JPS62127646A - Sensor for gasoline-alcohol mixture ratio - Google Patents

Sensor for gasoline-alcohol mixture ratio

Info

Publication number
JPS62127646A
JPS62127646A JP26819685A JP26819685A JPS62127646A JP S62127646 A JPS62127646 A JP S62127646A JP 26819685 A JP26819685 A JP 26819685A JP 26819685 A JP26819685 A JP 26819685A JP S62127646 A JPS62127646 A JP S62127646A
Authority
JP
Japan
Prior art keywords
light
receiving element
emitting element
light receiving
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26819685A
Other languages
Japanese (ja)
Inventor
Shigeru Miyata
繁 宮田
Yoshihiro Matsubara
佳弘 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP26819685A priority Critical patent/JPS62127646A/en
Publication of JPS62127646A publication Critical patent/JPS62127646A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the titled sensor from being affected by environmental temp. by attaching a light receiving element for temp. compensation for which part of the light radiated from a light emitting element is used as a light source into the case of the light emitting element and controlling the power feed quantity to the light emitting element in such a manner that the specified output of the light receiving element for temp. compensation is maintained. CONSTITUTION:The light receiving element 4 for temp. compensation is attached at the point in the case of the light emitting element where the light receiving element can receive the irradiation of the light emitted the body of the element 2, i.e., a photodi ode chip 2. A circuit for controlling the power feed quantity to the light emitting element is provided to invariably maintain the output of the light receiving element 4 by suppressing the floating of the output of the light receiving element when the output of said element is going to float according to the fluctuation of the environmen tal temp. The deterioration in the accuracy of the measurement with the sensor A arising from the influence of the ambient environmental temp. on the electrical characteristics of the light emitting element 2, the light receiving element 3 and the light receiving element 4 for temp. compensation is thereby averted. The elements 2-4 having the approximate temp. characteristics as far as possible are used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関用燃料としてのガソリン−アルコール
混合液の、ガソリン−アルコール混合比を検知するため
の光電変換型センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photoelectric conversion sensor for detecting the gasoline-alcohol mixture ratio of a gasoline-alcohol mixture as a fuel for an internal combustion engine.

[従来の技術] 人や物を移送する乗物を動かすために、また工業製品の
原料として、今や日常生活に不可欠の存在となっている
石油資源も将来確実に涸渇への一途をたどる運命にある
。対応策の一つとして極く短期間を隔てて再生産が可能
な植物や石炭、天然ガス等を原料としてアルコールを製
造し、ガソリンと混用することによって石油消費を極力
抑制しようとする計画が各地で進められている。
[Conventional technology] Petroleum resources, which are now indispensable to daily life for moving vehicles that transport people and goods, and as raw materials for industrial products, are definitely destined to run out in the future. . As a countermeasure, there are plans in various places to manufacture alcohol from plants, coal, natural gas, etc. that can be reproduced over a very short period of time, and to mix it with gasoline to reduce oil consumption as much as possible. It is being advanced.

[発明が解決しようとする問題点] 内燃機関、殊に自動車用エンジンの場合には、上記の問
題とも関連して極力燃焼効率を高めるために、また有害
な燃焼排ガスによる人体への悪影響をできるだけ少なく
するために、エンジンシリンダ内に供給する混合気の空
気対燃料の比率とか点火時期は特に厳密に制御する必要
がある。そして燃料の種類が異なるごとにこれらの制御
条件は当然に変更されなければならない。ガソリン−ア
ルコール混合燃料の場合には、市場での使い勝手を考慮
すれば、ガソリンとの混用が可能なシステムにすること
が望ましい。
[Problems to be Solved by the Invention] In the case of internal combustion engines, especially automobile engines, in connection with the above-mentioned problems, it is necessary to increase combustion efficiency as much as possible, and to reduce the adverse effects of harmful combustion exhaust gases on the human body as much as possible. In order to reduce this, it is necessary to particularly strictly control the air-to-fuel ratio of the mixture supplied into the engine cylinder and the ignition timing. Naturally, these control conditions must be changed for each different type of fuel. In the case of gasoline-alcohol mixed fuel, considering ease of use in the market, it is desirable to have a system that can be used in combination with gasoline.

