JPS62128983A - Porous formed body and manufacture - Google Patents

Porous formed body and manufacture

Info

Publication number
JPS62128983A
JPS62128983A JP60266327A JP26632785A JPS62128983A JP S62128983 A JPS62128983 A JP S62128983A JP 60266327 A JP60266327 A JP 60266327A JP 26632785 A JP26632785 A JP 26632785A JP S62128983 A JPS62128983 A JP S62128983A
Authority
JP
Japan
Prior art keywords
linear
molded body
porous molded
porous
extrudate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60266327A
Other languages
Japanese (ja)
Inventor
小林 恒一
紳吾 吉田
横田 久昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60266327A priority Critical patent/JPS62128983A/en
Publication of JPS62128983A publication Critical patent/JPS62128983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、一体成形された2種以上の無機物質をその骨
格とした多孔質成形体であって、これ迄単一素材では成
し得なかった各種素材の特徴を組み合わせ所有する多孔
質成形体及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a porous molded body whose skeleton is composed of two or more types of inorganic substances that have been integrally molded, and which has not been possible with a single material until now. The present invention relates to a porous molded body that combines the characteristics of various materials that were not available before, and a method for producing the same.

[発明の背景] 従来、多孔質成形体としては、次の■、■に述べるもの
が知られている。
[Background of the Invention] Conventionally, as porous molded bodies, those described in the following (1) and (2) are known.

■ 無機物質又は合成樹脂よりなる粘弾性材料を、押出
ダイスに設けた多数のノズル穴から線状に押出て垂直方
向に降下させると共に、押出された線状押出物の積層上
面と押出ダイス出口端との距離を略一定に保持しつつ線
状押出物を積層上面へ螺旋状に巻回しつつ積層させるこ
とで得られる多孔体であって、無機物質又は合成樹脂よ
りなる多数本の線状押出物が各々螺旋状に巻回積層され
る共に、該螺旋状巻回積層物が各々隣接面で相互に接合
されるか又は絡み合ってなる多孔体(特開昭58−11
6134号)。
■ A viscoelastic material made of an inorganic substance or synthetic resin is extruded in a linear manner through a number of nozzle holes provided in an extrusion die and lowered in a vertical direction, and the extruded linear extrudate is stacked on the upper surface and the exit end of the extrusion die. A porous body obtained by stacking linear extrudates while keeping a substantially constant distance from each other while spirally winding them onto the top surface of the stack, which consists of a large number of linear extrudates made of an inorganic substance or synthetic resin. are spirally wound and laminated, and the spirally wound laminates are joined or intertwined with each other on adjacent surfaces (Japanese Patent Laid-Open No. 58-11
No. 6134).

■ ポリウレタンフォーム表面にスラリー状の無機物質
を付着させ、次に、乾燥、焼成を行!(うことでポリウ
レタンフォームとほぼ相似の形状、構造をもつセラミッ
ク多孔体(セラミックフオーム)。
■ A slurry-like inorganic substance is attached to the surface of polyurethane foam, then dried and fired! (Ceramic porous material (ceramic foam) has a shape and structure that is almost similar to polyurethane foam.

前記■、■の多孔体は各々優れた特徴を有し、各種フィ
ルター材として適用されているが、適用雰囲気・環境に
よっては、素材そのものが問題となり、適用範囲が自ず
と限定されているのが実状である。
The porous materials mentioned above (■) and (■) each have excellent characteristics and are used as various filter materials, but depending on the atmosphere and environment in which they are applied, the material itself may become a problem, and the scope of application is naturally limited. It is.

叩ら、適用環境は通常複合的に悪条件が重なる場合が多
い0例えば、高温かつアルカリ性雰囲気、高温かつ酸化
鉄雰囲気、或いは、高温かつ強酸化性雰囲気という複合
的雰囲気下で使用される場合が多く、かかる複合的雰囲
気においても耐用性のある単一素材は見当らないのが現
状である。
The environment in which it is applied is usually a combination of adverse conditions.For example, it is often used in a combination of high temperature and alkaline atmosphere, high temperature and iron oxide atmosphere, or high temperature and strong oxidizing atmosphere. Currently, there is no single material that is durable even in such complex environments.

