JPS6212850B2 - - Google Patents

Info

Publication number
JPS6212850B2
JPS6212850B2 JP53146575A JP14657578A JPS6212850B2 JP S6212850 B2 JPS6212850 B2 JP S6212850B2 JP 53146575 A JP53146575 A JP 53146575A JP 14657578 A JP14657578 A JP 14657578A JP S6212850 B2 JPS6212850 B2 JP S6212850B2
Authority
JP
Japan
Prior art keywords
signal
displacement
input
speed
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53146575A
Other languages
Japanese (ja)
Other versions
JPS5572932A (en
Inventor
Kazuto Takahashi
Hiroshi Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP14657578A priority Critical patent/JPS5572932A/en
Publication of JPS5572932A publication Critical patent/JPS5572932A/en
Publication of JPS6212850B2 publication Critical patent/JPS6212850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、バネ定数、ダンピング係数等を測定
する防振ゴムの動的特性測定装置に関する。 従来のこの種の装置は、第1図に示すように、
動的な繰返し荷重を発生する加振機1の加振軸方
向に直列に防振ゴム2と荷重検出器3とを設定し
て、その加振器1による動的荷重Fに基づく防振
ゴム2の変位X、変位速度X〓、加速度X¨により、
次の運動方程式からダンピング係数C、バネ定数
Kを求めるものである。Mは防振ゴム2の質量で
ある。 F=MX¨+CX〓+KX しかし通常は防振ゴム2の質量Mは無視される
ので、 F=CX〓+KX …(1) として求めている。この関係はベクトル的には第
2図に示すようになり、δは荷重Fと変位Xとの
間の位相差で0〜40度程度である。なお、ここで
荷重信号は正弦波であるので、
The present invention relates to a dynamic characteristic measuring device for anti-vibration rubber that measures spring constants, damping coefficients, etc. A conventional device of this kind, as shown in FIG.
A vibration isolator 2 and a load detector 3 are set in series in the vibration axis direction of a vibrator 1 that generates a dynamic repeated load, and the vibration isolator 2 and a load detector 3 are set in series in the vibration axis direction of a vibrator 1 that generates a dynamic repetitive load, and the vibration isolator 2 displacement X, displacement velocity X〓, acceleration X〓,
The damping coefficient C and spring constant K are determined from the following equation of motion. M is the mass of the vibration-proof rubber 2. F=MX¨+CX〓+KX However, since the mass M of the anti-vibration rubber 2 is usually ignored, it is calculated as F=CX〓+KX...(1). This relationship is vector-wise as shown in FIG. 2, where δ is the phase difference between the load F and the displacement X, and is approximately 0 to 40 degrees. Note that the load signal here is a sine wave, so

