JPS62129742A - Photoacoustic measurement - Google Patents

Photoacoustic measurement

Info

Publication number
JPS62129742A
JPS62129742A JP60268386A JP26838685A JPS62129742A JP S62129742 A JPS62129742 A JP S62129742A JP 60268386 A JP60268386 A JP 60268386A JP 26838685 A JP26838685 A JP 26838685A JP S62129742 A JPS62129742 A JP S62129742A
Authority
JP
Japan
Prior art keywords
cell
photoacoustic
gel plate
plate surface
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60268386A
Other languages
Japanese (ja)
Inventor
Kazuo Imaeda
今枝 一男
Keiko Osawa
大沢 敬子
Kazumi Uchiyama
一美 内山
Shigeru Nakamura
茂 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60268386A priority Critical patent/JPS62129742A/en
Publication of JPS62129742A publication Critical patent/JPS62129742A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To achieve a higher measurement, by a method wherein the distance between a gel plate surface and a cell window is set at a specified value and the gel plate surface with an electrophoresis going on is irradiated with an incident light in a specified range of frequency to measure a photoacoustic signal. CONSTITUTION:A microphone 2 in a cell 1 is stuck on the cell 1 to be communicated through a sample chamber 3 and a waveguide 4. A cell window 5 made of a hard glass adheres to the cell 1 with an epoxy resin. After a gel plate is housed in the cell 1, a cell lid 8 with a rubber packing is inserted and pressed fit on the cell 1. The distance between the gel plate surface and the cell window 5 is set at 0.7-1.0mm to irradiate the gel plate with an electrophoresis going on with an incident light at the frequency of 20-80Hz of a light source consisting of a Ga-Al-As based light emitting diode. Thus, a photoacoustic measurement is done at a high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光音響測定方法に係り、特に光源として発光ダ
イオード(LEDと略称す。以下間)を用いた電気泳動
したり゛ルプレートを対象とする光音響測定装置を使用
する光音響測定方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a photoacoustic measurement method, and is particularly applicable to electrophoresis or a plate using a light emitting diode (abbreviated as LED hereinafter) as a light source. The present invention relates to a photoacoustic measurement method using a photoacoustic measurement device.

(従来の技術) 電気泳動とは、表面に荷電をもつ物質を適当な電解質の
共存下に通電すると表面荷電と反対の極へ移動する現象
であり、この現象を応用した分析法として電気泳動分析
法がある。従って、荷電をもっている物質はすべてこの
分析法の対象になり、タンパク質など生命現象に関連の
ある物質の分析にも応用される。
(Prior art) Electrophoresis is a phenomenon in which when a substance with a surface charge is energized in the coexistence of an appropriate electrolyte, it moves to a pole opposite to the surface charge. Electrophoresis analysis is an analytical method that applies this phenomenon. There is a law. Therefore, all charged substances are subject to this analysis method, and it is also applied to the analysis of substances related to biological phenomena such as proteins.

電気泳動分析法の代表的な一例として、5DS(ドデシ
ル硫酸ナトリウム)−2リアクリルアミドrル電気泳動
法がある。この方法は、タン・ぐり質と陰イオン界面活
性剤であるSDSを結合させ、アクリルアミピケ9ル中
で泳動させると、タンノぐり質はその大きさ、即ち分子
量だ従って分離されるという原理に基づくものである。
A typical example of electrophoretic analysis is 5DS (sodium dodecyl sulfate)-2 lyacrylamide electrophoresis. This method is based on the principle that when tannin and SDS, an anionic surfactant, are combined and electrophoresed in an acrylamide picket, the tannin will be separated according to its size, that is, its molecular weight. It is based on

分子量既知のタンパク質を標準として、未知検体の分子
量がその移動度から求められる。
Using a protein of known molecular weight as a standard, the molecular weight of an unknown analyte can be determined from its mobility.

一方、光音響分析法は試料が光を吸収し無放射失活する
過程で生ずる熱または歪を利用する分析法である。これ
は電気泳動したデルプレートのような不透明かつ光散乱
性の固体試料にも応用することが出来る。
On the other hand, photoacoustic analysis is an analysis method that utilizes heat or strain generated during the process of a sample absorbing light and being deactivated without radiation. This can also be applied to opaque and light-scattering solid samples such as electrophoresed del plates.

