JPS6213043B2 - - Google Patents

Info

Publication number
JPS6213043B2
JPS6213043B2 JP54107685A JP10768579A JPS6213043B2 JP S6213043 B2 JPS6213043 B2 JP S6213043B2 JP 54107685 A JP54107685 A JP 54107685A JP 10768579 A JP10768579 A JP 10768579A JP S6213043 B2 JPS6213043 B2 JP S6213043B2
Authority
JP
Japan
Prior art keywords
particles
layer
draft tube
flow
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54107685A
Other languages
Japanese (ja)
Other versions
JPS5633013A (en
Inventor
Yoshinori Yushina
Tadao Kimiwada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP10768579A priority Critical patent/JPS5633013A/en
Publication of JPS5633013A publication Critical patent/JPS5633013A/en
Publication of JPS6213043B2 publication Critical patent/JPS6213043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は浮上性の軽量粒子を材とし、上向流
で通液して過する方法において、ドラフトチユ
ーブ内に導入する圧縮空気のエアリフト作用によ
り層の逆洗々浄を行なう方法に関し、逆洗設備
の簡略化、自動逆洗の完成、ならびに逆洗排水の
大巾な削減を目的とする。 本発明の方法は、各種液体の材過に有効で
あり、液体の種類には関係なく極めて効果的に機
能することを特徴とする。一口に材過といつ
ても、実際の処理状況は様々であり、層の閉塞
されてゆく状態も液体の種類、材等により多様
である。例えば層で差圧が生じたとき、単に
層をバラバラにほぐしただけでは、充填された
材の洗浄は十分でなく、固形物の一部が材表面
に付着していること等がみられる。水処理の生物
処理の場合、材は懸濁物の過用に用いられる
ほか、微生物の付着する担体として作用する。従
つて通常水処理における材の洗浄は、他の場合
に比較して困難をともなう場合が多いので以下の
説明においては、水処理を代表例として説明す
る。 一般に過装置は、通水工程と逆洗工程から成
る回分操作であり、これまでの技術の進歩は殆ん
どこれら各工程を合理化する事にあつた。 例えば通水工程の改善では、通水方法に関して
先づ下向流過に始まり、上向流、上下向流、横
流、放射流等の過が考えられ、また材に関し
ては、砂過等の単相過から、アンスラサイ
ト、ざくろ石等を用いた多層過が考えられ実用
化され、また更には、凝集剤等の薬注方法の検討
によりマイクロフロツク過、薬注過等が行わ
れ或る程度の改善がなされてきている。一方過
工程は元来回分操作であるため、逆洗工程が不可
欠であり、もしこれを自動運転しようとすれば、
複雑な制御回路や弁操作が必要となり、過装置
を繁雑なものとせざるを得ない。 本発明は、材として軽量の粒子を用い上向流
で処理する方法であり、層の洗浄が極めて効果
的に行われることを特徴とする。即ち材に比重
が水より小さい軽量粒子を使用し、これを装置内
に浮上せしめた状態で、水面下の或る位置に設け
たグリツト、目皿、金網等の通水性保持板の下に
維持し、これに上向流で通水して過する方法で
ある。粒子は浮力によつて互に接近した状態で保
持板の下に層を形成する。このようにして形成
される層間を上向流として原液が通過する際に
過が行われる。また原液に生物汚泥を含む場合
には、材表面に時間の経過と共に生長していく
生物膜層との接触により、生物処理が行われる。
層内の固形物の増加、生物膜の生長により、或
る処理時間を経過すると層の圧力損失が上昇
し、層の洗浄が必要となる。従来の逆洗方法で
は、逆洗水単独あるいは気体との併用によつて
層に噴射し、層を流動させて層の閉塞を開放
し、材表面の生物膜等の除去を行つていたが、
多量の逆洗水の排出に対する処理装置が必要であ
るほか、層が厚い場合等においては短時間の逆
洗で満足な結果を得ることができなかつた。 発明者らは、層内に設けたドラフトチユーブ
の下から、圧縮空気を送入し、ドラフトチユーブ
内に上向流を形成せしめると共に、層全体を激
しく流動させる循環流を形成し、洗浄水の導入を
全く行なうことなく従来の逆洗以上の効果を達成
したものである。先づ層内の圧力損失が上昇し
たところで、原水の通水を一時中断した後、その
上端部が層内に開口し、下端部が装置底部近く
に開口し、装置内にほぼ垂直に設けられているド
ラフトチユーブの下方から圧縮空気を導入する。
導入された圧縮空気のエアーリフト効果によつて
チユーブ内の水は上向流となり、これが層上部
から装置内を下向する流れを形成する。材粒子
は激しく流動し、層内に捕捉された固形物を開
放したのち、粒子は更に流れに乗つて装置底部近
くまで送り込まれる。装置底部近くに送られる間
に粒子の表面に付着している固形物等は、水流と
の接触ならびに粒子同志の接触によつて剥離され
る。更に剥離しきれなかつた固形物が付着した粒
子は、水流に乗つてドラフトチユーブ内に吸引さ
れ、ドラフトチユーブ内を上昇する間に更に空気
泡との接触によつて固形物が更に剥離される。こ
のような運動の繰返しによつて、材粒子に付着
する生物膜は、強力に付着している微かな表面被
膜を残して殆んどが剥離され、粒子の比重はもと
の値に近いところまで回復する。従つて、ドラフ
トチユーブ内に導入する圧縮空気量を、装置内を
下向する流速が一定になるように調節し、下向流
の流速を、生物膜が付着した状態の粒子群の浮上
速度より微かに速い流れを形成せしめておけば、
これらの粒子群は、流れに乗つてドラフトチユー
ブ内外を循環することとなり、生物膜の剥離が効
果的に行われる。材粒子は生物膜が剥離される
と比重がもとの値に近くなり、このため水の下向
流速より浮上速度の方が大きくなり、材粒子の
ドラフト内への侵入が止まる。従つて材粒子群
は流動層状態となつて、水のみの循環が行われる
ようになる。このように本発明の洗浄方法では、
ドラフトチユーブ内を上昇する材粒子の量を検
知することにより、材粒子洗浄の完了を極めて
容易に知ることが出来る。 洗浄が終つたところで圧縮空気の導入を止める
と、流動状態にあつた材粒子群は再び浮上し
て、保持板の下に層を形成し、材粒子から剥
離されたss(Suspended Solid、固形物、以下ss
と略す)は装置の底部に沈降して堆積する。堆積
したssは、適宜の方法で装置から抜取る。ssの沈
降が悪いときは、凝集剤を加え沈降をそく進する
か、あるいはssの抜取時に装置内の水を同時に抜
取つてもよい。 以上の説明から明らかなように、本発明の方法
では、層の洗浄が圧縮空気の導入のみによつて
行われるため従来の装置における逆洗時の洗浄用
水の必要が全くなく、洗浄排水処理用の付帯設備
を必要とせず、また洗浄が短時間で行われるた
め、過装置の稼働率が著しく向上し、工業上の
メリツトも大きい。また本発明の方法では、層
の内圧の変化と、洗浄時にドラフトチユーブ内を
上昇する材粒子量の変化を夫々感知する機構を
設け、これを原水供給弁の開閉と、圧縮空気弁の
開閉とに連動せしめれば、層の洗浄の自動化が
容易に達成することができる。 本発明に係わる材粒子としては、一般に軽量
骨材として使用されているパーライト、シラスバ
ルーン等や、比重1.0以下のプラスチツクスや発
泡プラスチツクス等を使用することができる。中
でも比重、形状、近等係数等を任意に選定可能な
材として発泡プラスチツクスが最も望ましい。
特に、その製造時に充填剤として無機物、例えば
炭酸カルシウム、タルク(酸化珪素、酸化マグネ
シウムが主成分)等を加えて得た発泡プラスチツ
クス粒子は、比重を任意に変えることができるこ
と、生物膜の均一な生成が得られること、半永久
的使用ができること、安価であること等の理由に
より極めて望ましい。粒子の形状は特に制限はな
く、球状多角形等任意のものを使用することがで
きるが、大量生産に適した球状、又は柱状のもの
が好ましい。材の大きさも特に制限はないが無
機ssを凝集せしめたマイクロフロツク等の捕捉に
は、粒径1mm前後が、また生物固形物の捕捉に
は、材表面に生物膜の生成することを考慮して
1〜10mmが望ましい。 本発明の方法に用いる装置は、浮遊材を使用
した過装置に、圧縮空気導入口をもつたドラフ
トチユーブを備えてなることを要件とする。ドラ
フトチユーブの上端は、保持板の下、つまり、
層内に位置し、その下端は過装置内全体に循環
流を形成せしめるため装置の底部近くに、底部か
らややはなして位置せしめるのが望ましい。設計
の関係上装置が極めて長く、層があまり厚くな
いような場合には、適宜その長さを短縮せしめる
こともできる。圧縮空気の送入口は、ドラフトチ
ユーブの下端近くに上向きに開口せしめる。ドラ
フトチユーブの形状は特に制限なく、水平断面が
円形、四角形等の多角形、扇形等をもつた鉛直筒
状体でよく、最も一般的には、直円筒形が用いら
れる。ドラフトチユーブの大きさは、水処理装置
の大きさ、使用する材粒子の形状、大きさ等に
より決定する。一般には、装置の直径Dに対する
ドラフトチユーブの直径dの比即ちd/Dが0.1
〜0.6、望ましくは0.2〜0.5を満足するものが用い
られる。過装置ならびにドラフトチユーブの断
面が円形以外の場合には夫々相当直径をもつて上
記の比を判断する。 本発明の方法の実施態様の一つとして、材粒
子に比重の異なる2種以上の軽量粒子を用いる、
いわゆる多層過が考えられる。即ち前にも述べ
たように、比重ならびに粒径の異なる2種類以上
の材粒子を作ることは極めて容易であり、この
ようにして作つた粒子を単に原水に浮上せしめる
ことにより、夫々比重、粒径等の異なる粒子を多
層状に維持した層が容易に形成される。しかも
このような層状で使用された層の逆洗に際して
も、特に各層の分離を考慮することなく、前述の
方法で材全体を同時に洗浄し、洗浄後の再使用
にあたつても、それらの浮上するままに放置する
ことにより逆洗前の状態と全く同様の層が形成
することができる特徴を有する。例えば比重の比
較的小さい小粒径(0.5〜2mm)の軽量粒子と、
比重の比較的大きい大粒径(2〜10mm)の軽量粒
子を同時に過装置内に投入すると、浮上速度の
差により小粒径の粒子が上層に、大粒径の粒子が
下層に夫々層を形成し、下層で比較的大きいssが
捕捉された後上層で更に細かいssが捕捉され、極
めて効果的な、しかも逆洗間隔の永い過処理が
可能となる。しかも逆洗後の層状態も常に同一の
充填密度の層が特に技術的手段を必要とせず構
成されることは均一な過処理を長期にわたつて
連続して行なう上からも極めて望ましい方法であ
る。ただこのような複合層の逆洗時の圧縮空気の
導入は、最も比重の大きい粒子を基準として定
め、洗浄の完了の判定も、最も比重の大きい粒子
のドラフトチユーブ内の上昇量により行わなけれ
ばならない。 次に本発明を図面に基いて説明する。図は本発
明の過方法による過工程を説明した作用図で
あり、第1図は、通水過状態、第2図は逆洗状
態、第3図は生物膜が剥離され粒子が流動床を形
成したときの状態を第4図はssを排出するときの
状態を夫々示したものである。第1図の通水過
状態では原水は過装置下部の原水入口1から導
入され、軽量材の充填層7を通過して過され
た後、目皿6を経て、処理水出口2より抜き出さ
れる。原水中のssが材層内に捕捉されるにつれ
層の圧力損失が上昇すると過装置内圧の検知
により、原水の流入を止め、圧縮空気を圧縮空気
導入管3より導入し逆洗工程に入る。エアリフト
ノズル8より放出された圧縮空気は、ドラフトチ
ユーブ5内を上昇する事により層内の水及び軽
量材に対して揚水作用を成しドラフトチユーブ
外即ち層部分では下向流となり浮上性軽量粒子
はチユーブ内外に形成される循環する水流に乗つ
て激しく流動し、その間に材から微生物の剥離
が行われる。逆洗状態では付着したssはドラフト
チユーブ内や材の流動層で剥離された後下方へ
移動し、その一部は過装置本体9の底部へ沈降
する。一定時間逆洗を継続していると粒子の比重
は次第に小さくなり、材は流動床を形成し水の
みが循環する。圧縮空気の供給を停止すると軽量
材の流動が止まり材は上方へ再び浮上し静止
