JPS62127484A - Method for removing scale - Google Patents

Method for removing scale

Info

Publication number
JPS62127484A
JPS62127484A JP26804585A JP26804585A JPS62127484A JP S62127484 A JPS62127484 A JP S62127484A JP 26804585 A JP26804585 A JP 26804585A JP 26804585 A JP26804585 A JP 26804585A JP S62127484 A JPS62127484 A JP S62127484A
Authority
JP
Japan
Prior art keywords
scale
alloy
acid
chemical cleaning
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26804585A
Other languages
Japanese (ja)
Inventor
Takao Minami
孝男 南
Hiroo Nagano
長野 博夫
Kazuo Yamanaka
和夫 山中
Hideaki Yuki
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26804585A priority Critical patent/JPS62127484A/en
Publication of JPS62127484A publication Critical patent/JPS62127484A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To easily and perfectly remove Fe3O4 scale formed on the surface of an Ni alloy by using a chemical cleaning soln. contg. specified amounts of ethylenediaminetetraacetic acid and citric acid and adjusted to a specified pH with ammonia. CONSTITUTION:A chemical cleaning soln. contg. 2X10<-3>-1mol/l ethylenediaminetetraacetic acid and 1X10<-3>-1X10<-1>mol/l citric acid and adjusted to 5-6.5 pH with ammonia is prepd. About 0.05-0.5vol% aliphatic carboxylic acid, primary or secondary amine may be added to the cleaning soln. as required. When the cleaning soln. is used, Fe3O4 scale formed on the surface of an Ni alloy in environment at high temp. and pressure is easily and perfectly removed without roughening the surface of the Ni alloy by local corrosion.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高温高圧水環境下で、伝熱管等に用いられる
Ni基合金の表面に生成し、該Ni基合金に粒界割れ等
の粒界損傷を発生させる鉄系酸化物からなるスケールを
除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the formation of grain boundary defects such as intergranular cracks in Ni-based alloys that are generated on the surface of Ni-based alloys used for heat exchanger tubes etc. in a high-temperature, high-pressure water environment. The present invention relates to a method for removing scale made of iron-based oxides that causes damage.

従来の技術 従来、例えばNi 75%、Cr 15%、Fe8%を
含有するNiJλ合金は、高4高圧水を扱う環境下にお
いてすぐれた耐食性を示すので、蒸気発生器の伝熱管材
料などに使用されている。しかしながらアルカリ濃縮と
マグネタイト(Fe、 Oa )等のFe系酸化物スケ
ールの生成に起因して、前記伝熱管の支持板の間隙部で
粒界割れなどの粒界損傷を生ずることがある。
Conventional technology Conventionally, NiJλ alloy containing, for example, 75% Ni, 15% Cr, and 8% Fe has been used for materials such as heat exchanger tubes in steam generators because it exhibits excellent corrosion resistance in environments where high-pressure water is used. ing. However, due to alkali concentration and the formation of Fe-based oxide scale such as magnetite (Fe, Oa), grain boundary damage such as grain boundary cracking may occur in the gap between the support plates of the heat exchanger tube.

第4図は前記の粒界損傷に対する Fe、04スケール
の影響を調査するための試験における試験片の形状およ
び保持方法を示す説明図である。同図において、Ni 
75%、Cr 15%、Fe8%を含aするNi基合金
の表面にFe5O4を形成させたリング状試験片(1)
を、イ/フネルiのボルト(3)およびナツト(2)(
2)により前記リング状試験片(1)の外側から締め付
け、該試験片の中央部付近の斜線部の外側に引張応力を
与えた伏態で脱気した40%N a OH溶液中に浸漬
し、280℃で200時間保持した後前記引張応力を与
えた部分を樹脂に埋め込み、a、b、cおよびdの4箇
所で顕微鏡観察により割れの深さを測定した。比較のた
め表面にFe5O1の存在しない試験片を用い同様の試
験を行なうた。結果を第5図に示す。同図において、(
イ)図は試験片表面にFe、O,が存在する場合、(ロ
)図は存在しない場合で、横軸は第4図のa、b、c、
dに該当する測定箇所、縦軸は粒界n傷深さであるが、
同図から、表面にFC!04が存在する場合は粒界に深
さ1000〜1200μの割れが発生しているのに対し
、Fe5Oaが存在しない場合は割れは生じていないこ
とがわかる。
FIG. 4 is an explanatory diagram showing the shape and holding method of a test piece in a test for investigating the influence of Fe, 04 scale on the above-mentioned grain boundary damage. In the same figure, Ni
Ring-shaped test piece (1) with Fe5O4 formed on the surface of a Ni-based alloy containing 75% Cr, 15% Cr, and 8% Fe.
, bolt (3) and nut (2) (
2), the ring-shaped test piece (1) was tightened from the outside and immersed in a degassed 40% NaOH solution in a lying position with tensile stress applied to the outside of the shaded area near the center of the test piece. After holding at 280° C. for 200 hours, the portion to which the tensile stress was applied was embedded in resin, and the depth of the crack was measured by microscopic observation at four locations a, b, c, and d. For comparison, a similar test was conducted using a test piece without Fe5O1 on the surface. The results are shown in Figure 5. In the same figure, (
A) The figure shows the case where Fe, O, exists on the surface of the test piece, and (B) the case where they do not exist. The horizontal axis is the a, b, c of Fig. 4,
The measurement point corresponding to d, the vertical axis is the grain boundary n flaw depth,
From the same figure, FC on the surface! It can be seen that when Fe5Oa is present, cracks with a depth of 1000 to 1200 microns occur at grain boundaries, whereas when Fe5Oa is not present, no cracks occur.

