (as shown in Figure 9). When the flow is already in the horizontal branching state as shown in FIG. 8 before this operation, only the upper and lower deflection blades 1 are substantially deflected.

L記のような動作を行なうこ乏により、体感的に好まし
くない冷風は直接成体にあたらないように水平分流吹き
出しとなるととも(・二吹出温1ザを速く上昇させ、吹
き出し温度が暖y)られていると(には間接的に人体に
あたるように下方分流吹き出しとなるとともに吹き出し
温度の上昇を極力お1さえ、少4Cい入力で効率よく運
転する。
Due to the lack of the action described in L, the cold air, which is not pleasant to the body, becomes a horizontal branch blowout so that it does not directly hit the adults (the temperature of the second blowout increases rapidly, and the blowout temperature becomes warmer). If it is installed, the airflow will be diverted downward so that it indirectly hits the human body, and the temperature rise of the airflow will be suppressed as much as possible, resulting in efficient operation with a low input of 4C.

このような動作を暖房運転開始時についてその効果を説
明する。まず暖房運転開始直後の吹\出し温度は低いt
こめ、人体に直接あにるのは好ま(7、くない。また人
体に直接あたらなくても居住空間内の空気が大きく移動
することは実際の室温以下に感じるため、居住空間内の
空気の移動は小さい方か好ましい。すなわち水平分流吹
き出しとすることにより、居住空間り部の〕ちで吹き出
し空気が混ざりあい、人体に寒さを値しさせることfc
<暖房作用を行なうとともに回転敬司変型圧縮機の回転
数を高くし吹出温度の上昇を促進させ暖θ)立上りが速
くなる。
The effect of such an operation at the start of heating operation will be explained. First of all, the air outlet temperature is low immediately after the heating operation starts.
(7) I don't like direct contact with the human body.In addition, even if the air does not directly contact the human body, if the air in the living space moves a lot, it will feel like the temperature is lower than the actual room temperature. It is preferable that the movement be small.In other words, by using a horizontal branch blowout, the blown air will mix at the end of the living space, making the human body feel cold.
<While performing a heating effect, the rotational speed of the rotary Keiji modified compressor is increased to promote a rise in the blowout temperature, resulting in a faster rise in temperature.

次に吹き出し温度が、鳥くなったときには、F方分流吹
き出しとなるため、居住空間の周辺から暖房作用を行な
うことにrI′ろ。すなわち、この場合にあっても人体
に寒さを感じさせfに暖房か行なえる43 さらに壁面
をよf1噛めることにより、立上1)時間を短縮できる
ととも:こ缶化空間内の温度分布を均一にし回転数aJ
変型圧縮機の回転数を低くし吹出し温度の上昇を抑えか
つ入力の少ない効率的な暖房ができる。
Next, when the temperature of the air outlet becomes low, the air outlet becomes a branch air outlet in the F direction, so the heating effect is performed from the periphery of the living space. In other words, even in this case, it is possible to make the human body feel cold and perform heating.43 Furthermore, by tightening the wall surface, the start-up time can be shortened. Uniform rotation speed aJ
By lowering the rotation speed of the modified compressor, it is possible to suppress the rise in outlet temperature and achieve efficient heating with less input.

発明の効果 本発明は上記実前例の説明から明らかなように、吹き出
し温度がある設定温度になったとき、回転数可変型圧縮
機の回・5.数を低くするとともに水平分流吹き出しか
ら下方分流吹き出しとなるたy)に、吹き出し温度の上
昇を促進させるとともに吹き出し温度が低し)時には居
住空間上部のみで空気の混合作用を行・τう。すなオ)
ちこの時、水平吹き出しであるとともに分流吹き出しで
あるtこめに、居住室1m k、部のみでの空気の混合
作用を向上するこ1とができ、居住空間下部での大きな
空気移動を防止することができるので、体感的に寒さを
感じることがない。
Effects of the Invention As is clear from the explanation of the above-mentioned practical example, the present invention has the advantage that when the blowout temperature reaches a certain set temperature, the rotation speed of the variable speed compressor is changed to 5. By lowering the number of airflows and changing from a horizontal branching outlet to a downward branching outlet, the temperature of the outlet is promoted and the temperature of the outlet is lowered.In some cases, the air mixing effect is performed only in the upper part of the living space. Sunao)
At this time, it is possible to improve the mixing effect of air only in the 1 m k area of the living room by using both horizontal and branch air blowing, and prevent large air movement in the lower part of the living space. Because you can do this, you won't physically feel the cold.

