JPS6213053B2 - - Google Patents

Info

Publication number
JPS6213053B2
JPS6213053B2 JP13755279A JP13755279A JPS6213053B2 JP S6213053 B2 JPS6213053 B2 JP S6213053B2 JP 13755279 A JP13755279 A JP 13755279A JP 13755279 A JP13755279 A JP 13755279A JP S6213053 B2 JPS6213053 B2 JP S6213053B2
Authority
JP
Japan
Prior art keywords
adsorbent
desorption
adsorption
water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13755279A
Other languages
Japanese (ja)
Other versions
JPS5662539A (en
Inventor
Mitsunobu Ootani
Haruhiko Yasuda
Michiro Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP13755279A priority Critical patent/JPS5662539A/en
Publication of JPS5662539A publication Critical patent/JPS5662539A/en
Publication of JPS6213053B2 publication Critical patent/JPS6213053B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は、湖沼や内海の富栄養化の主原因とし
て社会問題化しているリン酸イオンの除去に関す
るもので、特にリン酸イオン吸着材の再生方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the removal of phosphate ions, which have become a social problem as a main cause of eutrophication of lakes and inland seas, and particularly relates to a method for regenerating phosphate ion adsorbents.

従来廃水中のリン酸イオン除去方法としては、
一般に水酸化カルシユムを廃水に加えリン酸アパ
タイトとして沈降分離する方法が知られている。
しかしこの方法では処理する廃水全量をPH11近く
に調整せねばならず、したがつて低濃度のリン酸
イオン含有廃水であつても多量の水酸化カルシウ
ムが必要である。また、リン酸アパタイトの沈降
分離に関しては大きな設備が必要であり、さらに
処理水を中和するための設備、この操作に要する
多大な費用等問題が多い。
Conventional methods for removing phosphate ions from wastewater include:
Generally, a method is known in which calcium hydroxide is added to wastewater and separated by precipitation as phosphate apatite.
However, in this method, the total amount of wastewater to be treated must be adjusted to a pH close to 11, and therefore a large amount of calcium hydroxide is required even if the wastewater contains a low concentration of phosphate ions. In addition, large equipment is required for the precipitation and separation of phosphoapatite, and there are many problems such as equipment for neutralizing the treated water and a large amount of cost required for this operation.

一方、これらの方法にかわるものとして、例え
ば活性アルミナあるいはチタン酸などを含有する
吸着材によるリン酸イオンの吸着が提案されてい
る。しかしながらこれらの方法は、吸着材の再生
効率がかならずしも良好なものではなくかつ、吸
着材が微粉末のために廃水処理に用いるには吸着
材の流出防止や分離回収工程でのハンドリングの
面が実用化の際の重大な障害となつている。
On the other hand, as an alternative to these methods, adsorption of phosphate ions using, for example, an adsorbent containing activated alumina or titanic acid has been proposed. However, these methods do not necessarily have good adsorbent regeneration efficiency, and because the adsorbent is a fine powder, it is difficult to prevent the adsorbent from flowing out and handle it in the separation and recovery process before it can be used for wastewater treatment. This has become a serious obstacle in the process of development.

本発明者等は、希薄なリン酸イオンに対して優
れた性質を持つこれらの吸着材をいかに実用化す
るという点について鋭意検討した結果、以下に述
べる本発明に到達した。
The present inventors have conducted intensive studies on how to put these adsorbents having excellent properties against dilute phosphate ions into practical use, and as a result, have arrived at the present invention described below.

すなわち本発明は、族および/または族元
素の酸化物を担持した繊維状物からなる吸着材に
リン酸イオンを含む廃水を接触させた後、該吸着
材の再生において、まず水酸化アルカリ水溶液で
洗浄した後、硫酸イオンを含む水溶液で処理する
ことを特徴とする前記吸着材の再生方法である。
That is, in the present invention, after bringing wastewater containing phosphate ions into contact with an adsorbent made of a fibrous material carrying an oxide of a group element and/or an oxide of a group element, the adsorbent is first treated with an aqueous alkali hydroxide solution in regenerating the adsorbent. The method for regenerating the adsorbent is characterized in that after washing, the adsorbent is treated with an aqueous solution containing sulfate ions.