しかし微小容量のセルを用いて、測定する場合ては、ケ
゛ルプレートの目的部分を切り出した後セルに入れて測
定することになり検量線作成が煩雑である。これに対し
てオープンエンドの光音響セルの開発も見られるが、測
定感度において密閉型セルには及ばない。
However, when measuring using a micro-capacity cell, the preparation of a calibration curve is complicated because the target portion of the cell plate must be cut out and then placed in the cell for measurement. In contrast, open-end photoacoustic cells have been developed, but they are not as sensitive as closed cells in terms of measurement sensitivity.

本発明者らは電気泳動したグルプレートから固定相を掻
き取ったり切り取ったりすることなく、そのまま定量で
きる光掃引型光音響分析装置と、これに収納しうる大型
グルプレート(たとえば26 X 76 mM )を開
発した。これは光ファイバで導いた断続光を光音響セル
上からゲルプレート上に照射し、x−y掃引しながら定
量するものである。これによって同一のダルプレート上
の試料は同じ固定状態となり、くり返し測定を可能とし
検量線作成を容易に実施できるものとした。
The present inventors have developed an optical sweeping type photoacoustic analyzer that can directly quantify the stationary phase from electrophoresed glue plates without scraping or cutting them, and a large-sized glue plate (for example, 26 x 76 mM) that can be stored in this device. developed. In this method, intermittent light guided by an optical fiber is irradiated onto a gel plate from above a photoacoustic cell, and the amount is quantified while sweeping xy. As a result, the samples on the same dull plate were fixed in the same state, making it possible to perform repeated measurements and easily create a calibration curve.

また、光音響測定用の光源は光音響強度を上昇させるた
め、光強度の犬なるものを使用するのが通例であり、従
来キセノンアークランプ、ハロゲンランプまたはレーザ
ー等が使用されているが装置は大型で高価であるという
欠点があった。しかるに本発明者らは光源に発光ダイオ
ード(LightEmitting Diode 、以
下LEDと略記す)を使用する改良型を開発することに
よって小型で回頭性の装置とし、しかも装置の価格もい
ちじるしく廉+’lll[i Kすることが出来た。
In addition, in order to increase the photoacoustic intensity, the light source for photoacoustic measurements usually uses a light intensity sensor. Conventionally, xenon arc lamps, halogen lamps, or lasers are used, but the equipment is It had the disadvantage of being large and expensive. However, the present inventors developed an improved type of device that uses a light emitting diode (hereinafter abbreviated as LED) as a light source, thereby making the device small and capable of turning. I was able to do K.

LEDは電源変調により断続光が容易に得られ断続周波
数の変更も容易となり、したがって従来の機械式チヨノ
・母を用いて光源ビームを断続光とする場合におけるご
ときチョッパの機械的振動、ノイズの発生をゼロとする
ことが出来、光音響信号精度の顕著な向上を見ることが
出来だ。
With LEDs, it is easy to obtain intermittent light through power modulation, and it is also easy to change the intermittent frequency. Therefore, the mechanical vibration of the chopper and the generation of noise, such as when the light source beam is made into intermittent light using a conventional mechanical switch, are avoided. can be reduced to zero, and a remarkable improvement in the accuracy of the photoacoustic signal can be seen.

しかしながら本発明者らの開発した上記大容量セルによ
る光音響測定における測定経験によれば、なお装置特性
とも言うべき特性値により測定積度は左右されること、
特に電気泳動したゲルプレート表面とセル窓との距離、
および入力照射光の周波数の最適条件を求めることは光
音響測定の精度向上のため強く要望されるところであっ
た。
However, according to the measurement experience in photoacoustic measurements using the large-capacity cell developed by the present inventors, the measurement density is still influenced by the characteristic values, which can be called device characteristics.
In particular, the distance between the electrophoresed gel plate surface and the cell window,
In order to improve the accuracy of photoacoustic measurements, it is strongly desired to find the optimum conditions for the frequency of the input irradiation light.

(発明が解決しょうとする問題点) 本発明は上記従来技術を改善した新規装置において光音
響測定の精度向上の問題点を解決するだめ最適条件を求
めることを目的としたものである。
(Problems to be Solved by the Invention) The present invention aims to find optimal conditions for solving the problem of improving the accuracy of photoacoustic measurements in a new device that is an improvement over the above-mentioned conventional technology.