さらに吹き出し温度が高い時には、下方分流吹き出しと
なるので、居住空間下部周辺、才なわr、+1g +T
nからjIヅめることになるのてiI′I□l’L!ザ
分乍の均一イヒか図れると4!:も;こ吹き出し温11
↓の七h1、を(ケカJ〕さえ、少ない入力で効率J 
< i!妥房が行/iえる。、まf二下方東中吹き出し
であると、直接人体に吹き出;−7空気かあtこるため
に、吹き出し温度が十分に高くなってからでないと下方
吹き出しを行/Cうことかでき4cいが、分流吹き出し
であるtこめに、ある程度の温度と昇で下方吹き出しと
することができ、効率よく暖房効果のS’Z k、 ’
) jI:甲)ノ)ることがで\る。
Furthermore, when the blowout temperature is high, the blowout becomes a downward branch flow, so around the lower part of the living space, the rope r, +1g +T
It's going to change from n to iI'I□l'L! If you can plan out the uniformity of the division, it will be 4! :Mo;ko balloon temperature 11
7 h1 of ↓, even (Keka J), efficiency J with less input
<i! I can go to work/i. If the air is blowing downward, the air will blow directly into the human body; -7 air will be hot, so the blowing temperature must be high enough before the downward blowing can be carried out. However, it is possible to create a downward blowout at a certain level of temperature and rise, which is a branch blowoff, and efficiently increase the heating effect S'Z k, '
) jI: A) ノ) is possible.

また室温の変化Cζ、よって1−記4rJ1作を行なう
場合−(−あっても同様に効果的な暖房を行1(うこと
ができる。
Furthermore, even if there is a change in room temperature Cζ, when performing 1-4rJ1 cultivation, even if there is a change in room temperature Cζ, equally effective heating can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す風向偏向左置の分解斜
視図、第2図は同風向偏向装置Mにおはる左右偏向羽根
の異なる連結状態を示す構成図、第3図は同風向偏向装
置を具備した空気調相機の♀1視図、第4図は同空気調
和機の縦断面図、第5図は同空気調和機の冷媒回路図、
第6図は同空気調和例の要部の?程気回路図、第7図は
同風向偏向装置の制御内容を示すフローチャー1・、第
8図は同空気調和機における水平分流吹出状態を示す説
明図、第9図は同下方分流吹出状態を示す説明図、第1
0図、第11図はそれぞれ従来例を示す風向蘭向装置の
要部斜視図および要部断面図、第12図は本発明による
制御装置を示すフロック図である。 1・・・・・上下風向偏向羽根、3・・・・・・中モー
タ、5a・・・・・左偏向羽根、5b・・・・・・右偏
向羽根、9&・・・・・・左モータ、9b・・・・・・
右モータ、10・・・・・・室内ユニット、12・・・
・・・吹出口、15・・・・・室内熱交換器、17・・
・・・回転数可変型圧縮機、20・・・・・室外熱交換
器、21・・・・・・温度センサ、22・・・・・・マ
イクロコノピユータ、23・・・・・・記憶部、24・
・・・・・駆動信号発生手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 第7図 10−一一室一色二二・7ト 第8図 第9図 第12図
Fig. 1 is an exploded perspective view showing an embodiment of the present invention with the wind direction deflection device M placed on the left, Fig. 2 is a configuration diagram showing different connection states of the left and right deflection blades in the wind direction deflection device M, and Fig. 3 is a ♀1 perspective view of the air conditioner equipped with the same air direction deflection device, Fig. 4 is a longitudinal sectional view of the air conditioner, Fig. 5 is a refrigerant circuit diagram of the air conditioner,
Figure 6 shows the main parts of the air conditioning example. Fig. 7 is a flowchart 1 showing the control details of the air deflector, Fig. 8 is an explanatory diagram showing the horizontal branch blowing state in the air conditioner, and Fig. 9 is the downward branch blowing state. Explanatory diagram showing the first
FIG. 0 and FIG. 11 are a perspective view and a cross-sectional view of a main part of a conventional wind direction and direction device, respectively, and FIG. 12 is a block diagram showing a control device according to the present invention. 1...Vertical wind direction deflection blade, 3...Medium motor, 5a...Left deflection blade, 5b...Right deflection blade, 9&...Left Motor, 9b...
Right motor, 10... Indoor unit, 12...
...Air outlet, 15...Indoor heat exchanger, 17...
...Variable rotation speed compressor, 20...Outdoor heat exchanger, 21...Temperature sensor, 22...Microconopiuter, 23... Memory department, 24・
...Drive signal generation means. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 7 Figure 10-11 Room Isshiki 22.7 Figure 8 Figure 9 Figure 12