本発明に用いられる吸着材は、周期律表の族
および/または族元素の酸化物を担持した繊維
状のものが用いられる。
The adsorbent used in the present invention is a fibrous material carrying an oxide of a group and/or group element of the periodic table.

該吸着材に担持される酸化物は、例えばアルミ
ニウム、チタン、ジルコニウムなどの酸化物でリ
ン酸イオンと反応性を有する金属酸化物の粉末で
ある。
The oxide supported on the adsorbent is, for example, an oxide of aluminum, titanium, zirconium, etc., and is a metal oxide powder that is reactive with phosphate ions.

これらの金属酸化物の粉末は、有機高分子重合
体(例えばポリアクリロニトリル系重合体、ポリ
アミド系重合体、ポリイミド系重合体など)と混
合されたのち繊維状あるいは小細片状に成形され
金属酸化物を担持した吸着材となる。
These metal oxide powders are mixed with organic polymers (e.g., polyacrylonitrile polymers, polyamide polymers, polyimide polymers, etc.), then formed into fibers or small pieces, and then subjected to metal oxidation. It becomes an adsorbent that supports substances.

これらの中でも特に湿式凝固法などによつて製
造され、上記金属酸化物の粉末を担持した繊維状
あるいは小細片状の成形品であつて金属粉末を50
%乃至93%(重量比)含み、浸水後1600Gの遠心
分離後の該成形品の保水量が粉末の0.4乃至4倍
量を含むような、固着水を多量に保有出来るもの
は吸着、脱着速度が速く、耐摩耗性があつて、か
つ耐薬品性も強く吸着材として優れた性質を有し
ている。なお、本発明の吸着材の好ましい製造方
法については、例えば特開昭54−27018号などに
記載されている。
Among these, it is a fibrous or small piece molded product that is manufactured by a wet coagulation method or the like and supports powder of the metal oxide mentioned above.
% to 93% (weight ratio), and the water retention capacity of the molded product after immersion in water and centrifugation at 1600G is 0.4 to 4 times that of the powder. It has excellent properties as an adsorbent material, such as fast absorption, high abrasion resistance, and strong chemical resistance. A preferred method for producing the adsorbent of the present invention is described in, for example, Japanese Patent Application Laid-Open No. 54-27018.

上記吸着材は、通常の粒状活性炭、粒状イオン
交換樹脂と同様に通常の吸着装置、例えば吸着塔
内に充填され使用される。なお、吸着材の流動お
よび流出を防止するために吸着塔の上部および下
部に、例えば網あるいは多孔性部材からなる押え
具を有するものが好ましい。
The above-mentioned adsorbent is used by being packed into a normal adsorption device, for example, an adsorption tower, in the same way as normal granular activated carbon and granular ion exchange resin. In order to prevent the flow and outflow of the adsorbent, it is preferable that the adsorption tower has a presser made of, for example, a net or a porous member at the upper and lower parts of the adsorption tower.

このような吸着装置により低濃度のリン酸イオ
ンを含有する廃水を処理する。
Such adsorption devices treat wastewater containing low concentrations of phosphate ions.

吸着材は、多量の廃水の通水により破過する。
そしてその再生のためにはまず該破過吸着材を
族元素例えばナトリウム、カリウムなどの水酸化
物を含む水酸化アルカリ水溶液で洗浄することに
より、吸着したリン酸イオンをほぼ100%脱着さ
せる。なお、水酸化アルカリ水溶液に替えて重炭
酸ナトリウム水溶液のような他のアルカリ水溶液
を用いることも可能である。
The adsorbent material is broken through by passing a large amount of waste water through it.
For its regeneration, the breakthrough adsorbent is first washed with an aqueous alkali hydroxide solution containing hydroxides of group elements such as sodium and potassium, thereby desorbing almost 100% of the adsorbed phosphate ions. Note that it is also possible to use other alkaline aqueous solutions such as sodium bicarbonate aqueous solution in place of the alkali hydroxide aqueous solution.

水酸化アルカリ水溶液は0.1乃至3.0モル濃度の
ものが好ましく用いられる。
The aqueous alkali hydroxide solution preferably has a molar concentration of 0.1 to 3.0.