本発明は内燃機関の燃料供給系に組み込んでガソリン−
アルコール混合比を連続的に計測し、内燃機関の自動燃
焼制御装置にフィードバック制御情報を提供するための
、計測精度の向上された、殊に計測域における環境温度
の影響を受けることが極めて少ないガソリン−アルコー
ル混合比センサを提供することを目的とする。
The present invention can be incorporated into the fuel supply system of an internal combustion engine to
Gasoline with improved measurement accuracy and extremely little influence by environmental temperature in the measurement area, in order to continuously measure the alcohol mixture ratio and provide feedback control information to the automatic combustion control device of the internal combustion engine. - To provide an alcohol mixture ratio sensor.

[問題点を解決するだめの手段] 上記の目的を達成するために本発明によるガソリン−ア
ルコール混合比センサは、外周面をガソリンへアルコー
ル混合液に接触させた棒状透光体の、一端面に発光素子
を他端面に受光素子を対置させ、前記混合液の組成の変
化に伴って増減する、前記棒状透光体内を全反射して通
過した光の量を測ることによって混合比を検知するセン
サにおいて、前記発光素子のケース内に、前記発光素子
の放射光の一部を光源とする、前記センサの温度特性補
正のための温度補償用受光素子を取付けると共に、前記
温度補償用受光素子の出力が一定に保たれる様に、前記
受光素子への給電聞を制御するための給電制御回路を設
ける構成を採用した。
[Means for Solving the Problems] In order to achieve the above object, the gasoline-alcohol mixture ratio sensor according to the present invention includes a rod-shaped transparent body whose outer circumferential surface is in contact with the gasoline and alcohol mixture. A sensor that detects the mixing ratio by placing a light receiving element on the other end of a light emitting element and measuring the amount of light that is totally reflected and passed through the rod-shaped transparent body, which increases or decreases as the composition of the mixed liquid changes. A temperature-compensating light-receiving element for correcting the temperature characteristics of the sensor is installed in the case of the light-emitting element, and the temperature-compensating light-receiving element uses part of the emitted light of the light-emitting element as a light source, and the output of the temperature-compensating light-receiving element is In order to maintain a constant value, a configuration was adopted in which a power supply control circuit was provided to control the power supply to the light receiving element.

[作用および発明の効果] 上記のごとき構成を備えた混合比センサは、定電流が継
続的に供給されている発光素子から放射される光のうち
、透光体と混合液との界面に臨界角より大きな角度をな
して照射されるような入用角をもって透光体の一方の端
面に入射した光は、一度だ(プ全反射をして他方の端面
に到達し、受光素子に光エネルギーを与えて出力電圧を
生ぜしめる。
[Operations and Effects of the Invention] The mixture ratio sensor having the above-mentioned configuration has a critical part of the light emitted from the light emitting element to which a constant current is continuously supplied to the interface between the transparent body and the mixed liquid. Light incident on one end face of a translucent body with an incident angle that is larger than the angle at which it is irradiated is reflected only once (total reflection occurs, reaches the other end face, and transfers light energy to the photodetector). to produce an output voltage.

上記の臨界角はガソリン−アルコールの混合比が異なる
ごとに相異するので、透光体内を全反射して通過する光
の量も変化し、従って受光素子の出力電圧もそれに伴っ
て変動するのでこの出力電圧をチェックすることによっ
て混合比センサどしての役目が果される。
Since the above critical angle differs depending on the mixing ratio of gasoline and alcohol, the amount of light that is totally reflected and passes through the transparent body also changes, and the output voltage of the light receiving element also changes accordingly. By checking this output voltage, it functions as a mixing ratio sensor.

上記の臨界角はセンサが置かれている環境温度によって
も変動するし、発光素子および受光素子の光電変換特性
も環境温度によって左右される。
The critical angle described above varies depending on the environmental temperature in which the sensor is placed, and the photoelectric conversion characteristics of the light emitting element and the light receiving element are also influenced by the environmental temperature.

そこで発光素子から発する光の一部を温度補償用受光素
子に照射し、その出力が温度変化のいがlυにかかわら
ず一定に保たれるように発光素子への給電制御回路を働
かせれば、発光素子は環境温度の変化に対応して増減さ
れた、いわば温度補正の行われた電流の供給を受けるこ
とになって、センサの計測精度が環境温度によって左右
される不都合がほぼ解消される。
Therefore, if part of the light emitted from the light-emitting element is irradiated onto the temperature-compensating light-receiving element, and the power supply control circuit to the light-emitting element is activated so that the output is kept constant regardless of the temperature change, The light emitting element is supplied with current that is increased or decreased in response to changes in the environmental temperature, so to speak, with temperature correction performed, and the disadvantage that the measurement accuracy of the sensor is affected by the environmental temperature is almost eliminated.