して層を形成する。この時一定の静止時間をお
く事により剥離したssの大部分は、下方へ沈降分
離される。逆洗排水状態では分離したssを逆洗排
水として逆洗排水弁4より排出するが、材の洗
浄を更に高度に行う場合には、過装置の上部に
処理水の一部が滞留できる様にしておき、逆洗排
水と同時に抜き出す事により材の洗浄を行う事
もできる。 以上の逆洗工程が終了すると再び通水が開始さ
れる。 以下に本発明を実施例に基いて説明する。 実施例 1 下向流にて水逆洗を行うことができる通常の逆
洗設備を備えた上向流過装置(6B透明塩ビカ
ラム製)と本発明に係わる上向流過装置(6B
透明塩ビカラムに2Bのドラフトチユーブを備え
たもの)に原水として活性汚泥処理水を用い並列
に連続過運転を行つた。処理水中のss濃度は、
本発明による過装置と通常の上向流過装置と
ではほぼ同様であり、定常状態での原水中のss濃
度と処理水中のss濃度の代表的な値を列記すると
下表の様になる。
The present invention relates to a method of backwashing a layer using air lift action of compressed air introduced into a draft tube in a method in which buoyant lightweight particles are used as a material and the liquid is passed through in an upward flow. The purpose is to simplify equipment, complete automatic backwashing, and significantly reduce backwash wastewater. The method of the present invention is effective in treating various types of liquids, and is characterized in that it functions extremely effectively regardless of the type of liquid. Even though it is simply referred to as material waste, the actual processing conditions vary, and the state in which the layer becomes occluded also varies depending on the type of liquid, material, etc. For example, when a pressure difference occurs between layers, simply loosening the layers will not be enough to clean the filled material, and some solid matter may adhere to the surface of the material. In the case of biological water treatment, the material is used not only to handle suspended matter but also to act as a carrier for the attachment of microorganisms. Therefore, cleaning materials in normal water treatment is often more difficult than in other cases, so water treatment will be used as a representative example in the following description. Generally, filtration equipment is a batch operation consisting of a water passage process and a backwashing process, and most of the advances in technology to date have been aimed at streamlining each of these processes. For example, in improving the water flow process, the water flow method can be started with downward flow, followed by upward flow, up/down flow, cross flow, radial flow, etc., and with regard to materials, simple methods such as sand flow can be considered. From phase filtration, multi-layer filtration using anthracite, garnet, etc. was considered and put into practical use.Furthermore, microfloc filtration, chemical injection, etc. were carried out as a result of studies on methods of injecting chemicals such as coagulants, and to a certain extent, Improvements have been made. On the other hand, since the passing process is originally a batch operation, a backwashing process is essential, and if this is to be operated automatically,
This requires complicated control circuits and valve operations, making the overflow device complicated. The present invention is a method of processing in an upward flow using lightweight particles as material, and is characterized by extremely effective cleaning of the layer. In other words, lightweight particles with a specific gravity smaller than that of water are used for the material, and these particles are floated inside the device and maintained under a water-permeable retaining plate such as grit, perforated plate, or wire mesh installed at a certain position below the water surface. This is a method in which water is passed through this in an upward flow. The particles form a layer under the retaining plate in close proximity to each other due to buoyancy. Filtration occurs when the stock solution passes through the layers thus formed in an upward flow. In addition, when the raw solution contains biological sludge, biological treatment is performed through contact with a biofilm layer that grows on the surface of the material over time.
Due to the increase in solids in the bed and the growth of biofilms, the pressure drop in the bed increases after a certain processing time, making it necessary to clean the bed. In conventional backwashing methods, backwashing water alone or in combination with gas is injected into the layer, causing the layer to flow, opening blockages in the layer, and removing biofilm, etc. on the surface of the material. ,
In addition to requiring a treatment device for discharging a large amount of backwash water, in cases where the layer is thick, satisfactory results cannot be obtained with backwashing for a short time. The inventors introduced compressed air from below a draft tube provided in the bed to form an upward flow in the draft tube, and also to form a circulation flow that violently flows the entire bed, thereby discharging the cleaning water. This method achieves a greater effect than conventional backwashing without any introduction. First, when the pressure loss in the layer increases, the flow of raw water is temporarily interrupted, and then the upper end opens into the layer, the lower end opens near the bottom of the device, and the tank is installed almost vertically inside the device. Compressed air is introduced from below the draft tube.