またこの操作に必要な水酸化アルカリ水溶液の
通液量は、吸着塔容積に対して約2倍量程度の少
量でよく、したがつてこの操作により低濃度で廃
水中に含有されていたリン酸イオンは高濃度に濃
縮される。
In addition, the amount of aqueous alkali hydroxide solution required for this operation is a small amount, about twice the volume of the adsorption tower, and therefore, this operation can remove the phosphoric acid contained in the wastewater at a low concentration. Ions are highly concentrated.

洗浄に用いられた水酸化アルカリ水溶液には脱
着されたリン酸イオンと当量程度の例えばCa+2
などの族元素イオン(アルカリ土類金属イオ
ン)またはAl+3を加えリン酸イオンをリン酸塩と
して沈降分離し、沈澱物を除去した後、分液水
(水酸化アルカリ水溶液)を再び吸着材の脱着に
使用することもできる。
The alkaline hydroxide aqueous solution used for cleaning contains about the same amount of desorbed phosphate ions, such as Ca +2.
Group element ions such as (alkaline earth metal ions) or Al +3 are added to separate the phosphate ions by precipitation, and after removing the precipitate, the separation water (alkaline hydroxide aqueous solution) is added to the adsorbent again. It can also be used for attaching and detaching.

アルカリ水溶液でリン酸イオンを脱着された吸
着材は、次に硫酸イオンを含有する水溶液により
洗浄され賦活される。
The adsorbent from which phosphate ions have been desorbed with an alkaline aqueous solution is then washed and activated with an aqueous solution containing sulfate ions.

ここで、硫酸イオンを含有する水溶液とは、溶
液中に硫酸あるいは硫酸塩として0.1乃至2モル
含有したものをいう。またその使用量も例えば、
吸着塔を用いる場合その容積に対して約2倍量程
度でよい。この操作によつて吸着材は完全に元の
吸着性能を取り戻すことができる。
Here, the aqueous solution containing sulfate ions refers to a solution containing 0.1 to 2 moles of sulfuric acid or sulfate. Also, the amount used is, for example,
When using an adsorption tower, the amount may be about twice the volume of the adsorption tower. This operation allows the adsorbent to completely regain its original adsorption performance.

上記の手順からなる吸着材の再生方法において
アルカリ水溶液で脱着しただけでは元の吸着性能
に遠く及ばない。また硫酸イオン液以外の酸を用
いて賦活しようとしても元の吸着性能の半分以下
であり、本発明の要件の全てを満すことが吸着性
能回復に最も有効な方法である。吸着処理の場合
必ず脱着液の処理が問題となる。廃水のリン酸イ
オンの汚染を脱着液のリン酸イオンの汚染に転稼
しただけでは、廃水を処理したことにならない。
先に記載の如くアルカリ脱着液は族元素例えば
Ca+2の添加ではCa3(PO42を沈降分離すること
により何回も使用出来ることを見出すことが出来
た。また賦活液としての硫酸イオン含有水溶液も
続けて使用しても活性が落ちないことを見い出す
ことが出来た。また用いる吸着材も単なる粉末に
比べ繊維状に成形することによりハンドリングが
容易になつただけでなく、粉末に比べ酸、アルカ
リに対する耐久性が著しく向上し、20回程度の使
用では損傷されていることは外観上、性能上から
も全く認められなかつた。さらに固着水を多く含
有する成形品では、吸・脱着速度が速く短時間で
処理が可能である。
In the adsorbent regeneration method consisting of the above-mentioned steps, simply desorbing with an alkaline aqueous solution will not reach the original adsorption performance. Furthermore, even if an attempt is made to activate using an acid other than the sulfuric acid ion solution, the adsorption performance is less than half of the original adsorption performance, and the most effective method for restoring adsorption performance is to satisfy all of the requirements of the present invention. In the case of adsorption treatment, treatment of the desorption liquid is always a problem. Simply converting phosphate ion contamination in wastewater to phosphate ion contamination in the desorption solution does not mean that the wastewater has been treated.
As mentioned above, the alkaline desorption solution contains group elements such as
It was found that the addition of Ca +2 can be used many times by separating Ca 3 (PO 4 ) 2 by sedimentation. It was also found that the activity did not decrease even if an aqueous solution containing sulfate ions was used continuously as an activating solution. In addition, the adsorbent used is not only easier to handle by forming it into a fibrous form compared to a simple powder, but also has significantly improved durability against acids and alkalis compared to a powder, and is not damaged after about 20 uses. This was not recognized at all from the appearance or performance standpoint. Furthermore, molded products containing a large amount of fixed water have a fast adsorption/desorption rate and can be treated in a short time.