(問題点を解決するための手段及びその効果)本発明は
上記の問題点を解決する手段として、電気泳動したゲル
プレートを収納しうる光音響セルを有し上記プレート面
への入力照射光によって生ずる音響を光音響信号として
出力する光音響測定装置において、電気泳動したダルプ
レート表面とセル窓との距離を0.771.0111m
とし、入力照射光の周波数を20〜80 Hzより好ま
しくは、30〜60Hzの範囲において測定する光音響
測定方法にある。
(Means for Solving the Problems and Effects thereof) As a means for solving the above-mentioned problems, the present invention has a photoacoustic cell that can house a gel plate subjected to electrophoresis, and uses input irradiation light to the plate surface. In a photoacoustic measuring device that outputs the generated sound as a photoacoustic signal, the distance between the electrophoresed dull plate surface and the cell window is 0.771.0111 m.
The photoacoustic measurement method includes measuring the frequency of input irradiation light in the range of 20 to 80 Hz, preferably 30 to 60 Hz.

本発明方法を説明するに当り、先づ本発明方法に係る光
音響装置について説明する。
In explaining the method of the present invention, first, a photoacoustic device according to the method of the present invention will be explained.

第1図には光音響セルの構造図を示す。26×76順の
大型ゲルプレートを収納しうるセル1はアルミニウム製
である。マイクロフォン2にはエレクトレット・コンデ
ンサマイクロフォンが使用される。セル外部からのノイ
ズを防ぐだめマイクロフォンはエポキシ樹脂接着剤によ
りセルに接着される。マイクロフォンと試料室3とは内
径約1y+m、長さ15mmのウニイブガイド4によっ
て連結される。試料室はたとえば27X77X:3++
xとするとここに収納されるグルプレートの寸法は26
X76×1詣である。93X35Xl、5xmの硬質ガ
ラスをセル窓5として用いこれもエポキシ樹脂接着剤に
てセルlに接着される。6はセルボディ、7はブレラシ
ャレリーズである。グルプレートをセルに収納した後、
厚さI Imのゴム/4’ ノキンを付けたセルリッド
8を挿入してセル1に圧着する。セル容αは約5.9c
i3でちる。マイクロフォンの出力は自製のLF356
Hを用いたプリアンプにて増巾した。
FIG. 1 shows a structural diagram of a photoacoustic cell. The cell 1, which can accommodate 26×76 large gel plates, is made of aluminum. As the microphone 2, an electret condenser microphone is used. A microphone to prevent noise from outside the cell is glued to the cell with epoxy resin adhesive. The microphone and the sample chamber 3 are connected by a unibu guide 4 having an inner diameter of about 1 y+m and a length of 15 mm. For example, the sample chamber is 27X77X:3++
If x is the size of the glu plate stored here is 26
This is 76 x 1 pilgrimage. A hard glass of 93×35×1 and 5×m is used as the cell window 5 and is also bonded to the cell 1 with an epoxy resin adhesive. 6 is a cell body and 7 is a Brella Charelise. After storing the guru plate in the cell,
A cell lid 8 with a rubber/4' seal having a thickness of I Im is inserted and crimped onto the cell 1. Cell capacity α is approximately 5.9c
Chill with i3. The microphone output is a homemade LF356.
It was amplified with a preamplifier using H.

その電源はバッテリとし、レギュレータにて制御して使
用される。マイクロフォンはバイアス電圧4.5vを印
加して用いられる。光源には東芝製Ga−At−As系
のTLRA150Cを使用したがそのピーク波長は66
0nm、半値巾34nm、Lp=20mAにて約3Cd
の発光出力が得られる。変調にはμA355を用いた自
製のボルテージモジュレータを用いたがこれはrニーテ
ィ・サイクル20〜90%、周波数12〜100 Hz
の範囲において可変である。
Its power source is a battery, which is controlled by a regulator. The microphone is used with a bias voltage of 4.5V applied. The light source used was Toshiba's Ga-At-As TLRA150C, but its peak wavelength was 66.
Approximately 3Cd at 0nm, half-width 34nm, Lp=20mA
A luminous output of For modulation, a home-made voltage modulator using μA355 was used, which has a r-neity cycle of 20 to 90% and a frequency of 12 to 100 Hz.
It is variable within the range of .