Due to the air lift effect of the introduced compressed air, the water in the tube flows upward, which forms a downward flow within the apparatus from the top of the bed. The material particles flow violently and, after releasing the solid matter trapped in the bed, the particles are further carried along with the flow to near the bottom of the device. Solid matter adhering to the surface of the particles while being fed near the bottom of the device is peeled off by contact with the water stream and contact between the particles. Further, the particles to which the solids that cannot be completely peeled off are sucked into the draft tube by the water flow, and while rising in the draft tube, the solids are further peeled off by contact with air bubbles. By repeating this movement, most of the biofilm that adheres to the material particles is peeled off, leaving only a faint surface coating that remains strongly attached, and the specific gravity of the particles returns to near its original value. recover to. Therefore, the amount of compressed air introduced into the draft tube is adjusted so that the downward flow velocity within the device is constant, and the downward flow velocity is set to be lower than the floating velocity of the particle group with biofilm attached. If you allow a slightly faster flow to form,
These particles circulate inside and outside the draft tube along with the flow, and the biofilm is effectively removed. When the biofilm is peeled off, the specific gravity of the material particles becomes close to the original value, so the floating speed becomes greater than the downward flow velocity of water, and the material particles stop entering the draft. Therefore, the material particles become in a fluidized bed state, and only water is circulated. In this way, in the cleaning method of the present invention,
By detecting the amount of material particles rising inside the draft tube, the completion of material particle cleaning can be determined very easily. When the introduction of compressed air is stopped after cleaning, the material particles in a fluid state float up again, forming a layer under the retaining plate, and the ss (suspended solid) separated from the material particles floats up again. , hereafter ss
) settles and accumulates at the bottom of the device. The deposited ss is extracted from the device using an appropriate method. If the ss settles poorly, you can add a flocculant to speed up the settling, or you can remove the water in the device at the same time as the ss is removed. As is clear from the above explanation, in the method of the present invention, the layer is cleaned only by introducing compressed air, so there is no need for cleaning water during backwashing in conventional equipment, and it is used for cleaning wastewater treatment. Since no additional equipment is required, and cleaning can be performed in a short time, the operating rate of the filter equipment is significantly improved, and there are great industrial benefits. In addition, in the method of the present invention, a mechanism is provided to detect changes in the internal pressure of the bed and changes in the amount of material particles rising inside the draft tube during cleaning, and these mechanisms are used to detect changes in the internal pressure of the bed and changes in the amount of material particles rising inside the draft tube during cleaning. If it is linked to the above, automation of layer cleaning can be easily achieved. As the material particles according to the present invention, pearlite, shirasu balloons, etc. which are generally used as lightweight aggregates, plastics with a specific gravity of 1.0 or less, foamed plastics, etc. can be used. Among them, foamed plastics are the most desirable material as the specific gravity, shape, coefficient of proximity, etc. can be selected arbitrarily.
In particular, foamed plastic particles obtained by adding inorganic substances such as calcium carbonate and talc (mainly composed of silicon oxide and magnesium oxide) as fillers during production have the advantage of being able to change the specific gravity arbitrarily, and of being uniform in biofilm. It is extremely desirable because it can be used for a long time, can be used semi-permanently, and is inexpensive. There are no particular restrictions on the shape of the particles, and any shape such as a spherical polygon can be used, but spherical or columnar shapes, which are suitable for mass production, are preferred. There is no particular limit to the size of the material, but a particle size of around 1 mm is recommended for capturing micro flocs made of agglomerated inorganic SS, and a particle size of around 1 mm is recommended for capturing biosolids, taking into account the formation of biofilm on the surface of the material. The desired thickness is 1 to 10 mm. The apparatus used in the method of the present invention is required to be equipped with a draft tube having a compressed air inlet in a filtration apparatus using a floating material. The upper end of the draft tube is located below the retaining plate, i.e.
Preferably, it is located within the bed, and its lower end is located near the bottom of the device and slightly spaced from the bottom to create a circulating flow throughout the device. If the device is very long due to design and the layers are not very thick, the length can be shortened accordingly. The compressed air inlet opens upward near the lower end of the draft tube. The shape of the draft tube is not particularly limited, and may be a vertical cylindrical body with a horizontal cross section of a circle, a polygon such as a quadrangle, a fan shape, etc., and a right cylindrical shape is most commonly used. The size of the draft tube is determined by the size of the water treatment equipment, the shape and size of the material particles used, etc. Generally, the ratio of the diameter d of the draft tube to the diameter D of the device, ie d/D, is 0.1.