実施例 1 活性汚泥処理水でPO4 -3−Pを1(mg/)含
有するものを原水として、活性アルミナ粉末を70
重量%含有し、ポリアクリロニトリルで湿式凝固
法により短繊維状に成形した吸着材(260g)を
充填した吸着塔(5cmφ×100cm、2)に対し
下向流で10m/Hrの線流速で通水した。処理水中
のPO4 -3−Pは0.1(mg/)以下であり、通水後
133時間で破過したので、塔下部からドレン抜き
をした後約1M NaOHの脱着液を上向流で、線速
度50m/hで約2分半で塔容積の2倍量通液しドレ
ン抜きから脱着液を回収した。さらに約0.5Mの
H2SO4を含む賦活液を上向流で、線速度50m/hで
約2分半で塔容積の2倍量通液しドレン抜きから
賦活液を回収した。塔内充填材を水洗後再び原水
を通水したが前回と同じ処理性能を有していた。
前記脱着液(4)には高濃度のPO4 -3−Pが含
まれているが、ほぼ当量のCa(OH)2を添加して
生成したCa3(PO42を沈降分離することが出来
て再び次の脱着操作に使用しても何らの脱着性能
低下を来たさなかつた。前記吸着と再生操作を20
回繰り返したが、吸・脱着性能に差は認められな
かつた。すなわち本実施例によると原水中の希薄
なPO4 -3がほぼ当量の固形リン酸アパタイトとし
て分離回収することが出来た。なお硫酸の代りに
硫酸アンモニウムの0.5M水溶液を賦活液とした
が、硫酸の場合とほとんど同じ結果を得た。
Example 1 Activated sludge treated water containing 1 (mg/) of PO 4 -3 -P was used as raw water, and activated alumina powder was added at 70% of the raw water.
Water was passed through the adsorption tower (5 cmφ x 100 cm, 2) filled with adsorbent (260 g) containing 2% by weight of polyacrylonitrile and formed into short fibers by wet coagulation method, at a linear flow rate of 10 m/Hr in a downward flow. did. PO 4 -3 -P in the treated water is less than 0.1 (mg/), and after passing through the water
The breakthrough occurred in 133 hours, so after draining the drain from the bottom of the column, a desorption solution of about 1M NaOH was passed upward in an amount of twice the column volume in about two and a half minutes at a linear speed of 50 m/h, and the drain was drained. The desorption solution was collected from. Approximately 0.5M more
An activation liquid containing H 2 SO 4 was passed in an upward flow at a linear velocity of 50 m/h in an amount twice the column volume in about 2 and a half minutes, and the activation liquid was recovered from the drain. After washing the packing material in the column with water, raw water was passed through it again, but the treatment performance was the same as before.
Although the desorption liquid (4) contains a high concentration of PO 4 -3 -P, Ca 3 (PO 4 ) 2 generated by adding approximately equivalent amount of Ca(OH) 2 is separated by sedimentation. Even when it was used again for the next desorption operation, there was no deterioration in desorption performance. 20 minutes of adsorption and regeneration operations
Although the test was repeated several times, no difference was observed in adsorption/desorption performance. In other words, according to this example, dilute PO 4 -3 in the raw water could be separated and recovered as approximately equivalent amount of solid phosphoapatite. In addition, a 0.5M aqueous solution of ammonium sulfate was used as the activation liquid instead of sulfuric acid, but almost the same results as in the case of sulfuric acid were obtained.