更に詳述すると、本発明者は、加熱炉等の排ガス中の熱
エネルギーを、簡便な通気性固体を用いて輻射熱に変換
し、加熱側に回収変換するという省エネルギー法に適し
た通気性固体(セラミック多孔体)(特公昭55−25
353号)につき種々検討してきたが、これ迄の単一素
材による多孔体では、前記した複合的雰囲気への適用が
困難であることを察知した。
More specifically, the present inventor has developed a gas-permeable solid material suitable for an energy-saving method in which thermal energy in exhaust gas from a heating furnace or the like is converted into radiant heat using a simple gas-permeable solid material, and then recovered and converted to the heating side. Ceramic porous body)
No. 353), but it has been found that it is difficult to apply the porous bodies made of a single material to the above-mentioned complex atmosphere.

一般に通気性固体は、上記した様な雰囲気の中で両端支
持の形で保持固定される為、1つは高温下での曲げ強度
、更にもう1つは炉の操業パターンにもよるが、昇降温
に伴なう熱衝撃抵抗性の2点の性能が基本的に要求され
る。
In general, breathable solids are held and fixed in the above-mentioned atmosphere with both ends supported, so one factor is their bending strength under high temperatures, and the other is that they can be raised or lowered depending on the operating pattern of the furnace. Two properties are basically required: thermal shock resistance associated with temperature.

一般的にセラミックは金属に比べ高温強度面で優れてい
るが、本発明者がテストした結果では、酸化物系の代表
的なムライト或いはアルミナであっても1400℃を越
える高温下では自重によるタワミが生じ、更には、それ
以前に熱衝撃による割れから落下という不満足な結果を
得ている。
Ceramics are generally superior to metals in terms of high-temperature strength, but the results of tests conducted by the present inventor show that even mullite or alumina, which are typical oxide-based materials, exhibit sway due to their own weight at high temperatures exceeding 1400°C. This has resulted in unsatisfactory results such as cracking and falling due to thermal shock.

一方、非酸化物系で高温強度に優れた代表例としてのS
iCは、本要求性能を満足するものであることを確認し
ているが、高温でかつアルカリ、酸化鉄或いは強酸化性
雰囲気下ではSiCは容易に反応を開始して5i02と
なり、本来の高温強度は、即座に維持が困難となってし
まう・ この両者を容易に満足しうる手段として、例えばSiC
ベース品に酸化物系セラミックのコーティングを行なう
という手段が考えられるが、本発明者が種々テストした
結果、次の点からSiCの反応抑止は困難であった。
On the other hand, S
Although it has been confirmed that iC satisfies this required performance, at high temperatures and in an alkali, iron oxide, or strong oxidizing atmosphere, SiC easily starts to react to form 5i02, and loses its original high-temperature strength. As a means to easily satisfy both conditions, for example, SiC
A possible solution is to coat the base product with an oxide ceramic, but as a result of various tests conducted by the present inventor, it was difficult to suppress the reaction of SiC due to the following points.

即ち、入り組んだ空孔を持つ多孔質体の骨格に均一にコ
ーティングする手段としては、セラミックスラリ−中へ
多孔質体を浸して行う浸漬(dipping)操作より
他になく、この方法で得られるコーティング層は、その
スラリーの組成から、ポーラスなものにしか成り得す、
又、コーティング厚さも、数10pが限度でありかつ膜
厚も不均一なものである。
In other words, the only way to uniformly coat the skeleton of a porous body with intricate pores is by dipping the porous body into a ceramic slurry, and the coating obtained by this method is The layer can only be porous due to the composition of the slurry.
Further, the coating thickness is limited to several tens of micrometers and the film thickness is also non-uniform.