【表】 となる。 そこで本発明者は、(1)式からダンピング係数
C、バネ定数Kを得る回路として、第3図に示す
回路を特願昭53−139811号(特公昭58−22688
号)において提案した。同図において4,5はア
ナログの掛算器、6はローパスフイルタ、7は直
流において無限大の増幅率をもつ積分器である。
ここにおいてバネ定数Kを求めるには、入力端子
8と10に変位信号Xを、また入力端子9に荷重
信号を入力させる。 いま積分器7の出力dがK′であるとすると、
掛算器4の一方の入力aは、 F−K′X であり、この式は(1)によつて、 CX〓+KX−K′X …(3) となり、その掛算器4の出力bは、 X(CX〓+KX−K′X) =X0sinωt {CωX0cosωt+X0sinωt(K−K′)} =1/2CωX sin2ωt−1/2X (K−K′)cos2ωt+1/2X (K−K′) …(4) である。そしてこの信号bをローパスフイルタ6
を通した後の信号cは、2ωt成分がカツトされ
て、 1/2X (K−K′) …(5) となる。そしてこの第3図の回路は負帰還回路を
構成しているので、K−K′=0となるように動
作し、K=K′となる。従つて信号dがバネ定数
Kを表わす信号となる。 また、ダンピング係数Cを測定する場合には、
入力端子8と10に変位信号Xの代りに変位速度
信号X〓を入力させる。この場合、掛算器4の出力
bが、 1/2ω2X (C−C′)+1/2ω2X0 (C−C′)cos2ωt+1/2ωX Ksin2ωt…(6
) となり、信号cは、 1/2ω2X (C−C′) …(7) となる。そして前述の場合と同様にC−C′=0
の時にバランスがとれて信号cが零となり、積分
器7の出力dが、ダンピング係数Cを表わす信号
となる。 以上のように第3図の回路は、自動的にバネ定
数Kやダンピング係数Cを測定でき、非常に好都
合であるが、測定結果として、第4図に示すよう
に、速度X〓のレベルの小さい部分において、角度
δが小さい場合(δ参照)にKが負となつて誤
差が生じている。なお、角度はδ>δ>δ
>δ>δ>δの関係にある。このように誤
差が生ずる原因は、アナログの掛算器4,5が入
力レベルの小さいほどその演算精度が落ちること
にあると考えられる。 本発明は斯る点に鑑みたもので、試験機で検出
したデータ信号(荷重、変位等の信号)を、前記
した第3図のアナログ入力側で増幅して、バネ定
数等の信号を得、この信号を増幅の倍率分だけ修
正して正規のバネ定数等の信号に戻すようにし、
アナログ掛算器が常時定格に近い状態で作動する
ようにして前記したような誤差を生じないように
した防振ゴムの動的特性測定装置を提供せんとす
るものである。 以下、図を参照して本発明のバネ定数Kを測定
する一実施例を説明する。2点鎖線のブロツク
の中は第3図と同一である。12,11はそれぞ
れ荷重信号F、変位信号Xの振幅値を検出する振
幅検出回路で、前記ブロツクの動作の定格レベ
ルの例えば50%以下に下つた時に%に応じた出力
を生ずる比較機能をもち、その出力はマイクロコ
ンピユータ等の演算制御回路13に入力してい
る。14,15はゲイン切換増幅器で、演算制御
回路13からの指令によつてそのゲインを切換え
られ、荷重信号F、変位信号Xの振幅を、n個の
既知の倍率αn,βnで増減する。また、積分回
路7の出力であるバネ定数K0の信号も演算制御
回路13に入力しており、ここにおいて前記ゲイ
ン切換の指令に対応してその値を修正し、真のバ
ネ定数の値の信号Kを出す。16,17は入力端
である。 以上において、入力端16に荷重信号Fをl
〔Kg/V〕で入力させ、これによりe点の信号が
定格の50%に下つたとすると、振幅制御回路12
が働き、このため演算制御回路13がゲイン切換
回路14のゲインをαに切換え、e点の信号の
振幅を定格の近くにまで増幅する。 また、入力端17に変位信号Xをm〔cm/V〕
で入力させ、これにより点の信号が定格の50%
に下つたとすると、振幅制御回路11が働き、こ
のため演算制御回路13がゲイン切換回路15の
ゲインをβに切換え、点の信号の振幅を定格
の近くにまで増幅する。 そして、以上のようにして定格に近い入力信号
によつてブロツク内の掛算器4,5の動作は誤
差なく正常に行なわれるようになり、バネ定数
K0の信号を受ける演算制御回路13は前記増幅
率α,βによつてその値を修正して真のK値
の信号を出す。すなわち、e点の信号はα1l
〔Kg/V〕であり、また点の信号はβ1m〔cm/
V〕であるので、真のKの値は、 K〔Kg/cm〕=K0・αl/βm〔Kg/cm〕 となり、これが演算制御回路13によつて演算さ
れる。e点,点の信号振幅が定格の45%に下つ
た時にはゲイン切換回路14,15はα,β
にそのゲインを切換えられ、同様に演算される。 なお、以上はバネ定数Kについてであるが、ダ
ンピング係数Cについては、入力端17に速度信
号X〓を入力させてやれば良い。 第6図は別の実施例で、K0値C0値を同時に得
るために第5図のブロツクと同一の回路を2個
含む回路18と、荷重信号F、変位信号X、速度
信号X〓のレベルを検出して所定のレベルにまでも
ち上げ、かつ回路18からのK0値の信号、C0
の信号をそのレベル変換に対応して修正し、それ
によつて真のK値、真のC値を演算し、更にその
真のK値、真のC値からtanδを演算するデジタ
ル処理回路19と、真のC値の表示器20、真の
K値の表示器21、tanδの表示器22とで成
る。なお、tanδは次の演算による。第2図と(2)
式により、
[Table] becomes. Therefore, the inventor of the present invention proposed the circuit shown in FIG.
(No.). In the figure, 4 and 5 are analog multipliers, 6 is a low-pass filter, and 7 is an integrator with an infinite amplification factor in direct current.
In order to obtain the spring constant K, the displacement signal X is input to the input terminals 8 and 10, and the load signal is input to the input terminal 9. Now, assuming that the output d of the integrator 7 is K',
One input a of the multiplier 4 is F−K′X, and this equation becomes CX〓+KX−K′X …(3) according to (1), and the output b of the multiplier 4 is X ( CX〓 + KX - K'X ) = 0 (K-K')...(4). This signal b is then filtered through a low pass filter 6.
After passing through, the 2ωt component is removed from the signal c, which becomes 1/2X 2 0 (K-K') (5). Since the circuit shown in FIG. 3 constitutes a negative feedback circuit, it operates so that K-K'=0, so that K=K'. Therefore, the signal d becomes a signal representing the spring constant K. In addition, when measuring the damping coefficient C,
Instead of the displacement signal X, the displacement speed signal X is inputted to the input terminals 8 and 10. In this case , the output b of the multiplier 4 is 1/ 2
), and the signal c becomes 1/2ω 2 X 2 0 (C−C′) (7). And as in the previous case, C-C'=0
When the balance is achieved, the signal c becomes zero, and the output d of the integrator 7 becomes a signal representing the damping coefficient C. As mentioned above, the circuit shown in Fig. 3 can automatically measure the spring constant K and damping coefficient C, which is very convenient, but as a result of the measurement, as shown in Fig. 4, the level of speed In a small portion, when the angle δ is small (see δ 6 ), K becomes negative and an error occurs. Note that the angle is δ 1 > δ 2 > δ 3