実施例 2 実施例1と同じ原水を用い、チタン酸の微粉末
を70重量%含有し、ポリアクリロニトリルで湿式
凝固法により短繊維状に成形した吸着材(300
g)を充填した吸着塔(実施例1と同じ)に対し
下向流で10m/Hrの線流速で通水した。処理水中
のPO4 -3−Pは0.1(mg/)以下であり、通水後
約107時間で破過したので実施例1と同様な方法
で脱着、賦活を行なつた。脱着液は約1M NaOH
を含む水であり、線速度50m/hで約2分半で塔容
積の2倍量通液した。賦活液は約0.25MのH2SO4
を含む水である。該賦活液は上向流、50m/Hrの
線速度、2分半で塔容積の約2倍量通液した。脱
着液中のPO4 -3の沈殿分離にはAl(OH)3を用
い、リン酸アルミとして分離した。吸着・脱着操
作を20回繰り返したが吸・脱着性能に差は認めら
れなかつた。
Example 2 Using the same raw water as in Example 1, an adsorbent (300%
Water was passed through the adsorption tower (same as in Example 1) packed with g) in a downward flow at a linear flow rate of 10 m/Hr. PO 4 -3 -P in the treated water was 0.1 (mg/) or less and broke through about 107 hours after water flow, so desorption and activation were carried out in the same manner as in Example 1. Desorption solution is approximately 1M NaOH
Two times the column volume was passed through the column at a linear velocity of 50 m/h in about 2 and a half minutes. Activation liquid is approximately 0.25M H 2 SO 4
It is water that contains The activation liquid was passed in an upward flow at a linear velocity of 50 m/Hr in an amount approximately twice the column volume in 2 and a half minutes. Al(OH) 3 was used to precipitate and separate PO 4 -3 in the desorption solution, and it was separated as aluminum phosphate. The adsorption/desorption operation was repeated 20 times, but no difference in adsorption/desorption performance was observed.

実施例 3 し尿の2次処理水(PO4 -3−P=12.8mg/を含
む)を原水として、この原水中のPO4 -3と同時
に、色素(黄色乃至橙色)、COD成分除去を目的
とし、チタン酸を70重量%含有し、ポリアクリロ
ニトリルで湿式凝固法で、短繊維状に成形した吸
着材を充填した実施例2と同様な吸着塔で同様な
方法により通水した。処理水中のPO4 -3−Pは0.2
(mg/)以下でかつ同時に色味が80%以上除去さ
れ同時にCODが20%除去された。通水後約6時
間でPO4 -6−Pに関し破過したので実施例1と同
様な方法で脱着、賦活を行なつた。脱着液は1M
NaOHを含む水であり、賦活液は0.25M H2SO4
溶液である。脱着液中のPO4 -3の沈降分離にはCa
(OH)2を用いた。このリン酸アパタイトを除去し
た脱着液は、橙色をしており色素とCOD成分が
まだ脱着したままでありこれに活性炭(粒状)を
充填する別の吸着塔に導き色素とCOD成分を除
去したものを再び脱着操作に使用しても何らの脱
着性能低下を来たさなかつた。前記吸着と再生操
作を20回繰り返したが、吸・脱着性能に差は認め
られなかつた。
Example 3 Using secondary treated human waste water (containing PO 4 -3 -P = 12.8 mg/) as raw water, the aim was to remove pigments (yellow to orange) and COD components at the same time as PO 4 -3 in this raw water. Water was passed through the same adsorption tower as in Example 2, which was filled with adsorbent containing 70% by weight of titanic acid and formed into short fibers by wet coagulation with polyacrylonitrile. PO 4 -3 −P in treated water is 0.2
(mg/) or less, at the same time more than 80% of the color was removed, and at the same time 20% of COD was removed. Since PO 4 -6 -P broke through about 6 hours after water flow, desorption and activation were carried out in the same manner as in Example 1. Desorption liquid is 1M
It is water containing NaOH, and the activation liquid is a 0.25MH 2 SO 4 aqueous solution. Ca is used for sedimentation separation of PO 4 -3 in the desorption solution.
(OH) 2 was used. The desorption solution from which this phosphoapatite has been removed has an orange color, and the pigment and COD components are still desorbed.The solution is then led to another adsorption tower filled with activated carbon (granular) to remove the pigment and COD components. Even when used again for desorption operation, there was no deterioration in desorption performance. The adsorption and regeneration operations were repeated 20 times, but no difference in adsorption/desorption performance was observed.

本発明の実施例では、吸・脱着、賦活工程の全
てにおいて繊維状吸着材に担持された粉末が脱落
あるいは吸着材が摩耗することもなく、かつ線速
度10m/h乃至50m/h以上(接触時間6分乃至2分
半)という短時間処理で十分吸着脱着されてい
た。金属酸化物の粉末のままでは、勿論このよう
な大きな線速度で通水することは全く不可能であ
る。
In the embodiments of the present invention, the powder supported on the fibrous adsorbent does not fall off or the adsorbent is worn out during all of the adsorption/desorption and activation steps, and the linear velocity ranges from 10 m/h to 50 m/h or more (contact Sufficient adsorption and desorption was achieved in a short treatment time of 6 minutes to 2 and a half minutes). Of course, it is completely impossible to pass water at such a high linear velocity if the metal oxide powder remains.