そして温度補償用受光素子は発光素子のケース内にあら
かじめ一体的に組込ませであるので、センザの組立構造
を極めて簡単なものにすることができるうえに外形もコ
ンパクト化される。
Since the temperature-compensating light-receiving element is pre-integrated into the case of the light-emitting element, the assembly structure of the sensor can be made extremely simple, and the external shape can also be made compact.

又発光素子から放射される光は指向性を有するので、若
し発光素子から放射された後一旦棒状透光体を通過させ
た光を温度補償用受光素子に照射させる方法によれば、
この光通過の過程において混合液の組成や環境温度の変
化の影響を受けて、温度補償機能が不安定化するが、本
発明センサはその様な不都合は生じない。
Furthermore, since the light emitted from the light emitting element has directionality, if the light is emitted from the light emitting element and then passes through a rod-shaped light transmitting element, the light receiving element for temperature compensation is irradiated with the light.
During this process of light passage, the temperature compensation function becomes unstable due to the influence of changes in the composition of the liquid mixture and the environmental temperature, but the sensor of the present invention does not suffer from such problems.

[実施例] 以下に付図に示す実施例に基づいて本発明の具体的な構
成を説明する。
[Example] A specific configuration of the present invention will be described below based on an example shown in the accompanying drawings.

第1図〜第4図はいずれも一実施例を示すものであって
、第1図はガソリン−アルコール混合比センサの側断面
を、第2図は発光素子の側断面を描いている。5は混合
比センサAのケーシングであり金属乃至はエンジニアリ
ングプラスチックで作られている。光学ガラス製の棒状
透光体1はその両端部を筒状容器の態をなすケーシング
5の両筒端面を貫いて穿たれている取付は用孔内に嵌合
固定されている。ケーシング5の内部空間6は被計測混
合液通路をなしており、ケーシング5の周壁には被計測
混合液の入口継手7と出口継手8が取付けられている。
Figures 1 to 4 all show one embodiment, with Figure 1 depicting a side cross section of a gasoline-alcohol mixture ratio sensor, and Figure 2 depicting a side cross section of a light emitting element. Reference numeral 5 denotes a casing of the mixture ratio sensor A, which is made of metal or engineering plastic. A rod-shaped light-transmitting body 1 made of optical glass has its both ends fitted and fixed in holes that are bored through both cylindrical end faces of a casing 5 in the form of a cylindrical container. An internal space 6 of the casing 5 forms a passageway for the mixed liquid to be measured, and an inlet joint 7 and an outlet joint 8 for the mixed liquid to be measured are attached to the peripheral wall of the casing 5.

発光ダイオードの如き発光素子2とホトダイオードの如
き受光素子3とは、それぞれ棒状透光体1の一方の端面
1aと他方の端面1bに各々の発光面と受光面が対置さ
れる様にしてケーシング5の壁体に取付けられている。
A light-emitting element 2 such as a light-emitting diode and a light-receiving element 3 such as a photodiode are mounted in a casing 5 such that their light-emitting and light-receiving surfaces are opposed to one end surface 1a and the other end surface 1b of the rod-shaped transparent body 1, respectively. is attached to the wall.

2aは発光ダイオード2の入力端子、3aは受光素子3
の出力端子である。9は棒状透光体1の両端部とケーシ
ング5との接触面を液密にシールするためのOリング、
5aはこのOリングを嵌入させるためにケーシング5に
設けた環状溝である。
2a is the input terminal of the light emitting diode 2, 3a is the light receiving element 3
This is the output terminal of 9 is an O-ring for liquid-tightly sealing the contact surface between both ends of the rod-shaped transparent body 1 and the casing 5;
5a is an annular groove provided in the casing 5 to fit this O-ring.