~0.6, preferably 0.2~0.5 is used. If the cross-sections of the draft tube and the draft tube are other than circular, the above ratio is determined using their respective equivalent diameters. As one embodiment of the method of the present invention, two or more types of lightweight particles having different specific gravity are used as material particles,
A so-called multilayer structure is considered. That is, as mentioned earlier, it is extremely easy to make two or more types of material particles with different specific gravity and particle size, and by simply floating the particles made in this way on raw water, the specific gravity and particle size can be changed, respectively. A multilayered layer of particles with different diameters etc. can be easily formed. Moreover, even when backwashing the layers used in such a layered manner, the entire material can be washed at the same time using the method described above without considering the separation of each layer. It has the characteristic that by allowing it to float, a layer that is exactly the same as the state before backwashing can be formed. For example, lightweight particles with a relatively small specific gravity (0.5 to 2 mm),
When large particles (2 to 10 mm) and lightweight particles with relatively high specific gravity are simultaneously introduced into the filtration device, due to the difference in floating speed, small particles form an upper layer and large particles form a lower layer. After relatively large SS is captured in the lower layer, finer SS is captured in the upper layer, making it possible to perform extremely effective overtreatment with a long backwash interval. Furthermore, the fact that the layer state after backwashing is always the same layer with the same packing density without the need for special technical means is an extremely desirable method from the standpoint of continuously performing uniform overtreatment over a long period of time. . However, the introduction of compressed air when backwashing such a composite layer is determined based on the particles with the highest specific gravity, and the completion of cleaning must be determined based on the amount of rise of the particles with the highest specific gravity in the draft tube. It won't happen. Next, the present invention will be explained based on the drawings. The figures are action diagrams explaining the filtration process according to the filtration method of the present invention. Fig. 1 shows the water passing state, Fig. 2 shows the backwashing state, and Fig. 3 shows the biofilm being peeled off and particles passing through the fluidized bed. Figure 4 shows the state when the ss is formed and the state when the ss is discharged. In the water passing state shown in Fig. 1, raw water is introduced from the raw water inlet 1 at the bottom of the filtering device, passes through the packed bed 7 made of lightweight material, passes through the perforated plate 6, and is extracted from the treated water outlet 2. It can be done. When the pressure loss of the layer increases as the SS in the raw water is captured in the material layer, the flow of raw water is stopped by detecting the internal pressure of the filter, compressed air is introduced from the compressed air introduction pipe 3, and a backwashing process begins. The compressed air discharged from the air lift nozzle 8 rises in the draft tube 5 and has a lifting effect on the water and lightweight materials in the layer, and flows downward outside the draft tube, that is, in the layer portion, to remove buoyant lightweight particles. The material flows vigorously along with the circulating water currents that form inside and outside the tube, and during this time, microorganisms are detached from the material. In the backwashing state, the adhered ss is separated in the draft tube or in the fluidized bed of material and then moves downward, and a part of it settles to the bottom of the filter main body 9. As backwashing continues for a certain period of time, the specific gravity of the particles gradually decreases, and the material forms a fluidized bed in which only water circulates. When the supply of compressed air is stopped, the flow of the lightweight material stops and the material floats upward again and stands still to form a layer. At this time, by allowing a certain resting time, most of the exfoliated ss is sedimented and separated downward. In the backwash drainage state, the separated ss is discharged from the backwash drainage valve 4 as backwash wastewater, but when cleaning materials to a higher level, a part of the treated water is allowed to stay in the upper part of the filtration device. It is also possible to clean the material by leaving it in place and removing it at the same time as backwashing water. When the above backwashing process is completed, water flow is started again. The present invention will be explained below based on Examples. Example 1 An upflow filtration device ( 6B transparent PVC column) equipped with normal backwashing equipment capable of water backwashing in a downward flow and an upflow filtration device according to the present invention ( 6B
Activated sludge treated water was used as raw water in a transparent PVC column equipped with a 2 B draft tube, and continuous over-operation was performed in parallel. The ss concentration in the treated water is
The filtration device according to the present invention and a conventional upward flow filtration device are almost the same, and typical values of the ss concentration in raw water and the ss concentration in treated water in a steady state are listed in the table below.