LEDのビーム拡散を防ぐためにLED頭部を除く部分
にアルミホイルを被覆しだ。これによりケ9ルプレート
上のビーム直径は3朋となる。これを掃引装置に取付は
スポット展開方向に速度10.6朋/minにて掃引す
る。得られた光音響信号は自製ロックインアンプに導き
レコーダ(東亜電波(株)製EPR−100A型)に記
録される。
In order to prevent the LED beam from spreading, the parts except the LED head were covered with aluminum foil. As a result, the beam diameter on the kelp plate becomes 3 mm. This was attached to a sweeping device and swept in the direction of spot development at a speed of 10.6 h/min. The obtained photoacoustic signal is guided to a self-made lock-in amplifier and recorded on a recorder (Model EPR-100A manufactured by Toa Denpa Co., Ltd.).

上記光音響測定装置は光源としてLEDを使用する典型
的装置の概要であるが装置各部の寸法については上記に
限定されるものではない。
Although the photoacoustic measuring device described above is an outline of a typical device that uses an LED as a light source, the dimensions of each part of the device are not limited to the above.

さて光音響分光法において光音響信号はセル容積に逆比
例する。デルプレートをセル内に収納したときセル全容
積からケ°ルプレートの容積を差引いた値がセル容積と
なる。セル容積を微調整するためにケ゛ルプレート下に
厚さの異るス被−サ(材質はたとえばアルミニウム製)
が挿入されるが、セル内を音響波が伝播する空気容積は
、上記デルプレートおよびスペーサの寸法が厚さを除き
セルとほとんど同等であり、セルへの収納、取出しがで
きる程度の側面間隔しかないので結局上記ゲルプレート
表面(ス被−サの有無にかかわらず)とセル窓との距離
に変換して考えられる。
Now, in photoacoustic spectroscopy, the photoacoustic signal is inversely proportional to the cell volume. When the del plate is housed in the cell, the cell volume is the value obtained by subtracting the volume of the del plate from the total cell volume. In order to finely adjust the cell volume, spacers of different thicknesses (made of aluminum, for example) are placed under the cell plate.
is inserted, but the air volume through which the acoustic waves propagate inside the cell is almost the same as the cell except for the thickness of the del plate and spacer, and the side spacing is only large enough to allow storage and removal from the cell. Therefore, the distance between the gel plate surface (with or without a cover) and the cell window can be considered.

かくてデルプレート表面からセル窓までの距離(−)を
上記したように厚さの異る種々のスo−サを挿入するこ
とによって変化せしめて光音響信号の強度を求めた結果
、第2図に示すごとき関係図が得られた。ここで、周波
数は35 Hzとしだ。
As a result of determining the intensity of the photoacoustic signal by changing the distance (-) from the del plate surface to the cell window by inserting various smoothers with different thicknesses as described above, the second A relationship diagram as shown in the figure was obtained. Here, the frequency is 35 Hz.

なお、本測定に使用した電気泳動したゲルプレートの試
料は、次のように調整した。
Note that the gel plate sample used for electrophoresis used in this measurement was prepared as follows.

ポリアクリルアミド10%グルを用い、トランスフェリ
ンを泳動し、アミドブランクIOBで染色し、ろ紙(東
洋ろ紙A 4 A )上に真空乾燥した。
Transferrin was electrophoresed using polyacrylamide 10% gel, stained with amide blank IOB, and vacuum dried on filter paper (Toyo Roshi A 4 A).

ろ紙上のグルを、両面テープを用いて、26X76 X
1龍のガラス板にはりつけだ。
Using double-sided tape, attach the glue on the filter paper to 26x76x
It's glued to the glass plate of 1 Dragon.