発光素子2は第2図に描かれている様に、蓋部10と底
板部11との接合体からなるケース内の中央部に発光素
子2の本体をなすホトダイオードチップ2Aを納めた構
成を備えており、このケースの内周面に近い位置にはボ
1〜ダイオードチップ2Aを光源とする温度補償用受光
素子4が組付けられている。13はこれら2つの素子の
取付は用基盤体、14は受光素子4の取付具、12はホ
トダイオードチップ2Aから放射される光をケースの外
部に向けて放散させるための窓ガラスであり、4aは受
光素子4の出力端子である。
As shown in FIG. 2, the light emitting element 2 has a structure in which a photodiode chip 2A, which forms the main body of the light emitting element 2, is housed in the center of a case made of a joined body of a lid part 10 and a bottom plate part 11. A temperature-compensating light-receiving element 4 is assembled near the inner circumferential surface of the case, using the board 1 to the diode chip 2A as light sources. 13 is a base body for mounting these two elements, 14 is a fixture for the light receiving element 4, 12 is a window glass for diffusing the light emitted from the photodiode chip 2A toward the outside of the case, and 4a is a This is an output terminal of the light receiving element 4.

第4図は本発明によるガソリンヘーアルコール混合比セ
ンサを用いた電子制御式燃料噴射装置が組込まれた自動
車用エンジンの作動制御システム図であって、37はエ
ンジンシリンダ、50はエンジンのキースイッチ、51
は制御回路、55は車載バッテリ電澱、20は燃料タン
ク、Aは本発明によるガソリン−アルコール混合比セン
サ、54は給電制御回路である。
FIG. 4 is a diagram of an operation control system for an automobile engine incorporating an electronically controlled fuel injection device using a gasoline-to-alcohol mixture ratio sensor according to the present invention, in which 37 is an engine cylinder, 50 is an engine key switch, 51
55 is a control circuit, 55 is an on-vehicle battery charge, 20 is a fuel tank, A is a gasoline-alcohol mixture ratio sensor according to the present invention, and 54 is a power supply control circuit.

燃焼系統の主要構成部品としての21は燃料ポンプ、2
3はプレッシャレギュレータ、24はインジェクタ、2
6はコールドスタートインジェクタ、25はイグニッシ
ョンコイルであり、30はエアクリーナ、31はエアバ
ルブ、32はエアフローメータ、33はスロットルバル
ブ、34はスロットルポジションセンサ、35は吸気管
、36は排気管である。また52は酸素センサ、53は
エンジン冷却水温センサである。
21 is a fuel pump as the main components of the combustion system;
3 is a pressure regulator, 24 is an injector, 2
6 is a cold start injector, 25 is an ignition coil, 30 is an air cleaner, 31 is an air valve, 32 is an air flow meter, 33 is a throttle valve, 34 is a throttle position sensor, 35 is an intake pipe, and 36 is an exhaust pipe. Further, 52 is an oxygen sensor, and 53 is an engine cooling water temperature sensor.

つぎに上記実施例センサAの作動について第1図〜第4
図を参照しながら説明する。エンジンのキースイッチ5
0をスタート位置にセットすることによってエンジンが
起動すると共に制御回路51への作動電力の供給が行わ
れる。燃料タンク2oに貯えられているガソリンとアル
コール(一般にはメタノール)との任意の割合の混合液
としての燃料は、燃料ポンプ21の働きによって燃料配
管22をたどってインジェクタ24に供給される。イン
ジェクタ24は制御回路51の指示に従ってその時々の
エンジン運転条件に最も適した量の燃料混合液を吸気管
35内に向けて噴射させる。
Next, the operation of the above embodiment sensor A will be explained in Figs. 1 to 4.
This will be explained with reference to the figures. engine key switch 5
By setting 0 to the start position, the engine is started and operating power is supplied to the control circuit 51. Fuel, which is a mixture of gasoline and alcohol (generally methanol) in an arbitrary ratio, stored in the fuel tank 2o is supplied to the injector 24 along the fuel pipe 22 by the action of the fuel pump 21. The injector 24 injects the fuel mixture into the intake pipe 35 in an amount most suitable for the engine operating conditions at the time according to instructions from the control circuit 51 .