【表】 逆洗操作は層の圧力損失の上昇時に随時行つ
たがほぼ3日に一度であつた。逆洗効果の例を示
すと、通常の上向流過装置においては逆洗浄を
下向流で過の処理水を用いて行つた。この時の
流量は1.0m3/hrで10分間行ない、逆洗排水量は
170であり、逆洗排水中のss濃度は1730mg/
であつた。 本発明による逆洗方法を備えた過装置におい
ては、圧縮空気を1.2m3/hrの流量で約10分間吹
き込み逆洗浄を行つた。このときの抜出し排水量
は19であり逆洗排水中のss濃度は15300mg/
であつた。また逆洗後の層の圧力損失に逆洗方
法による両者の相違は見られなかつた。本実施例
からも明らかな様に本発明による逆洗方法によれ
ば、逆洗排水量が少なく高濃度であり、ssの剥離
も良好であつた。 実施例 2 ドラフトチユーブからの圧縮空気の導入量と、
逆洗浄の効果の関係を明らかにするために次の実
験を行つた。実施例1における本発明による上向
流過装置において層の圧力損失が1m―水柱
に達したとき、本法による逆洗操作を行い、逆洗
効果を圧力損失の回復の程度で測定した。圧縮空
気の導入量は、予め圧縮空気の導入量に対する揚
液量を測定しておき、ドラフトチユーブ外側の下
向流流速が所定値となる様に定めた。逆洗時の圧
縮空気の導入量と、層の流速及び逆洗終了後の
通水再開時の層の圧力損失は下表の結果となつ
た。
[Table] Backwash operations were carried out whenever the pressure loss in the bed increased, but approximately once every three days. To give an example of the backwashing effect, in a conventional upward flow filtration device, backwashing was performed in a downward flow using filtered treated water. The flow rate at this time was 1.0m 3 /hr for 10 minutes, and the backwash drainage amount was
170, and the ss concentration in backwash wastewater is 1730mg/
It was hot. In the filtration apparatus equipped with the backwashing method according to the present invention, backwashing was performed by blowing compressed air at a flow rate of 1.2 m 3 /hr for about 10 minutes. At this time, the amount of drained water was 19, and the ss concentration in the backwash wastewater was 15,300mg/
It was hot. Moreover, no difference was observed in the pressure loss of the layer after backwashing depending on the backwashing method. As is clear from this example, according to the backwash method of the present invention, the amount of backwash water was small and the concentration was high, and the ss was removed well. Example 2 Amount of compressed air introduced from the draft tube,
The following experiment was conducted to clarify the relationship between the effects of backwashing. When the pressure loss in the layer reached 1 m-water column in the upflow device according to the present invention in Example 1, a backwashing operation according to the present method was performed, and the backwashing effect was measured by the degree of pressure loss recovery. The amount of compressed air introduced was determined in advance by measuring the amount of pumped liquid relative to the amount of compressed air introduced so that the downward flow velocity outside the draft tube would be a predetermined value. The table below shows the amount of compressed air introduced during backwashing, the flow rate in the bed, and the pressure loss in the bed when water flow resumes after backwashing.