The relationship is >δ 456 . The reason for such an error is considered to be that the accuracy of the calculation of the analog multipliers 4 and 5 decreases as the input level decreases. The present invention has been developed in view of this point, and amplifies the data signal (signal of load, displacement, etc.) detected by the testing machine on the analog input side shown in Fig. 3 above to obtain signals such as the spring constant. , modify this signal by the amplification factor to return it to a signal such as a regular spring constant,
It is an object of the present invention to provide an apparatus for measuring the dynamic characteristics of a vibration isolating rubber in which the analog multiplier always operates in a state close to the rated value so that the above-mentioned error does not occur. An example of measuring the spring constant K of the present invention will be described below with reference to the drawings. The inside of the block indicated by the two-dot chain line is the same as in FIG. Reference numerals 12 and 11 are amplitude detection circuits for detecting the amplitude values of the load signal F and the displacement signal , the output thereof is input to an arithmetic control circuit 13 such as a microcomputer. Reference numerals 14 and 15 denote gain switching amplifiers whose gains are switched in response to a command from the arithmetic control circuit 13, and increase or decrease the amplitudes of the load signal F and displacement signal X by n known multiplication factors αn and βn. Further, the signal of the spring constant K0 , which is the output of the integrating circuit 7, is also input to the arithmetic control circuit 13, and its value is modified here in response to the gain switching command, and the true value of the spring constant is calculated. Give signal K. 16 and 17 are input ends. In the above, the load signal F is input to the input terminal 16.
[Kg/V], and if this causes the signal at point e to drop to 50% of the rating, the amplitude control circuit 12
Therefore, the arithmetic control circuit 13 switches the gain of the gain switching circuit 14 to α1 , and amplifies the amplitude of the signal at point e to near the rated value. In addition, the displacement signal X is input to the input terminal 17 in m [cm/V].
This makes the signal at the point 50% of the rating.
, the amplitude control circuit 11 operates, and therefore the arithmetic control circuit 13 switches the gain of the gain switching circuit 15 to β1 , amplifying the amplitude of the signal at the point to near the rated value. As described above, the multipliers 4 and 5 in the block operate normally without error due to the input signal close to the rated value, and the spring constant
The arithmetic control circuit 13 that receives the K 0 signal corrects its value using the amplification factors α 1 and β 1 and outputs a true K value signal. In other words, the signal at point e is α 1 l
[Kg/V], and the signal at the point is β 1 m [cm/
V], the true value of K is K[Kg/cm]=K 0 ·α 1 l/β 1 m [Kg/cm], which is calculated by the arithmetic control circuit 13. When the signal amplitude at points e and point falls to 45% of the rating, the gain switching circuits 14 and 15 change α 2 and β 2
The gain is switched and calculated in the same way. Although the above is about the spring constant K, the damping coefficient C can be obtained by inputting the speed signal X to the input terminal 17. FIG. 6 shows another embodiment, which includes a circuit 18 including two circuits identical to the blocks in FIG. 5 in order to simultaneously obtain the K 0 value and the C 0 value, as well as a load signal F, a displacement signal X, and a speed signal X. detects the level of and raises it to a predetermined level, and modifies the K 0 value signal and C 0 value signal from the circuit 18 in accordance with the level conversion, thereby determining the true K value and the true value. A digital processing circuit 19 that calculates the C value of and further calculates tan δ from the true K value and true C value, a true C value display 20, a true K value display 21, and a tan δ display. It consists of a container 22. Note that tan δ is based on the following calculation. Figure 2 and (2)
By the formula,