混合比センサAはこの燃料配管22の途中に介在させる
ようにしてその混合液流入口継手7ど流出口継手8がそ
れぞれ配管22に接続されている。そして発光素子2に
は制御回路51から定電圧電流が= 9− 継続的に流されるので、発光素子(発光ダイオード)2
から放射された光は素子の発光面に対置されている棒状
透光体1の一方の端面1aから透光体1内に侵入する。
The mixture ratio sensor A is interposed in the middle of the fuel pipe 22, and its mixed liquid inlet joint 7 and outlet joint 8 are connected to the pipe 22, respectively. Since a constant voltage current is continuously applied to the light emitting element 2 from the control circuit 51, the light emitting element (light emitting diode) 2
The light emitted from the element enters the light transmitting body 1 from one end surface 1a of the rod-shaped light transmitting body 1, which is placed opposite to the light emitting surface of the element.

透光体1は第1図に描かれているように燃料混合液が満
たされている筒状ケーシング5内に納まっており、外周
面は混合液と接触する状態にあるので、混合液との接触
界面にお(プる透光体1の臨界角に達するよりも小さな
入射角をもつ−C一方の端面1aから侵入した光は接触
界面で全反射して透光体1の他方の端面1bに達し、こ
の端面1bに向(プて対置されている受光素子(ホトダ
イオード)3の受光面を照射するので、素子の出力端子
には照射光量に比例した出力が生ずる。
As shown in FIG. 1, the transparent body 1 is housed in a cylindrical casing 5 filled with a fuel mixture, and its outer peripheral surface is in contact with the mixture, so there is no contact with the mixture. The light entering the contact interface from one end surface 1a is totally reflected at the contact interface and reaches the other end surface 1b of the light transmitting material 1. Since the light reaches the end face 1b and irradiates the light receiving surface of the light receiving element (photodiode) 3 placed oppositely, an output proportional to the amount of irradiated light is generated at the output terminal of the element.

一方上記の臨界角に達するよりも大きな入射角をもって
侵入した光は、透光体1の外周面に到達した後、透光体
1の外に逃れ出るので、受光素子3に出力を生ぜしめる
ことには全く関与しない。
On the other hand, light that enters at an incident angle larger than the critical angle mentioned above reaches the outer circumferential surface of the light-transmitting body 1 and then escapes from the light-transmitting body 1, causing an output to the light-receiving element 3. is not involved at all.

混合液との接触界面における透光体1の臨界角は混合液
の構成成分であるガソリンとアルコールの混合比のいか
んにょって当然に変化するので、発光素子2から発光し
た光のうち透光体1内で全反射して受光素子3の受光面
に到達する光量の割合は、ガソリン−アルコールの混合
比の変動に伴って変化することになる。従って受光索子
3の出力とガソリン−アルコール混合比の関係データを
あらかじめ実験的に求めておくことによって、受光素子
3の出力をガソリン−アルコール混合比に換算した値ど
して求めることは電子回路を利用して容易に行うことが
でき、混合比センサとしての機能が果される。
The critical angle of the transparent body 1 at the contact interface with the mixed liquid naturally changes depending on the mixing ratio of gasoline and alcohol, which are the constituent components of the mixed liquid. The proportion of the amount of light that is totally reflected within the body 1 and reaches the light-receiving surface of the light-receiving element 3 changes as the gasoline-alcohol mixing ratio changes. Therefore, by experimentally determining the relational data between the output of the light receiving element 3 and the gasoline-alcohol mixing ratio, it is possible to calculate the output of the light receiving element 3 as a value converted to the gasoline-alcohol mixing ratio using an electronic circuit. This can be easily done using the , and functions as a mixture ratio sensor.

ところで混合比センサの所要構成要素である発光素子2
および受光素子3の光電変換特性はセンサの置かれてい
る環境温度の変動に伴って変化するものであり、また混
合液との接触界面における透光体1の臨界角も温度の上
下と共にその値が変化するので、何等かの温度補償手段
を講じないと混合比センサに充分;に計測精度を期待す
ることができない。
By the way, the light emitting element 2 which is a necessary component of the mixture ratio sensor
The photoelectric conversion characteristics of the light-receiving element 3 change with fluctuations in the environmental temperature in which the sensor is placed, and the critical angle of the transparent body 1 at the contact interface with the mixed liquid also changes as the temperature rises and falls. changes, so unless some kind of temperature compensation means is taken, it is not possible to expect sufficient measurement accuracy from the mixture ratio sensor.