【表】 以上の結果より、逆洗時の圧縮空気導入量は、
ドラフトチユーブ外の下向流流速が粒子終末速度
の1/10以上好ましくは1/5以上となる流量のとき
が効果的である事が判明した。 実施例 3 本発明による過方法によれば、微生物を含む
廃水を過すると材粒子に過膜を形成するた
め、残存有機物の分解や、生物学的な脱窒素が可
能である事が明らかとなつた。実施例1と同様の
装置にて長時間曝気法による活性汚泥処理水を
過すると、材粒子に形成された過膜は、層
が一部嫌気性となるために、脱窒菌を保有する生
物膜となり、排水中の残存有機物を栄養源として
脱窒反応が行われ硝酸性窒素を分解し窒素ガスと
する。脱窒反応が認められた実施例1の結果に対
応する硝酸性窒素濃度とCOD値は下表の結果と
なる。
[Table] From the above results, the amount of compressed air introduced during backwashing is
It has been found that it is effective when the flow rate is such that the downward flow velocity outside the draft tube is 1/10 or more, preferably 1/5 or more of the particle terminal velocity. Example 3 According to the filtration method of the present invention, when wastewater containing microorganisms is filtrated, a filtration film is formed on the material particles, so it has become clear that decomposition of residual organic matter and biological denitrification are possible. Ta. When activated sludge treated water is passed through a long-time aeration method using the same device as in Example 1, the film formed on the material particles becomes a biological film containing denitrifying bacteria because some of the layers become anaerobic. A denitrification reaction takes place using the remaining organic matter in the wastewater as a nutrient source, decomposing nitrate nitrogen and converting it into nitrogen gas. The nitrate nitrogen concentration and COD value corresponding to the results of Example 1 in which denitrification reaction was observed are shown in the table below.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図までは本発明の方法に於ける
過ならびに逆洗工程における過装置内の粒子
の状態の説明図である。第1図は過工程中、第
2図は逆洗処理中、第3図は、逆洗完了時、なら
びに第4図はss排出時の夫々の状態を示したもの
である。
FIGS. 1 to 4 are explanatory views of the state of particles in the filtration apparatus during the filtration and backwashing steps in the method of the present invention. FIG. 1 shows the state during the passing process, FIG. 2 shows the state during backwash processing, FIG. 3 shows the state when backwashing is completed, and FIG. 4 shows the state at the time of ss discharge.