本図において明らかな通り光音響信号強度はグルプレー
ト表面とセル窓との距離が0.7mm〜1,0朋におい
て大である。上記距離が0.7朋以下の場合にはセル容
積は減少するがデルプレートの熱拡散表面からピストン
的に送り出される光音響信号の発生が妨げられるため信
号強度は急減し測定目的に適さない。また上記距離が1
.0朋を超えるときは信号強度は減少し、これまた測定
の目的は達成されない。
As is clear from this figure, the photoacoustic signal intensity is high when the distance between the surface of the glue plate and the cell window is 0.7 mm to 1.0 mm. When the distance is less than 0.7 mm, the cell volume decreases, but the generation of the photoacoustic signal sent out in a piston-like manner from the heat diffusion surface of the del plate is hindered, so the signal intensity decreases rapidly, making it unsuitable for measurement purposes. Also, the above distance is 1
.. When it exceeds 0, the signal strength decreases and again the purpose of the measurement is not achieved.

以上から本目的を達成するゲルプレート表面−セル窓間
距離の最適範囲はQ、 7 vanないしl、 Q t
iyxでちることがわかる。
From the above, the optimal range of the distance between the gel plate surface and the cell window to achieve this purpose is Q, 7 van to l, Q t
You can see that it is off with iyx.

なお上記測定においてマイクロフォンおよびセル窓は前
記した通りセル本体に二2キシ樹脂にて接着固定されて
いるため外部ノイズの除去性は良好でありノイズによる
感度への悪影響のない条件下で上記結果は得られたもの
である。
In addition, in the above measurements, the microphone and cell window were fixed to the cell body with 22x resin as described above, so the removal of external noise was good, and the above results were obtained under conditions where noise did not adversely affect sensitivity. This is what was obtained.

さて次に光音響信号強度と光源の断続周波数について検
討した。すなわち入力照射光の周波数と信号強度との関
係を鋭意探求した結果、第3図に示すごとき両者間の関
係特性を見出すことが出来た。本図においてケ9ルプレ
ート表面とセル窓との距離は一定1. Q amとした
。試料は、ゲルプレート表面からセル窓までの距離と、
信号強度との関係を求めたときと同様のものを使用した
。また同図にはS/N比の変化について求めた数値を併
記した。
Next, we examined the photoacoustic signal strength and the intermittent frequency of the light source. That is, as a result of intensive investigation into the relationship between the frequency of the input irradiation light and the signal intensity, we were able to discover the relationship between the two as shown in FIG. In this figure, the distance between the cell plate surface and the cell window is constant1. Q am. The distance of the sample from the gel plate surface to the cell window,
The same one used when determining the relationship with signal strength was used. Also shown in the figure are numerical values determined regarding changes in the S/N ratio.

この図から信号強度及びS/N比ともに、周波数が低い
根太であることがわかる。しかし周波数が20 I(z
以下においては、ノイズが急増し、再現性に問題が生じ
実用的ではない。また、80 Hz以上では、信号強度
、S/N比ともに減少し測定には適当ではない。
From this figure, it can be seen that the frequency of both the signal strength and S/N ratio is low for the joists. However, the frequency is 20 I(z
In the following, noise increases rapidly and problems arise in reproducibility, making it impractical. Moreover, at 80 Hz or higher, both the signal strength and the S/N ratio decrease, making it unsuitable for measurement.

以上、周波数と信号強度およびS/N比との関係を求め
た結果これらを綜合すれば入力照射光の周波数は20 
Hzないし80Hzの範囲が好適であり、より好ましく
は30Hzないし60 Hzの範囲が最適であることが
判明した。
As a result of finding the relationship between the frequency, signal strength, and S/N ratio, if we combine these results, the frequency of the input irradiation light is 20.
A range of Hz to 80 Hz has been found to be suitable, more preferably a range of 30 Hz to 60 Hz is optimal.