そこで本発明による実施例センサAでは発光素子2のケ
ース内の素子20本体であるホトダイオードチップ2A
から発する光の照射を受けられる個所に温度補償用受光
素子4を取付けて置き、これら画素子の温度特性に由来
して環境温度の変化に伴って出力レベルの浮動するこの
受光素子4の出力を、センサAの出力情報に温度補正を
加えるための指標として利用する方法を採り入れた。
Therefore, in the embodiment sensor A according to the present invention, the photodiode chip 2A which is the main body of the element 20 inside the case of the light emitting element 2 is
A temperature-compensating light-receiving element 4 is installed at a location where it can be irradiated with light emitted from the pixel, and the output level of this light-receiving element 4 fluctuates as the environmental temperature changes due to the temperature characteristics of these pixel elements. , adopted a method of using the output information of sensor A as an index for adding temperature correction.

温度補償用受光素子4の出力を用いてセンサAの温度補
正を行うための具体策の一つとしては、受光素子4の出
力が環境温度の変動に伴って浮動しようとした時には、
この浮動を押さえて受光素子4の出力が不変に保たれる
ように、発光素子2への給電量を制御するための回路を
設ける様にすれば、結果として発光素子2及び受光素子
3並びに温度補償用受光素子4の電気的特性が周囲の環
境温度によって左右される事に基づくセンサAの計測精
度の低下を避けることができる。勿論これら2〜4の素
子は極力温度特性の近似したものを選定して用いる必要
がある。
One of the specific measures to correct the temperature of the sensor A using the output of the temperature compensation light receiving element 4 is to
If a circuit is provided to control the amount of power supplied to the light emitting element 2 in order to suppress this floating and keep the output of the light receiving element 4 unchanged, as a result, the temperature of the light emitting element 2, the light receiving element 3, and the It is possible to avoid a decrease in the measurement accuracy of the sensor A due to the fact that the electrical characteristics of the compensation light-receiving element 4 are affected by the surrounding environmental temperature. Of course, it is necessary to select and use these 2 to 4 elements whose temperature characteristics are as similar as possible.

第3図は発光素子2への給電制御回路の例示図であって
、2は発光素子、4は温度補償用受光素子、60はオペ
アンプ、61は前記の燃料噴!)l装置の制御回路51
からの入力端子である。
FIG. 3 is an illustrative diagram of a power supply control circuit to the light emitting element 2, in which 2 is the light emitting element, 4 is a temperature compensation light receiving element, 60 is an operational amplifier, and 61 is the aforementioned fuel injection device. )l device control circuit 51
This is the input terminal from.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による第1実施例センサの側断面図、第
2図は第1図のセンサに組込まれた発光素子の側断面図
、第3図はセンサの温度特性補正のための、発光素子へ
の給電制御回路の例示図、第4図は本発明によるガソリ
ン−アルコール混合比センサを用いた、電子制御式燃料
噴射装置が組込まれた自動車用エンジンの作動制御シス
テム図である。 図中 1・・・棒状透光体 2・・・発光素子 2A・
・・発光ダイオード本体 3・・・受光素子 4・・・
温度補償用受光素子 5・・・センサケーシング 6・
・・被計測混合液通路 10.11・・・発光素子のケ
ース A・・・混合比センサ 第1図 3a 第2図
FIG. 1 is a side sectional view of a first embodiment sensor according to the present invention, FIG. 2 is a side sectional view of a light emitting element incorporated in the sensor of FIG. 1, and FIG. FIG. 4 is an exemplary diagram of a power supply control circuit for a light emitting element, and is a diagram of an operation control system of an automobile engine incorporating an electronically controlled fuel injection device using the gasoline-alcohol mixture ratio sensor according to the present invention. In the figure 1... Rod-shaped transparent body 2... Light emitting element 2A.
...Light-emitting diode body 3...Light receiving element 4...
Temperature compensation light receiving element 5...Sensor casing 6.
...Mixed liquid passage to be measured 10.11... Case of light emitting element A... Mixture ratio sensor Fig. 1 3a Fig. 2

Claims (1)