Claims (1)

【特許請求の範囲】[Claims] 1 族および/または族元素の酸化物を担持
した繊維状物からなるリン酸イオン吸着材を再生
するに際し、該吸着材を水酸化アルカリ水溶液で
洗浄したのち、硫酸イオンを含有する水溶液で処
理することを特徴とする前記リン酸イオン吸着材
の再生方法。
When regenerating a phosphate ion adsorbent made of a fibrous material supporting group 1 and/or group element oxides, the adsorbent is washed with an aqueous alkali hydroxide solution and then treated with an aqueous solution containing sulfate ions. A method for regenerating the phosphate ion adsorbent.
JP13755279A 1979-10-26 1979-10-26 Regenerating method of phosphorus acid ion adsorbent Granted JPS5662539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13755279A JPS5662539A (en) 1979-10-26 1979-10-26 Regenerating method of phosphorus acid ion adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13755279A JPS5662539A (en) 1979-10-26 1979-10-26 Regenerating method of phosphorus acid ion adsorbent

Publications (2)

Publication Number Publication Date
JPS5662539A JPS5662539A (en) 1981-05-28
JPS6213053B2 true JPS6213053B2 (en) 1987-03-24

Family

ID=15201369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13755279A Granted JPS5662539A (en) 1979-10-26 1979-10-26 Regenerating method of phosphorus acid ion adsorbent

Country Status (1)

Country Link
JP (1) JPS5662539A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248765A (en) * 1991-12-20 1993-09-28 Abbott Laboratories Separation of phytate from plant protein and dietary fiber using alumina
JP5200225B2 (en) * 2006-07-18 2013-06-05 長崎県 Phosphorous adsorbent
US7588744B1 (en) * 2008-12-08 2009-09-15 Layne Christensen Company Method of recovering phosphate for reuse as a fertilizer
JP5754695B2 (en) * 2012-11-30 2015-07-29 長崎県 Phosphorus removal material

Also Published As

Publication number Publication date
JPS5662539A (en) 1981-05-28

Similar Documents

Publication Publication Date Title
CA2077460C (en) Waste water treatment process using improved recycle of high density sludge
EP1179627B1 (en) Fiber capable of forming metal chelate, process for producing the same, method of trapping metal ion with the fiber, and metal chelate fiber
EP1215332B1 (en) Process for producing a metal chelate-forming fiber
GB1589222A (en) Process and apparatus for combustion gas scrubbing
DE4320003A1 (en) Process for removing dissolved arsenic by means of solid iron hydroxide in water purification
CA1187216A (en) Reduction of metal content of treated effluents
CN110038647A (en) A kind of method of electrolysed saline solution highly efficient regeneration resin
JP3572223B2 (en) Absorbent slurry treatment method and flue gas desulfurization system
JP3600458B2 (en) Treatment of flue gas desulfurization wastewater
JP2005193167A (en) Drainage purification method and purification method
JPS6213053B2 (en)
JP3706929B2 (en) Metal chelate-forming fiber and production method thereof, metal ion trapping method using the fiber, and filter using the fiber
JP3791760B2 (en) Method and apparatus for removing and recovering phosphorus from water containing SS and phosphorus
JP2000342962A (en) Heavy metal adsorbent and production thereof
JP3373033B2 (en) How to remove phosphorus from water
JPS61192385A (en) Treatment of fluorine-containing waste solution
JP3909599B2 (en) Oil desorption method
Kabayama et al. Characteristics of phosphate ion adsorption–desorption onto aluminum oxide hydroxide for preventing eutrophication
JP2009220063A (en) Method for regenerating phosphorus adsorbent for treating waste water
JPH11207365A (en) Treatment of selenium-containing waste water
CN1485281A (en) Process of treating ammonia nitrogen waste water by 13X molecular sieve
JP5142490B2 (en) Water treatment method
JP2928505B1 (en) Radium adsorbent and its production method
JPH01127094A (en) Removal of arsenic
JP2015211941A (en) Phosphorous recovery system and phosphorous recovery method