Claims (1)

【特許請求の範囲】[Claims] 冷媒を圧縮し、室内熱交換器、室外熱交換器とともに冷
凍サイクルを構成する回転数可変型圧縮機と、前記室内
熱交換器と送風機とを内部に有する室内ユニットと、こ
の室内ユニットに設けられ前記室内熱交換器を通過した
空気を吹き出す吹出口と、この吹出口から吹き出される
空気を上下方向に偏向する上下偏向羽根と、前記吹出口
の左右に独立して設けられかつ前記吹出口から吹き出さ
れる空気を左右方向に分岐して偏向する左右偏向羽根と
、前記上下偏向羽根と左右偏向羽根をそれぞれ往復駆動
する上下駆動手段および左右駆動手段と、回転数可変型
圧縮機の回転数を変更する圧縮機駆動手段と、前記吹出
口からの送風温度または室温が所定値に到達したときに
前記各駆動手段へ出力する出力手段を備え、前記送風温
度または室温が所定値に到達する以前は、回転数可変型
圧縮機の回転数を高くするとともに送風方向を水平方向
もしくは上方向でかつ左右へ分岐した方向とし、前記送
風温度または室温が所定値に到達したときに、回転数可
変型圧縮機の回転数を低くするとともに送風方向を下方
向でかつ左右へ分岐した方向に偏向する空気調和機の風
向偏向方法。
A variable rotation speed compressor that compresses a refrigerant and constitutes a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger; an indoor unit that includes the indoor heat exchanger and the blower; an air outlet that blows out air that has passed through the indoor heat exchanger; a vertical deflection blade that vertically deflects the air blown from the air outlet; and a vertical deflection blade that is provided independently on the left and right sides of the air outlet and that Left and right deflection vanes that branch and deflect blown air in the left and right directions, vertical drive means and left and right drive means that reciprocate the vertical and left deflection vanes, respectively, and a rotation speed variable compressor. a compressor driving means for changing the temperature, and an output means for outputting an output to each of the driving means when the temperature of the air blown from the outlet or the room temperature reaches a predetermined value, The rotational speed of the variable rotational speed compressor is increased, and the air blowing direction is set to be horizontal or upward, with directions branched to the left and right, and when the airflow temperature or room temperature reaches a predetermined value, the rotational speed variable compression is performed. A method of deflecting the wind direction of an air conditioner that lowers the rotational speed of the machine and deflects the air in a downward and bifurcated direction to the left and right.
JP60271818A 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine Pending JPS62131142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60271818A JPS62131142A (en) 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60271818A JPS62131142A (en) 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine

Publications (1)

Publication Number Publication Date
JPS62131142A true JPS62131142A (en) 1987-06-13

Family

ID=17505271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60271818A Pending JPS62131142A (en) 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS62131142A (en)

Similar Documents

Publication Publication Date Title
JPS62131142A (en) Deflection of airflow direction of air-conditioning machine
JPS62194158A (en) Control of operation of air-conditioning machine
JPH0559334B2 (en)
JPS62131143A (en) Deflection of airflow direction of air-conditioning machine
JPS62131139A (en) Deflection of airflow direction of air-conditioning machine
JPS62194152A (en) Airflow direction deflecting device for air-conditioning machine
JPS6210548A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS62131140A (en) Deflection of airflow direction of air-conditioning machine
JPH0561544B2 (en)
JPH057621B2 (en)
JPS62131148A (en) Deflection of airflow direction of air-conditioning machine
JPS62131152A (en) Deflection of airflow direction of air-conditioning machine
JPS62194154A (en) Airflow direction deflecting device for air-conditioning machine
JPS62131145A (en) Deflection of airflow direction of air-conditioning machine
JPS62194157A (en) Deflection of airflow direction of air-conditioning machine
JPS6219638A (en) Device for deflecting air flow direction of air conditioner and method of deflecting air flow direction
JPS62131154A (en) Deflection of airflow direction of air-conditioning machine
JPS62131150A (en) Operation control of air-conditioning machine
JPS6210539A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS62131151A (en) Deflection of airflow direction of air-conditioning machine
JPS62119351A (en) Deflecting method for wind direction of air conditioner
JPS62134442A (en) Method for deflecting air flow direction of air conditioner
JPS62158940A (en) Deflection of airflow direction of air-conditioning machine
JPS62138639A (en) Method of deflecting air flow in air conditioner
JPS6210544A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction