JPS6213057Y2 - - Google Patents

Info

Publication number
JPS6213057Y2
JPS6213057Y2 JP4589981U JP4589981U JPS6213057Y2 JP S6213057 Y2 JPS6213057 Y2 JP S6213057Y2 JP 4589981 U JP4589981 U JP 4589981U JP 4589981 U JP4589981 U JP 4589981U JP S6213057 Y2 JPS6213057 Y2 JP S6213057Y2
Authority
JP
Japan
Prior art keywords
light
total reflection
prism
vertical direction
reflection prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4589981U
Other languages
Japanese (ja)
Other versions
JPS57157925U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4589981U priority Critical patent/JPS6213057Y2/ja
Publication of JPS57157925U publication Critical patent/JPS57157925U/ja
Application granted granted Critical
Publication of JPS6213057Y2 publication Critical patent/JPS6213057Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、各種光情報処理機器の基本素子とし
て用いられ、光信号をオンオフ若しくは連続制御
する光ゲート素子に関するものである。
[Detailed Description of the Invention] The present invention relates to an optical gate element that is used as a basic element of various optical information processing devices and controls an optical signal on/off or continuously.

第1図は、このような光ゲート素子の従来の実
施例を示す構成説明図である。同図において、1
は非偏光光束等からなる入射光、2は例えば
Kerr効果のような電気光学効果を有する板状の
電気光学材料でなる基板(例えばPLZT基板)、
3a,3bは該基板2の表面に設けられ互いに繰
り込む櫛の歯状に形成された金属でなる電極、4
a,4bはリード線、5はリード線4a,4bを
介して電極3a,3bに接続されている電源、6
は入射光1を受けて上記電極3a,3bの間に生
ずる電界方向に対し、45゜の角度を有する直線偏
光となす第1偏光素子、7は第1偏光素子6の偏
光面と直交する偏光面を有するとともに基板2を
透過した光源を受けて上記電極3a,3bの間に
生ずる電界方向に対し45゜の角度を有する直線偏
光となす第2偏光素子、8は第2偏光素子7を透
過した直線偏光でなる出射光である。
FIG. 1 is a configuration explanatory diagram showing a conventional example of such an optical gate element. In the same figure, 1
is the incident light consisting of a non-polarized light beam, etc., and 2 is, for example,
A substrate made of a plate-shaped electro-optic material having an electro-optic effect such as the Kerr effect (for example, a PLZT substrate),
Reference numerals 3a and 3b indicate metal electrodes provided on the surface of the substrate 2 and formed in the shape of comb teeth that extend into each other;
a, 4b are lead wires, 5 is a power source connected to the electrodes 3a, 3b via the lead wires 4a, 4b, 6
7 is a first polarizing element that receives the incident light 1 and generates linearly polarized light at an angle of 45 degrees with respect to the direction of the electric field generated between the electrodes 3a and 3b; 7 is a polarized light that is orthogonal to the polarization plane of the first polarizing element 6; A second polarizing element 8 which has a surface and which receives the light source transmitted through the substrate 2 and generates linearly polarized light having an angle of 45 degrees with respect to the direction of the electric field generated between the electrodes 3a and 3b, is transmitted through the second polarizing element 7. The output light is linearly polarized light.

上記構成からなる従来の実施例において、電極
3a,3bに電圧が印加されていない状態では基
板2の透過光の偏光面に変化はなく、第1偏光素
子6と第2偏光素子7の偏光面が互いに直交して
いることと相まつて、基板2を透過した光線が第
2偏光素子7を透過できない。また、電極3a,
3bに所定の電圧が印加されると、基板2におけ
る電極3a,3bの間に電界が生じ、該電界によ
つて基板2に入射する光線の電界に対して水平・
垂直成分に位相差を与えられ、該光線の中から第
2偏光素子7を透過する成分が生ずる。而して、
電極3a,3bにリード線4a,4bを介して電
源5から所定の電圧を印加することを断続するこ
とにより、入射光の1の一部を出射光8として取
り出すことを断続することができる。また、第2
図は、上記電極3a,3bに所定の電圧を印加し
た場合、上述の光ゲート素子を透過する光線の透
過率λと印加電圧Vの関係を図示したものであ
る。第2図において曲線9b,9cは曲線9aが
周囲温度変化等により変化した状態を示す特性曲
線であり、上述の光ゲート素子は周囲温度変化等
の影響を受け易く、印加電圧が一定でも透過率
は、不確定であることを示している。
In the conventional embodiment having the above configuration, when no voltage is applied to the electrodes 3a and 3b, there is no change in the polarization plane of the light transmitted through the substrate 2, and the polarization planes of the first polarizing element 6 and the second polarizing element 7 are unchanged. Coupled with the fact that they are orthogonal to each other, the light beam that has passed through the substrate 2 cannot pass through the second polarizing element 7. Moreover, the electrode 3a,
When a predetermined voltage is applied to 3b, an electric field is generated between the electrodes 3a and 3b on the substrate 2, and due to the electric field, the electric field is horizontal to the electric field of the light beam incident on the substrate 2.
A phase difference is given to the vertical component, and a component that passes through the second polarizing element 7 is generated from the light beam. Then,
By intermittent application of a predetermined voltage from the power source 5 to the electrodes 3a and 3b via the lead wires 4a and 4b, it is possible to intermittent extracting a part of the incident light 1 as the output light 8. Also, the second
The figure illustrates the relationship between the transmittance λ of the light beam passing through the light gate element and the applied voltage V when a predetermined voltage is applied to the electrodes 3a and 3b. In FIG. 2, curves 9b and 9c are characteristic curves showing changes in curve 9a due to changes in ambient temperature, etc. The above-mentioned light gate element is easily affected by changes in ambient temperature, etc., and even when the applied voltage is constant, the transmittance is indicates that it is uncertain.

ところで、上記従来例においては、電極3a,
3bに印加される電圧は通常100〜200Vと高いう
え、上記電圧−光透過率特性も周囲温度変化等の
影響を受けやく、該光ゲート素子を光スイツチと
して用いるのに不都合であるという欠点があつ
た。
By the way, in the above conventional example, the electrodes 3a,
The voltage applied to 3b is usually as high as 100 to 200 V, and the voltage-light transmittance characteristics described above are also susceptible to changes in ambient temperature, etc., making it inconvenient to use the optical gate element as an optical switch. It was hot.

本考案は、かかる欠点に鑑みてなされたもので
あり、その目的は、光スイツチとして使用する際
の駆動電圧が低く且つ周囲温度変化の影響を受け
にくい光ゲート素子を提供することにある。
The present invention has been made in view of these drawbacks, and its purpose is to provide an optical gate element that has a low driving voltage when used as an optical switch and is less susceptible to changes in ambient temperature.

本考案の特徴は、電気光学効果を有する電気光
学材料でなる光変調素子に印加される電圧によつ
て光信号の連続制御等を行なう光ゲート素子にお
いて、上記光変調素子、偏光プリズム、3個の全
反射プリズム、およびストツパを組合せ、前記光
変調素子に入射した光線の一部を透過させるとと
もに残りを垂直方向へ複数回反射させながら更に
一部ずつ透過させるようにして出射させることに
ある。
A feature of the present invention is that, in an optical gate element that performs continuous control of an optical signal by a voltage applied to a light modulation element made of an electro-optic material having an electro-optic effect, the above-mentioned light modulation element, a polarizing prism, A total reflection prism and a stopper are combined to transmit a part of the light beam incident on the light modulation element, reflect the remaining light multiple times in the vertical direction, and transmit the remaining part one by one to output the light beam.