SiCの酸化反応を若干でも遅らせることは本技術でも
可能であろうが、一箇所でも周囲の反応性ガスが透過す
る個所があれば、そこからの反応は他へも容易に拡大し
、或いは反応の拡大が遅れたとしても、その個所が熱衝
撃等による割れの起点となり多孔体そのものが破壊して
しまうこととなる。
It may be possible with this technology to delay the oxidation reaction of SiC even slightly, but if there is even one point where the surrounding reactive gas permeates, the reaction from there will easily spread to other areas, or the reaction will be delayed. Even if the expansion of the porous material is delayed, the porous body itself will be destroyed as the location will become a starting point for cracking due to thermal shock or the like.

[発明の目的] 本発明は以上の様な従来技術では成し得なかった高温悪
環境下でも十分耐用性のあるセラミック多孔質成形体及
びその製造方法を提供することを目的とするものである
[Object of the invention] The object of the present invention is to provide a ceramic porous molded body that is sufficiently durable even under high temperature and adverse environments, which could not be achieved with the conventional techniques as described above, and a method for manufacturing the same. .

[発明の概要] 本出願に係る第1の発明は無機物質よりなる多数本の線
状物を集積成形することにより構成された多孔質成形体
であって、該線状物の中心部と外周部とで構成する素材
が異なることを特徴とする多孔質成形体である。
[Summary of the Invention] The first invention according to the present application is a porous molded body constructed by integrally molding a large number of linear objects made of an inorganic substance, which includes a center portion and an outer periphery of the linear objects. This porous molded body is characterized by having different parts made of different materials.

本出願に係る第2の発明は、無機物質よりなる粘弾性材
料を、押出ダイスに設けた多数のノズル穴から線状に押
し出して線状押出物を形成し、該線状押出物を集積させ
て多孔質成形体を製造する方法に於て、線状押出物の中
心を構成する素材の第1供給穴と、該第1供給穴を囲繞
する様に配置されたドーナツ状の第2供給穴を設けたダ
イスを通して、異なる素材を同時に押出進行させ、さら
に第1供給穴、第2供給穴の出口端にて異なる素材を一
体化せしめて複合線状押出物を得、該複合線状押出物を
集積成形することを特徴とする多孔質成形体の製造方法
である。
A second invention according to the present application is to linearly extrude a viscoelastic material made of an inorganic substance through a number of nozzle holes provided in an extrusion die to form a linear extrudate, and to accumulate the linear extrudate. In a method for producing a porous molded body, a first supply hole for a material constituting the center of a linear extrudate, and a donut-shaped second supply hole arranged so as to surround the first supply hole. The different materials are simultaneously extruded through a die equipped with This is a method for producing a porous molded body, which is characterized by integrally molding.

無機物質としては、たとえば2ムライト、コランダム、
ジルコニア、コージェライト等の酸化物系セラミックス
、或いは、炭化硅素、窒化硅素等の非酸化物系セラミッ
クス、が例示される。これらの無機物質を種々用途に合
せ、適宜組合せ実施すれば良い。これらの無機物質は一
般に粉粒体として入手することができる。
Examples of inorganic substances include mullite, corundum,
Examples include oxide ceramics such as zirconia and cordierite, and non-oxide ceramics such as silicon carbide and silicon nitride. These inorganic substances may be suitably combined in accordance with various uses. These inorganic substances are generally available in the form of powder or granules.

これら無機物質を粘弾性材料とするには、たとえば、無
機物質にバインダーを添加して混練し、粘度調整してス
ラリー状とする。
In order to make these inorganic substances into viscoelastic materials, for example, a binder is added to the inorganic substances and kneaded, and the viscosity is adjusted to form a slurry.