【表】 〓……………………………(8)
F
[Table] 〓………………………………(8)
F 0

Claims (1)

【特許請求の範囲】 1 第1信号入力端子に入力される動的荷重に基
づく防振ゴムの変位を表わす変位信号又は変位速
度を表わす速度信号と、第2信号入力端子に入力
される防止ゴムに加えられる動的荷重を表わす荷
重信号とを掛算する第1掛算器と、該第1掛算器
の出力信号から低域成分を取り出すローパスフイ
ルタと、該ローパスフイルタの出力信号を積分す
る積分器と、該積分器の出力信号と、第3信号入
力端子に入力される動的荷重に基づく防振ゴムの
変位を表わす変位信号又は変位速度を表わす速度
信号とを掛算して前記第2信号入力端子に入力さ
れる前記荷重信号に負帰還する第2掛算器とを備
え、前記積分器の出力信号を防振ゴムのバネ定数
又はダンピング係数の測定信号として出力する防
振ゴムの動的特性測定装置において、 前記第1〜第3の入力端子への信号を検出して
所定のレベルにまで増幅し、前記測定信号を該増
幅の増幅率分だけ修正して成る防振ゴムの動的特
性測定装置。
[Claims] 1. A displacement signal representing the displacement of the anti-vibration rubber based on the dynamic load input to the first signal input terminal or a speed signal representing the displacement speed, and a speed signal representing the displacement speed of the anti-vibration rubber input to the second signal input terminal. a first multiplier for multiplying by a load signal representing a dynamic load applied to the first multiplier; a low-pass filter for extracting a low-frequency component from the output signal of the first multiplier; and an integrator for integrating the output signal of the low-pass filter. , the output signal of the integrator is multiplied by a displacement signal representing the displacement of the anti-vibration rubber based on the dynamic load input to the third signal input terminal, or a speed signal representing the displacement speed, and the output signal is multiplied by the second signal input terminal. and a second multiplier that provides negative feedback to the load signal input to the vibration isolating rubber dynamic characteristic measuring device, the device outputting the output signal of the integrator as a measurement signal of a spring constant or damping coefficient of the vibration isolating rubber. A dynamic characteristic measuring device for anti-vibration rubber, which detects signals to the first to third input terminals, amplifies them to a predetermined level, and corrects the measurement signals by an amplification factor of the amplification. .
JP14657578A 1978-11-29 1978-11-29 Measuring instrument of dynamic characteristic of vibration-proof rubber Granted JPS5572932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14657578A JPS5572932A (en) 1978-11-29 1978-11-29 Measuring instrument of dynamic characteristic of vibration-proof rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14657578A JPS5572932A (en) 1978-11-29 1978-11-29 Measuring instrument of dynamic characteristic of vibration-proof rubber

Publications (2)

Publication Number Publication Date
JPS5572932A JPS5572932A (en) 1980-06-02
JPS6212850B2 true JPS6212850B2 (en) 1987-03-20

Family

ID=15410784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14657578A Granted JPS5572932A (en) 1978-11-29 1978-11-29 Measuring instrument of dynamic characteristic of vibration-proof rubber

Country Status (1)

Country Link
JP (1) JPS5572932A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330234A (en) * 2014-09-24 2015-02-04 江南大学 Novel method for indirectly determining equivalent dynamic stiffness of package coupling interface
CN104330353A (en) * 2014-09-24 2015-02-04 江南大学 New method of indirectly measuring equivalent dynamic stiffness in multipoint-connecting packaging coupling interface
CN104330352A (en) * 2014-09-24 2015-02-04 江南大学 High-precision method of indirectly measuring equivalent dynamic stiffness in multipoint-connecting packaging coupling interface

Also Published As

Publication number Publication date
JPS5572932A (en) 1980-06-02

Similar Documents

Publication Publication Date Title
US4624331A (en) Weight sensor with vibration error correction
KR102064630B1 (en) Transducer acceleration compensation using a delay to match phase characteristics
US4989458A (en) Apparatus for detecting torque for oscillation-type electric dynamometer
JPH05180661A (en) Sensor-signal extracting circuit
JPS63142216A (en) Circuit device for sensor
JPS6212850B2 (en)
KR910001147B1 (en) Weighting meter system
JPS5825217B2 (en) Electric dynamometer torque measurement method
JPS6315790Y2 (en)
US20190145818A1 (en) Processing apparatus, processing system, physical quantity measurement apparatus, and measurement method
JP2711790B2 (en) Vibration measuring instrument
JPS60114723A (en) Measuring apparatus
JPH0447773B2 (en)
JPH08129071A (en) Earthquake vibration detector and si value-detecting apparatus
JPH0450967B2 (en)
JP3581179B2 (en) Mass or weight measuring device
JPH073443B2 (en) Automatic balancer
SU1689795A1 (en) Device for liquid density measurements
SU705464A1 (en) Device for detecting modulus of alternating signal
JP3179862B2 (en) Signal processing circuit of weighing device
SU1276914A1 (en) Digital weight-measuring arrangement
JP2893855B2 (en) Mass flow meter
JP3316013B2 (en) Inclinometer
US4458164A (en) Frequency to voltage transducer
JPH0686077U (en) Vibration sensor