Claims (1)

【特許請求の範囲】 1 過原液の比重より小さい比重を有する粒子
を材として用い、粒子群が浮上して装置上部の
保持板下に形成する層は、上向流で原液を通し
て過する方法において、層内の圧力損失が増
加した時に、原液の流入を止めた後、上端が層
上面より下に、下端が過装置低面近くにそれぞ
れ開口するドラフトチユーブの下方から圧縮空気
を噴出し、該チユーブ内に空気泡の上昇による上
向流を形成して、過装置内の液全体に循環流を
形成せしめ、この際、ドラフトチユーブ内に導入
する圧縮空気量を調節することにより、装置内を
下向する液流速が固形物が付着した状態の粒子の
浮上速度よりは早く、清浄な粒子の浮上速度より
は遅くなるようにし、該循環流により層を撹拌
して粒子を同伴し、ドラフトチユーブ内を上昇す
る間に空気泡との接触によつて、層内に捕捉さ
れた固形物の開放と、粒子表面に付着した固形物
質の剥離を行い洗浄終了後圧縮空気の流入を止
め、粒子群の浮上により再び層を形成せしめた
後、原液の供給を再開することを特徴とする浮遊
材による過方法。 2 層の洗浄の終点を、ドラフトチユーブ内を
循環流に乗つて上昇する材粒子の量により判定
する特許請求の範囲第1項記載の方法。 3 材粒子に比重の異なる2種以上の粒子を用
いる特許請求の範囲第1項あるいは第2項記載の
方法。 4 材粒子が発泡処理したプラスチツク粒子、
あるいは発泡処理したプラスチツクに無機物を添
加してなる粒子であり、原液が廃水である特許請
求の範囲第1項、第2項あるいは第3項記載の方
法。
[Scope of Claims] 1. In a method in which particles having a specific gravity smaller than that of the concentrated stock solution are used as a material, and the layer formed under the retaining plate at the top of the device by floating particle groups is passed through the stock solution in an upward flow. When the pressure loss in the bed increases, after stopping the inflow of raw liquid, compressed air is blown out from below the draft tube whose upper end opens below the upper surface of the bed and whose lower end opens near the bottom surface of the filter device. An upward flow is formed by the rise of air bubbles in the draft tube, and a circulation flow is formed throughout the liquid in the drafting device.At this time, by adjusting the amount of compressed air introduced into the draft tube, the inside of the device is The downward flow velocity of the liquid is set to be faster than the floating velocity of particles with solid matter attached, but slower than the floating velocity of clean particles, and the circulation flow stirs the layer and entrains the particles, and the draft tube By coming into contact with the air bubbles while rising inside the layer, the solids trapped in the layer are released and the solid substances attached to the particle surface are peeled off. After cleaning, the inflow of compressed air is stopped and the particle group is removed. A filtration method using a floating material, characterized in that the supply of the undiluted solution is restarted after the layer is formed again by levitation of the material. 2. The method according to claim 1, wherein the end point of the cleaning of the two layers is determined based on the amount of material particles rising in the draft tube in a circulating flow. 3. The method according to claim 1 or 2, in which the material particles include two or more types of particles having different specific gravity. 4 Plastic particles whose material particles are foamed;
Alternatively, the method according to claim 1, 2, or 3, wherein the particles are formed by adding an inorganic substance to foamed plastic, and the raw solution is waste water.
JP10768579A 1979-08-25 1979-08-25 Filtering method Granted JPS5633013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10768579A JPS5633013A (en) 1979-08-25 1979-08-25 Filtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10768579A JPS5633013A (en) 1979-08-25 1979-08-25 Filtering method