以下、本考案について図を用いて詳細に説明す
る。第3図は、本考案実施例の構成斜視図であ
り、図中、10は例えばKerr効果等の電気光学
効果を有する電気光学材料でなり、接続されたリ
ード線等(図示せず)を介して所定の駆動電圧が
供給される光変調素子、11a〜11cは直線偏
光を受けて垂直方向に全反射させる全反射プリズ
ム、12は直線偏光を受けて一部の光を垂着方向
へ反射させ他の光を透過させる偏光プリズム、1
3a,13bは光変調素子10と偏光プリズム1
2の間および光変調素子10と全反射プリズム1
1aの間に夫々挾着され一体的に結合するように
して設けられた屈折率整合剤、14は全反射プリ
ズム11aに接着され且つ光変調素子10と後述
の第2の緩衝用部材15bに挾着され到達した光
線の進行を止めるストツパ、15a,15bは偏
光プリズム12と全反射プリズム11bの間およ
び全反射プリズム11bと全反射プリズム11c
の間に夫々挾まれるようにして設けられて夫々の
間隔を所定の値に保つ緩衝用部材、16は偏光プ
リズム12に接着され該偏光プリズムからの出射
光を一点に集光させる凸レンズである。尚、スト
ツパ14の位置は、第3図に例示した位置に限定
されるものではなく、所望の光線の進行を停止さ
せることができる構成の範囲内で種々の変形は可
能であり、例えば第3図の緩衝用部材15aの右
端に横長にして位置させてもよい。
Hereinafter, the present invention will be explained in detail using figures. FIG. 3 is a perspective view of the configuration of an embodiment of the present invention. In the figure, numeral 10 is an electro-optic material having an electro-optic effect such as the Kerr effect. 11a to 11c are total reflection prisms that receive linearly polarized light and totally reflect it in the vertical direction; 12 is a total reflection prism that receives linearly polarized light and reflects a part of the light in the direction of the vertical direction; Polarizing prism that transmits other light, 1
3a and 13b are a light modulation element 10 and a polarizing prism 1
2 and between the light modulation element 10 and the total reflection prism 1
A refractive index matching agent 14, which is sandwiched between 1a and integrally coupled, is bonded to the total reflection prism 11a and sandwiched between the light modulation element 10 and a second buffer member 15b, which will be described later. Stoppers 15a and 15b are provided between the polarizing prism 12 and the total reflection prism 11b, and between the total reflection prism 11b and the total reflection prism 11c.
16 is a convex lens that is bonded to the polarizing prism 12 and condenses the light emitted from the polarizing prism to one point. . Note that the position of the stopper 14 is not limited to the position illustrated in FIG. It may be positioned horizontally at the right end of the buffer member 15a in the figure.