以上を総括するにゲルプレート表面とセル窓との距離を
0.7〜]、0朋とし入力光周波数20〜80Hzとす
ることは光音響測定を高精度にて可能とするものであり
上記範囲を逸脱すれば測定方法として不適当であること
は明らかである。
To summarize the above, setting the distance between the gel plate surface and the cell window to 0.7 to 0, and setting the input optical frequency to 20 to 80 Hz enables photoacoustic measurement with high accuracy and within the above range. It is clear that the measurement method is inappropriate if it deviates from the above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に係る光音響測定装置の構造図、第
2図はケ゛ルプレート表面−セル窓間距離と光音響信号
強度との関係図、第3図は入力照射光の周波数と光音響
信号強度およびS/N比との関係図を示す。 ■・・・セル、2・・・マイクロフォン、3・・・試料
室、4・・・ウニイブガイド、5・・・セル窓、6・・
・セルデデイ、7・・・プレッシャ・レリーズ、8・・
・セルリッド。
Fig. 1 is a structural diagram of a photoacoustic measuring device according to the method of the present invention, Fig. 2 is a diagram showing the relationship between the distance between the cell plate surface and the cell window and the photoacoustic signal intensity, and Fig. 3 is a diagram showing the relationship between the frequency of input irradiation light and the optical A relationship diagram between acoustic signal strength and S/N ratio is shown. ■...Cell, 2...Microphone, 3...Sample chamber, 4...Unibu guide, 5...Cell window, 6...
・Seldeday, 7...Pressure release, 8...
・Cellulid.

Claims (1)

【特許請求の範囲】[Claims] 電気泳動したゲルプレートを収納しうる光音響セルを有
し上記プレート面への入力照射光によって生ずる音響を
光音響信号として出力する光音響測定装置において、ゲ
ルプレート表面とセル窓との距離を0.7〜1.0mm
に設定し、入力照射光の周波数を20〜80Hzの範囲
内において測定することを特徴とする光音響測定方法。
In a photoacoustic measurement device that has a photoacoustic cell that can accommodate an electrophoresed gel plate and outputs the sound generated by the input irradiation light to the plate surface as a photoacoustic signal, the distance between the gel plate surface and the cell window is set to 0. .7~1.0mm
A photoacoustic measurement method characterized in that the frequency of input irradiation light is measured within a range of 20 to 80 Hz.
JP60268386A 1985-11-30 1985-11-30 Photoacoustic measurement Pending JPS62129742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60268386A JPS62129742A (en) 1985-11-30 1985-11-30 Photoacoustic measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60268386A JPS62129742A (en) 1985-11-30 1985-11-30 Photoacoustic measurement

Publications (1)

Publication Number Publication Date
JPS62129742A true JPS62129742A (en) 1987-06-12

Family

ID=17457759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60268386A Pending JPS62129742A (en) 1985-11-30 1985-11-30 Photoacoustic measurement

Country Status (1)

Country Link
JP (1) JPS62129742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484133A (en) * 1987-09-28 1989-03-29 Hitachi Ltd Opto-acoustic special device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484133A (en) * 1987-09-28 1989-03-29 Hitachi Ltd Opto-acoustic special device

Similar Documents

Publication Publication Date Title
US3948345A (en) Methods and means for analyzing substances
CN100590418C (en) Carbon dioxide gas analyzer and analysis method thereof
US5151590A (en) Photoacoustic cell and photoacoustic measuring device
JP2001324475A (en) Capillary array
CN110940632B (en) TDLAS-based methane gas concentration detection device and detection method
CN115128011A (en) Photoacoustic spectroscopy solid/liquid detection device based on acoustic metamaterial impedance matching
JPS62129742A (en) Photoacoustic measurement
Cahen Photoacoustic cell for reflection and transition measurements
Xiao et al. Bulk modification of PDMS microchips by an amphiphilic copolymer
US5211829A (en) Analytical method and apparatus using capillary tube
CN114813699B (en) Quantum-enhanced Raman spectrum correlation detection device
Imaeda et al. Light-scanning photoacoustic densitometer applied to protein determination
EP0049918B1 (en) Photothermal method for study of light absorption by a sample substance
CN114839148A (en) Miniature infrared photoacoustic CO 2 Sensor and detection method
JPS6296855A (en) Light-sound measuring method
Fukami et al. Ultramicro-analysis by use of light-scanning photoacoustic densitometry for electrophoresed protein in human hair
JPH01191040A (en) Optoacoustic measuring instrument
Quimby Photoacoustic microscopy with a new modulation technique
JPS6296856A (en) Light-sound measuring apparatus
JPS5640754A (en) Cavitation detecting method using ae sensor
JPS62272153A (en) Photoacoustic measuring instrument having open type cell
SU1141335A1 (en) Method of determination of cotton fibre grade
JPH0119080Y2 (en)
Xue et al. Laser-based ultraviolet absorption detection in capillary electrophoresis
JPH09251004A (en) Method and device for optical-acoustic analyzing