バインダーについては特段の制限はなく、粉粒体に対し
て粘結機能を発揮するものであればすべて利用すること
ができる0代表的なものとしては、MC,CMC,殿粉
、CM3 (カルボキシメチルスターチ)、HEC(ヒ
ドロキシエチルセルロース)、HPC(ヒドロキシプロ
ピルセルロース)、リグニンスルホン酸ナトリウム、リ
グニンスルホン酸カルシウム、ポリビニルアルコール、
アクリル醜エステル、メタクリル酸エステル、フェノー
ル樹脂、メラミン樹脂等の有機系バインダー、水ガラス
、コロイダルシリカ、コロイダルアルミナ ン、ベントナイト、焼酎アルミニウム等の無機系バイン
ダーが例示され、むろんこれらは、2種以上を併用して
もかまわない。
There are no particular restrictions on the binder, and any binder can be used as long as it exhibits a caking function for powder and granules. Typical binders include MC, CMC, starch, and CM3 (carboxymethyl starch), HEC (hydroxyethyl cellulose), HPC (hydroxypropyl cellulose), sodium lignin sulfonate, calcium lignin sulfonate, polyvinyl alcohol,
Examples include organic binders such as acrylic esters, methacrylic esters, phenol resins, and melamine resins, and inorganic binders such as water glass, colloidal silica, colloidal aluminan, bentonite, and shochu aluminum. They may be used together.

そして、これらの混合,混練手段についても制限はなく
、公知の装置及び機器を利用すればよいが,線状物の押
出にあたってスクリュ一式押出成形機を用いる場合は該
成形機のスクリュウ−を利用して混練することもできる
.こうして混練された素材は上記スクリュ一式押出成形
機またはプランジャ一式押出成形機等を用い、線状物の
押出を行なう。
There are no restrictions on the mixing and kneading means, and any known equipment and equipment may be used. However, if a screw extrusion molding machine is used to extrude the linear material, the screw of the molding machine may be used. It can also be kneaded. The thus kneaded material is extruded into a linear product using the above-mentioned screw extruder or plunger extruder.

本発明で言う線状物は、その断面形状は円形であっても
多角形であってもよいが、該セラミック多孔体を通過す
る流体との接触反応性をさらに高めるため、該線状物断
面を星形等の異形断面とすることもできる。
The linear object referred to in the present invention may have a circular or polygonal cross-sectional shape. It is also possible to have an irregular cross section such as a star shape.

外周部を構成する素材粒度をyJR整して加圧押出しす
ることで、より強固で緻密な、外周部(j漠)を得るこ
とができる。
By adjusting the grain size of the material constituting the outer peripheral part and extruding it under pressure, a stronger and denser outer peripheral part can be obtained.

なお本発明者が様々検討した結果では、線状押出物の外
周部の厚さく第2図に示すd)は、5 0 4 〜2 
、 0 m mの範囲が望ましく、sog以下では中心
素材の保護被膜としては不完全となり易く,また2.0
mm以上厚くしても,効果は変わらなかった。
According to the results of various studies conducted by the present inventor, the thickness d) of the outer periphery of the linear extrudate shown in FIG. 2 is 504 to 2.
, 0 mm range is desirable; below sog, the protective coating for the core material tends to be incomplete;
Even if the thickness was increased by mm or more, the effect did not change.

[実施例] 以下に本発明の実施例を述べる。[Example] Examples of the present invention will be described below.

第1図に示す様に,中心素材6を提供するための第1供
給穴2と,第1供給穴2を囲繞する様に配置された外周
部素材を供給するための第2供給穴4を通して所定の異
なる素材を加圧押出することで容易に緻密な複合線状押
出物lOが得られ、複合線状押出物10をもって従来法
と同様に多孔成形体を形成させた。
As shown in FIG. 1, through the first supply hole 2 for supplying the center material 6 and the second supply hole 4 for supplying the outer peripheral material arranged so as to surround the first supply hole 2. A dense composite linear extrudate 10 was easily obtained by pressurizing and extruding predetermined different materials, and a porous molded body was formed using the composite linear extrudate 10 in the same manner as in the conventional method.

より詳しくは,下記条件で製作したもので評価テストを
実施し,以下の結果を得た。
More specifically, an evaluation test was conducted using a product manufactured under the following conditions, and the following results were obtained.

1 。1.