Publications (2)

Publication Number Publication Date
JPS5633013A JPS5633013A (en) 1981-04-03
JPS6213043B2 true JPS6213043B2 (en) 1987-03-24

Family

ID=14465364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10768579A Granted JPS5633013A (en) 1979-08-25 1979-08-25 Filtering method

Country Status (1)

Country Link
JP (1) JPS5633013A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507791A (en) * 1982-05-05 1985-03-26 Dolby Laboratories Licensing Corporation Analog and digital signal apparatus
JPS6393312A (en) * 1986-10-07 1988-04-23 Mitsui Miike Kakoki Kk Filter
JP3853738B2 (en) * 2001-03-13 2006-12-06 日本碍子株式会社 High speed filtration method
GB2475017B (en) * 2008-09-24 2012-08-15 Siemens Industry Inc Water treatment apparatus and system
KR20160107340A (en) 2014-01-23 2016-09-13 지멘스 에너지, 인코포레이티드 Multi-media stratified filtration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326861A (en) * 1976-08-26 1978-03-13 Mitsubishi Monsanto Chem Method of producing molded article
JPS5384360A (en) * 1976-12-30 1978-07-25 Tatsunori Nishiinoue Device for treating waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326861A (en) * 1976-08-26 1978-03-13 Mitsubishi Monsanto Chem Method of producing molded article
JPS5384360A (en) * 1976-12-30 1978-07-25 Tatsunori Nishiinoue Device for treating waste water

Also Published As

Publication number Publication date
JPS5633013A (en) 1981-04-03

Similar Documents

Publication Publication Date Title
US20120211430A1 (en) High speed filtration device using porous media, and backwash method thereof
US20060081533A1 (en) Batch-continuous process and reactor
JP3452143B2 (en) Method and apparatus for biological purification of wastewater
US20020056673A1 (en) Method for separating algae and other contaminants from a water stream
TW201522242A (en) Method and reactor for biological water purification
JP3491122B2 (en) Water treatment equipment
JPS6213043B2 (en)
KR101037888B1 (en) Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor
JP2003080007A (en) Method and apparatus for flocculation and settling
JP4335193B2 (en) Method and apparatus for treating organic wastewater
JPH0736916B2 (en) Biofiltration device for organic wastewater
JPH0736917B2 (en) Organic wastewater biological treatment equipment
JP5754649B2 (en) Depth filtration equipment
JP2010172843A (en) Water treatment apparatus and water treatment method
JPH03188994A (en) Biotreating device for organic sewage
KR20040048679A (en) Wastewater treatment device and method using module type filtration equipment
JPH06198295A (en) Biological treatment of organic sewage
JP3115705B2 (en) Aerobic biological sewage purification treatment method
KR200252228Y1 (en) Air dissolving device
JPH0466194A (en) Organic sewage treatment method and apparatus
JP3606449B2 (en) Filter body washing method and apparatus
JPH0487688A (en) Method for washing biologically activated carbon treating tower
JPH03296494A (en) Treatment apparatus for organic polluted water
JPH05185081A (en) Purifying treatment of organic sewage water
JPH10180274A (en) Biological filter