【特許請求の範囲】 1)外周面をガソリン〜アルコール混合液に接触させた
棒状透光体の、一端面に発光素子を他端面に受光素子を
対置させ、前記混合液の組成の変化に伴って増減する、
前記棒状透光体内を全反射して通過した光の量を測るこ
とによって混合比を検知するセンサにおいて、 前記発光素子のケース内に、前記発光素子の放射光の一
部を光源とする、前記センサの温度特性補正のための温
度補償用受光素子を取付けると共に、 前記温度補償用受光素子の出力が一定に保たれる様に、
前記受光素子への給電量を制御するための給電制御回路
を設けたことを特徴とするガソリン〜アルコール混合比
センサ。
[Claims] 1) A rod-shaped transparent body whose outer peripheral surface is in contact with a gasoline-alcohol mixture is provided with a light emitting element on one end face and a light receiving element on the other end face, and a light emitting element is placed oppositely on the other end face, and as the composition of the mixture changes, increases and decreases,
In the sensor that detects the mixing ratio by measuring the amount of light that is totally reflected and passed through the rod-shaped light-transmitting body, the light-emitting element is provided within a case of the light-emitting element, and a part of the light emitted from the light-emitting element is used as a light source. In addition to installing a temperature compensation light receiving element for correcting the temperature characteristics of the sensor, so that the output of the temperature compensation light receiving element is kept constant,
A gasoline-alcohol mixture ratio sensor comprising a power supply control circuit for controlling the amount of power supplied to the light receiving element.
JP26819685A 1985-11-28 1985-11-28 Sensor for gasoline-alcohol mixture ratio Pending JPS62127646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26819685A JPS62127646A (en) 1985-11-28 1985-11-28 Sensor for gasoline-alcohol mixture ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26819685A JPS62127646A (en) 1985-11-28 1985-11-28 Sensor for gasoline-alcohol mixture ratio

Publications (1)

Publication Number Publication Date
JPS62127646A true JPS62127646A (en) 1987-06-09

Family

ID=17455254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26819685A Pending JPS62127646A (en) 1985-11-28 1985-11-28 Sensor for gasoline-alcohol mixture ratio

Country Status (1)

Country Link
JP (1) JPS62127646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726886A1 (en) * 1986-09-22 1988-03-31 Ngk Spark Plug Co SENSOR FOR DETERMINING THE MIXING RATIO OF LIQUID FUELS
EP0292097A2 (en) * 1987-04-17 1988-11-23 NGK Spark Plug Co. Ltd. Device for detecting the mixing ratio of petrol and an alcohol or the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726886A1 (en) * 1986-09-22 1988-03-31 Ngk Spark Plug Co SENSOR FOR DETERMINING THE MIXING RATIO OF LIQUID FUELS
EP0292097A2 (en) * 1987-04-17 1988-11-23 NGK Spark Plug Co. Ltd. Device for detecting the mixing ratio of petrol and an alcohol or the like

Similar Documents

Publication Publication Date Title
US4770129A (en) Sensor for mixing ratio of gasoline and alcohol
KR910004217B1 (en) Alcohol containing ratio detecting device
US5110205A (en) Apparatus for detecting alcohol concentration
US4895444A (en) Detector device for mixing ratio for gasoline and alcohol or the like
EP0370807A1 (en) A liquid mixture ratio detector device
US4843248A (en) Mixing ratio sensor for liquid fuel
JPS62127646A (en) Sensor for gasoline-alcohol mixture ratio
JPH04169839A (en) Alcohol-content detecting apparatus
EP0281337B1 (en) A detector device for mixing ratio for petrol and alcohol or the like
JPS62127645A (en) Sensor for gasoline-alcohol mixture ratio
JPH01263536A (en) Apparatus of detecting content ratio of alcohol
JP2008281546A (en) Liquid fuel property detecting method and liquid fuel property sensing device used for it
JPS62180244A (en) Mixing ratio sensor for alcohol mixed fuel
JPS62127647A (en) Sensor for gasoline-alcohol mixture ratio
JPS62180245A (en) Mixing ratio sensor for alcohol mixed liquid
US4912319A (en) Detector device for mixing ratio for gasoline and alcohol or the like
EP0433080B1 (en) Apparatus for measuring the mix ratio of a composite liquid
JPH0247487Y2 (en)
JPS62112040A (en) Sensor for gasoline-alcohol mixture ratio
JPS62276438A (en) Mixing ratio sensor for alcohol mixed fuel
JPS63215945A (en) Mixing ratio detector for fluid such as gasoline-alcohol
JPH0452679Y2 (en)
JPH0249143A (en) Detector for liquid mixing ratio of mixed liquid
JPH0442767Y2 (en)
JPH0222540A (en) Detector for liquid mixing ratio of liquid mixture