A.線状押出物断面形状及び素材 中心素材;SiC 外周素材:アルミナ 中心粒系30LLのSiC粉と、中心粒系4pのAl2
O3粉を有機バインダーにて、各々混練し、約80kg
/cnn2の押出圧にて二層構造をもつ、線状物を製作
し、更に、多孔質体に成形した。
A. Linear extrudate cross-sectional shape and material Center material: SiC Peripheral material: Alumina center grain system 30LL SiC powder and center grain system 4p Al2
Approximately 80 kg of O3 powder is kneaded with an organic binder.
A linear product having a two-layer structure was produced at an extrusion pressure of /cnn2, and further molded into a porous body.

この多孔質成形体を、乾燥後約1500℃で焼成し、多
孔質成形体を得た。
This porous molded body was dried and then fired at about 1500°C to obtain a porous molded body.

尚、本実施例で得られた線状物を断面方向で分析した結
果、中心と外周素材の境界部にムライト(3A 120
3 拳2S i02 )が生成しており、三層構造にな
っていることが確認されている。
In addition, as a result of analyzing the linear object obtained in this example in the cross-sectional direction, it was found that mullite (3A 120
3 Fist 2S i02) has been generated, and it has been confirmed that it has a three-layer structure.

2、比較のため、次の三種類の多孔質体を製作した。2. For comparison, the following three types of porous bodies were manufactured.

B、線状物断面径、2.0mmφのSiC質品質量材と
した多孔質体。
B, porous body made of SiC mass material with linear cross-sectional diameter of 2.0 mmφ.

C,!i状物断面径、2.0mmφのアルミナ質量を基
材とした多孔質体 。
C,! A porous body made of alumina mass with an i-shaped cross-sectional diameter of 2.0 mmφ.

D、上記2−Hの多孔質体に、重版のアルミナ賀コーテ
ィング材にてディプ処理後、1500″Cで焼成し、平
均膜厚約60牌の多孔質体。
D. A porous body obtained by dipping the porous body of 2-H above with a reprinted alumina coating material and firing at 1500″C, with an average film thickness of about 60 tiles.

[発明の効果] 本出願に係る第1の発明によれば、高温下における曲げ
強度に優れ、かつ、熱衝撃抵抗性にも優れた多孔質成形
体が得られ、また、本出願に係る第2の発明によれば、
かかる多孔質成形体を容易に製造することができる。ま
た本出願に係る第2の発明によれば、従来のコーディン
グ法では困難であった膜厚を任意に調整することが可能
であり、かつ、厚肉品も容易に達成できるものである。
[Effects of the Invention] According to the first invention of the present application, a porous molded body having excellent bending strength at high temperatures and excellent thermal shock resistance can be obtained. According to invention No. 2,
Such a porous molded body can be easily produced. Further, according to the second invention of the present application, it is possible to arbitrarily adjust the film thickness, which was difficult with conventional coding methods, and thick-walled products can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例において使用する装置の断面図、第2図
及び第3図は線状押出物の断面図、第4図は高温曲げ試
験状態を示す斜視図である。 2・・・第1供給穴 4・・・第2供給穴10・・・2
層線状押出物
FIG. 1 is a sectional view of the apparatus used in the examples, FIGS. 2 and 3 are sectional views of a linear extrudate, and FIG. 4 is a perspective view showing a high temperature bending test state. 2...First supply hole 4...Second supply hole 10...2
Layered linear extrudate

Claims (4)