第4図は、第3図の縦断面図を用いた本考案実
施例の原理説明図であり、図中、第3図と同一記
号は同一意味をもたせて使用しここでの説明は省
略する。また、17は紙面に垂直な偏光面をもつ
直線偏光でなる入射光、18a〜19gは偏光プ
リズムを透過後凸レンズ16によつて一点に焦光
される出射光である。第4図において、入射光1
7は、光変調素子10および屈折率整合剤13a
を透過して偏光プリズム12へ入射し、一部の光
線は垂直方向へ反射されるが、残りの光線はその
まま該偏光プリズム12を透過し凸レンズ16に
よる屈折を受けて出射光18aとなる。また、上
記一部の光線は、垂直方向に反射されてのち緩衝
用部材15aを透過して全反射プリズム11bへ
入射する。該光線は全反射プリズム11bにおい
て垂直方向へ全反射されてのち出射し、緩衝用部
材15bを透過して全反射プリズム11cへ入射
し、再び垂直方向へ全反射されてのち出射して全
反射プリズム11aへ入射する。該光線は全反射
プリズム11aにおいて垂直方向へ全反射されて
出射し、屈折率整合剤13b、光変調素子10、
および屈折率整合剤13aを透過後、偏光プリズ
ム12へ入射する。該光線は、偏光プリズム12
において一部が垂直方向へ反射されるが、残りの
光線はそのまま偏光プリズム12を透過し、凸レ
ンズ16による屈折を受けて出射光18bとな
る。また、偏光プリズム12において垂直方向へ
反射された上記一部の光線は、上述の場合とほぼ
同様の光路を経て、凸レンズ16による集光を受
けながら、順次出射光18c〜18gを出射する
とともに、全反射プリズム11aによつて垂直方
向に全反射された光線の最後のものはストツパ1
4によつて停止される。尚、屈折率整合剤13
a,13bおよび緩衝用部材15a,15bはこ
れに限定されるものではなく、同様の機能を有す
る部材との代替が可能でありまた、全く除去され
てもよい。また、凸レンズ16も除去して出射光
18a〜18gを平行光線のまま取り出してもよ
い。
FIG. 4 is an explanatory diagram of the principle of the embodiment of the present invention using the longitudinal cross-sectional view of FIG. 3. In the figure, the same symbols as in FIG. . Further, reference numeral 17 indicates incident light that is linearly polarized light having a plane of polarization perpendicular to the paper surface, and reference numerals 18a to 19g indicate outgoing light that is focused to a single point by the convex lens 16 after passing through the polarizing prism. In Fig. 4, the incident light 1
7 is a light modulation element 10 and a refractive index matching agent 13a
The light passes through the polarizing prism 12 and enters the polarizing prism 12, and some of the light rays are reflected in the vertical direction, but the remaining light rays pass through the polarizing prism 12 as they are and are refracted by the convex lens 16 to become output light 18a. Further, some of the light rays are reflected in the vertical direction and then transmitted through the buffer member 15a and enter the total reflection prism 11b. The light beam is totally reflected in the vertical direction by the total reflection prism 11b, and then exits, passes through the buffer member 15b, enters the total reflection prism 11c, is totally reflected in the vertical direction again, and then exits from the total reflection prism. 11a. The light beam is totally reflected in the vertical direction by the total reflection prism 11a and exits, and is then emitted by the refractive index matching agent 13b, the light modulation element 10,
After passing through the refractive index matching agent 13a, the light enters the polarizing prism 12. The light beam passes through a polarizing prism 12
A part of the light beam is reflected in the vertical direction, but the remaining light beam passes through the polarizing prism 12 as it is and is refracted by the convex lens 16 to become an output light beam 18b. Further, some of the light rays reflected in the vertical direction by the polarizing prism 12 pass through an optical path almost similar to that in the above case, and are sequentially outputted as output lights 18c to 18g while being condensed by the convex lens 16. The last of the rays totally reflected in the vertical direction by the total reflection prism 11a is the stopper 1.
It is stopped by 4. In addition, the refractive index matching agent 13
a, 13b and the buffer members 15a, 15b are not limited to these, and may be replaced with members having similar functions, or may be completely removed. Alternatively, the convex lens 16 may also be removed to extract the emitted light beams 18a to 18g as parallel light beams.

また、第5図は、光変調素子10に所定の電圧
を印加した場合の印加電圧Vと該光変調素子を透
過する光線の透過率λの関係を示す印加電圧−透
過率特性曲線図である。また、印加電圧の軸は第
3図と同じ目盛である。第5図において、特性曲
線19b,19cは特性曲線19aが周囲温度変
化等により変化した状態であり、周囲温度変化等
の影響を比較的受け難いうえ、第2図に比べて、
少ない印加電圧で、高い光透過率を得ることがで
きることを示している。
Further, FIG. 5 is an applied voltage-transmittance characteristic curve diagram showing the relationship between the applied voltage V and the transmittance λ of the light beam transmitted through the light modulator 10 when a predetermined voltage is applied to the light modulator 10. . Moreover, the axis of applied voltage has the same scale as in FIG. In FIG. 5, characteristic curves 19b and 19c are the characteristic curve 19a changed due to changes in ambient temperature, etc., and are relatively less affected by changes in ambient temperature, etc., and compared to FIG. 2,
This shows that high light transmittance can be obtained with a small applied voltage.

以上、詳しく説明したような本考案の実施例に
よれば、第5図のような印加電圧−光透過率特性
を示すために、前記従来例の場合に比して、周囲
温度の変化等を受けにくいという利点を有する。
また、第2図と第5図を比較すれば明らかなよう
に、本考案の実施例は前記従来例に比して、少な
い印加電圧で、容易に光の透過率をほぼ100%と
することができ、光信号を断続(オンオフ)させ
るのに好適であるという利点も有している。更
に、第3図および第4図の本考案実施例から凸レ
ンズ16を除去するとともに出射光18a〜18
fに相当する偏光プリズム12の各出射光(例え
ば18a′〜18f′)に夫々単独の光フアイバー
(例えば18a″〜18f″)を接続することによ
り、光変調素子10に印加する電圧を半波長電圧
から順次低下させると、それに追従して上記出射
光18a′〜18f′が分波して出射される光分波器
となすこともできるという利点も有する。
According to the embodiment of the present invention as described in detail above, in order to exhibit the applied voltage-light transmittance characteristics as shown in FIG. It has the advantage of being difficult to receive.
Furthermore, as is clear from a comparison between FIG. 2 and FIG. 5, the embodiment of the present invention can easily achieve nearly 100% light transmittance with less applied voltage than the conventional example. It also has the advantage of being suitable for intermittent (on/off) optical signals. Furthermore, the convex lens 16 is removed from the embodiment of the present invention shown in FIGS. 3 and 4, and the output lights 18a to 18 are
By connecting individual optical fibers (for example, 18a'' to 18f'') to each output light (for example, 18a' to 18f') of the polarizing prism 12 corresponding to f, the voltage applied to the light modulation element 10 can be changed to half a wavelength. Another advantage is that when the voltage is gradually lowered, an optical demultiplexer can be used in which the output lights 18a' to 18f' are demultiplexed and emitted in accordance with the voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、光ゲート素子の従来例を示す構成説
明図、第2図は、従来例における印加電圧−光透
過率特性曲線図、第3図は、本考案実施例の構成
斜視図、第4図は、本考案実施例の原理説明図、
第5図は本考案実施例における印加電圧−光透過
率特性曲線図である。 1,17……入射光、2……基板、3a,3b
……電極、6,7……偏光素子、8,18a〜1
8g……出射光、9a〜9c,19a〜19c…
…特性曲線、10……光変調素子、11a〜11
c……全反射プリズム、12……偏光プリズム、
13a,13b……屈折率整合剤、14……スト
ツパ、15a,15b……緩衝用部材、16……
凸レンズ。
FIG. 1 is a configuration explanatory diagram showing a conventional example of a light gate element, FIG. 2 is a diagram showing an applied voltage-light transmittance characteristic curve in the conventional example, and FIG. 3 is a perspective view of the configuration of an embodiment of the present invention. Figure 4 is a diagram explaining the principle of the embodiment of the present invention;
FIG. 5 is an applied voltage-light transmittance characteristic curve diagram in an embodiment of the present invention. 1, 17...Incoming light, 2...Substrate, 3a, 3b
...Electrode, 6,7...Polarizing element, 8,18a-1
8g... Outgoing light, 9a to 9c, 19a to 19c...
...Characteristic curve, 10...Light modulation element, 11a-11
c... Total reflection prism, 12... Polarizing prism,
13a, 13b... Refractive index matching agent, 14... Stopper, 15a, 15b... Buffer member, 16...
convex lens.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電気光学効果を有する電気光学材料でなる光変
調素子と、該光変調素子を透過した光線を受けて
一部を垂直方向へ反射させ残りを透過させる偏光
プリズムと、該偏光プリズムで垂直方向に反射さ
れた光線を受けて垂直方向へ全反射させる第1の
全反射プリズムと、該第1の全反射プリズムを透
過した光線を受けて垂直方向へ全反射させる第1
の全反射プリズムと、該第1の全反射プリズムを
透過した光線を受けて垂直方向へ全反射させる第
2の全反射プリズムと、該全反射プリズムで垂直
方向へ全反射された光線を受けて垂直方向へ全反
射させる第3の全反射プリズムとを具備し、該第
3の全反射プリズムで垂直方向に全反射された前
記光線が再び前記光変調素子に入射したのち前記
偏光プリズム等へ入射して透過若しくは反射を順
次繰り返すように前記光変調素子および第1〜第
3の全反射プリズムを配置するとともに前記光変
調素子に印加される電圧によつて光信号のオンオ
フ、連続制御、若しくは光の分波等を行なうよう
に構成された光ゲート素子。
A light modulation element made of an electro-optic material having an electro-optic effect, a polarizing prism that receives the light that has passed through the light modulation element, reflects a part of the light in the vertical direction, and transmits the rest, and the polarizing prism reflects the light in the vertical direction. a first total reflection prism that receives a ray of light transmitted through the first total reflection prism and totally reflects it in the vertical direction;
a total reflection prism, a second total reflection prism that receives the light beam that has passed through the first total reflection prism and totally reflects it in the vertical direction, and a second total reflection prism that receives the light beam that has been totally reflected in the vertical direction by the total reflection prism. and a third total reflection prism for total reflection in the vertical direction, and the light beam totally reflected in the vertical direction by the third total reflection prism enters the light modulation element again and then enters the polarization prism etc. The light modulation element and the first to third total reflection prisms are arranged so that transmission or reflection is repeated sequentially, and the voltage applied to the light modulation element is used to turn on/off the optical signal, continuously control it, or control the light output. An optical gate element configured to perform demultiplexing, etc.
JP4589981U 1981-03-31 1981-03-31 Expired JPS6213057Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4589981U JPS6213057Y2 (en) 1981-03-31 1981-03-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4589981U JPS6213057Y2 (en) 1981-03-31 1981-03-31