【特許請求の範囲】[Claims] (1)無機物質よりなる多数本の線状物を集積成形する
ことにより構成された多孔質成形体であって、該線状物
の中心部と外周部とで構成する素材が異なることを特徴
とする多孔質成形体。
(1) A porous molded body constructed by integrally molding a large number of linear objects made of an inorganic substance, characterized in that the core and outer periphery of the linear objects are made of different materials. porous molded body.
(2)線状物が押出によって得られた線状物である特許
請求範囲第1項記載のセラミック多孔質成形体。
(2) The ceramic porous molded body according to claim 1, wherein the linear object is a linear object obtained by extrusion.
(3)線状物の中心部が、非酸化物系素材からなり、外
周部が酸化物系素材からなる特許請求の範囲第1項又は
第2項記載の多孔質成形体。
(3) The porous molded article according to claim 1 or 2, wherein the center portion of the linear object is made of a non-oxide material and the outer peripheral portion is made of an oxide material.
(4)無機物質よりなる粘弾性材料を、押出ダイスに設
けた多数のノズル穴から線状に押し出して線状押出物を
形成し、該線状押出物を集積させて多孔質成形体を製造
する方法に於て、線状押出物の中心を構成する素材の第
1供給穴と、該第1供給穴を囲繞する様に配置されたド
ーナツ状の第2供給穴を設けたダイスを通して、異なる
素材を同時に押出進行させ、さらに第1供給穴、第2供
給穴の出口端にて異なる素材を一体化せしめて複合線状
押出物を得、該複合線状押出物を集積成形することを特
徴とする多孔質成形体の製造方 法。
(4) A viscoelastic material made of an inorganic substance is linearly extruded through a number of nozzle holes provided in an extrusion die to form a linear extrudate, and the linear extrudate is assembled to produce a porous molded body. In the method of The method is characterized by extruding the materials at the same time, further integrating different materials at the exit ends of the first supply hole and the second supply hole to obtain a composite linear extrudate, and integrally molding the composite linear extrudate. A method for producing a porous molded body.
JP60266327A 1985-11-27 1985-11-27 Porous formed body and manufacture Pending JPS62128983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60266327A JPS62128983A (en) 1985-11-27 1985-11-27 Porous formed body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266327A JPS62128983A (en) 1985-11-27 1985-11-27 Porous formed body and manufacture

Publications (1)

Publication Number Publication Date
JPS62128983A true JPS62128983A (en) 1987-06-11

Family

ID=17429384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266327A Pending JPS62128983A (en) 1985-11-27 1985-11-27 Porous formed body and manufacture

Country Status (1)

Country Link
JP (1) JPS62128983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227991U (en) * 1988-08-11 1990-02-23
JP2005174722A (en) * 2003-12-10 2005-06-30 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell, water electrolytic cell, and manufacturing method of solid oxide fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227991U (en) * 1988-08-11 1990-02-23
JP2005174722A (en) * 2003-12-10 2005-06-30 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell, water electrolytic cell, and manufacturing method of solid oxide fuel cell

Similar Documents

Publication Publication Date Title
KR930005309B1 (en) Preparation of monolithic catalyst support structures having an integrated high surface area phase
EP1452512B1 (en) Method for producing porous ceramic article
EP1483421B1 (en) Reaction bonded alumina filter and membrane support
US6057030A (en) Porous ceramic body and kiln furniture made from a porous ceramic body
US4399052A (en) Activated carbonaceous honeycomb body and production method thereof
US3473987A (en) Method of making thin-walled refractory structures
US4327188A (en) Multicellular monolithic ceramic body and preparation thereof
EP1550494B1 (en) Honeycomb structure
CN101687713B (en) High porosity ceramic honeycomb article containing rare earth oxide and method of manufacturing same
US6087281A (en) Low CTE cordierite bodies with narrow pore size distribution and method of making same
EP0042301B1 (en) Ceramic honeycomb filters and the production thereof
KR930012633A (en) High porosity cordierite body and its manufacturing method
JPH11502806A (en) Method for producing shrink-matched ceramic composite
PL79569B1 (en) Exhaust catalyst carrier of aluminum oxide honeycomb structure having an outer shell of aluminum phosphate[us3876556a]
US4693918A (en) Tool for firing ceramics
US5526984A (en) Hydrogen torch having concentric tubes and reverse ball joint connection
CN108883356A (en) High porosity ceramic honeycomb and manufacturing method
JPS62128983A (en) Porous formed body and manufacture
EP1060149A1 (en) Low cte cordierite bodies with narrow pore size distribution and method of making same
JP2651170B2 (en) Ceramics porous body
US3338995A (en) Process of fabricating shaped refractory structures
JP2788061B2 (en) Firing jig and its manufacturing method
KR20160064804A (en) Seramics material having multi layered pore sutrcture
JP2953569B2 (en) Electronic component firing setter and method of manufacturing the same
JPS6183689A (en) Silicon carbide base honeycomb structure