Publications (2)

Publication Number Publication Date
JPS57157925U JPS57157925U (en) 1982-10-04
JPS6213057Y2 true JPS6213057Y2 (en) 1987-04-04

Family

ID=29842768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4589981U Expired JPS6213057Y2 (en) 1981-03-31 1981-03-31

Country Status (1)

Country Link
JP (1) JPS6213057Y2 (en)

Also Published As

Publication number Publication date
JPS57157925U (en) 1982-10-04

Similar Documents

Publication Publication Date Title
JP2747349B2 (en) Lighting system for liquid crystal display system
JPH0322961B2 (en)
JPS5854313A (en) Optical demultiplexer
US6411749B2 (en) In-line fiber optic polarization combiner/divider
JPS6158809B2 (en)
JPS5854322A (en) Light switch
JPS5844414A (en) Wavelength multiplexer or wavelength demultiplexer
JP2995985B2 (en) Depolarizing plate
JPH02179626A (en) Light wavelength converter
JPH042934B2 (en)
JPS6213057Y2 (en)
CN209148986U (en) Optical device, the polarization converter, WSS structure of polarization are realized in WSS
JPH024864B2 (en)
JPS5810731B2 (en) light switch
JP2007148309A (en) Optical device using polarizing variable element
JPS59228610A (en) Polarizing prism
JP2980996B2 (en) Light switch
JPS6135940Y2 (en)
JPS6138934A (en) Switch of optical path
JPS6219817A (en) Optical branching and coupling device
JPS6232455B2 (en)
JPS602920A (en) Optical path changeover switch
JPH0738049B2 (en) Optical device
EP1673657B1 (en) Switchable coupling
JPS62124523A (en) Optical demultiplexer with optical branching function