上記のような粒界損傷を生じさせる原因となるアルカリ
113mと Fe5O4スケールの生成のうち、アルカ
リ濃縮は蒸気発生器に使用する水を処理するイオン交換
樹脂が不良であるために流出するNa+が系内に混入し
濃縮するためと考えられ、Fe、O,スケールの生成は
蒸気発生器の構造材料として使用している炭素鋼が高温
高圧水と反応して生じたFe5O4がNi基合金表面に
付着することによるものである。
Among the formation of alkali 113m and Fe5O4 scale that cause grain boundary damage as mentioned above, alkali concentration is caused by the Na+ flowing out due to a defect in the ion exchange resin that treats the water used in the steam generator. The formation of Fe, O, and scale is thought to be due to the Fe5O4 produced when the carbon steel used as the structural material of the steam generator reacts with high-temperature, high-pressure water and adheres to the surface of the Ni-based alloy. It depends on what you do.

上記のようなNi基合金の粒界損傷の発生を防止するた
めに、従来は特殊な熱処理を施したり、高Cr材料を用
、いる等の対策がとられてきた。
In order to prevent the occurrence of grain boundary damage in Ni-based alloys as described above, conventional measures have been taken such as applying special heat treatment or using high Cr materials.

また、鉄系酸化物スケールを除去する方法として従来行
なわれているのは、(■)炭素鋼の脱スケールに対し腐
食抑制剤を添加した硫酸溶液を用いる方法、(2)炭素
鋼、低合金鋼、銅合金などの脱スケールに対し腐食抑制
剤を添加した塩酸溶液を用いる方法、(3)ステンレス
鋼などの耐食性合金の脱スケールに対し硝ふっ酸溶液を
用いる方法、(4)炭素鋼やアルミニウム合金の脱スケ
ールに対し腐食抑制剤を添加したくえん酸を用いる方法
、■炭素鋼の脱スケールに対しくえん酸ニアンモニウム
、しゅう酸、硝酸第二鉄およびジエチルチオ尿素の混合
水溶液を用いる方法、(6)炭素鋼、ステンレス鋼、イ
ンコネル、ジルカロイ−2、アルミニウムなどの脱スケ
ールに対し、しゆう酸ナトリウム、しゅう酸、過酸化水
素、過酢酸および8−ヒドロキシキノリンの混合水溶液
を用いる方法など化学洗浄剤を用いる方法であり、更に
特開昭58−147570号公報では、ヒドロキシエチ
ルエチレンジアミ/三酢酸(HE D T A )およ
び有機アミンなど酸腐食抑制剤からなり、非酸化性無機
酸を含む水溶液で金属鉄表面の鉄酸化物スケールを除去
し、ついで、該スケールを除去した表面をアルカリ性液
体と接触させる方法が提案されている。
In addition, conventional methods for removing iron-based oxide scale include (■) using a sulfuric acid solution containing a corrosion inhibitor for descaling carbon steel; (2) using a sulfuric acid solution containing a corrosion inhibitor for descaling carbon steel; A method using a hydrochloric acid solution containing a corrosion inhibitor for descaling steel, copper alloys, etc.; (3) a method using a nitric-hydrofluoric acid solution for descaling corrosion-resistant alloys such as stainless steel; A method using citric acid with a corrosion inhibitor added for descaling aluminum alloys; ■ A method using a mixed aqueous solution of ammonium citrate, oxalic acid, ferric nitrate, and diethylthiourea for descaling carbon steel; ( 6) Chemical cleaning methods using a mixed aqueous solution of sodium oxalate, oxalic acid, hydrogen peroxide, peracetic acid, and 8-hydroxyquinoline for descaling carbon steel, stainless steel, Inconel, Zircaloy-2, aluminum, etc. Furthermore, in JP-A No. 58-147570, a method using an acid corrosion inhibitor such as hydroxyethylethylenediami/triacetic acid (HE D T A ) and an organic amine, and containing a non-oxidizing inorganic acid. A method has been proposed in which iron oxide scale is removed from the surface of metal iron using an aqueous solution, and then the surface from which the scale has been removed is brought into contact with an alkaline liquid.

発明の目的 しかしながら、上記従来の方法において、金属材料に特
殊な熱処理を施したり、高Cr材料を用いるのは材料コ
スト高となり、また鉄系酸化物スケールを除去する方法
については、前記(1)〜■の従来行なわれている方法
は炭素鋼、低合金鋼、ステンレス鋼等のスケールが対象
であり、特開昭58−147570号公報で提案された
方法も鉄を対象としている。一方、(6)の方法は、N
i基合金のスケールにも適用できるが、液組成、温度、
処理時間等条件の制御が難しく、脱スケール時に材料表
面の肌荒れが生じ易いという問題がある。
Purpose of the Invention However, in the conventional method described above, applying special heat treatment to the metal material or using high Cr material increases material cost, and the method for removing iron-based oxide scale does not meet the requirements set forth in (1) above. The conventional methods of 1 to 3 are applicable to scales such as carbon steel, low alloy steel, stainless steel, etc., and the method proposed in Japanese Patent Application Laid-Open No. 147570/1983 is also applicable to iron. On the other hand, method (6) uses N
Although it can be applied to the scale of i-based alloys, the liquid composition, temperature,
There is a problem in that it is difficult to control conditions such as processing time, and the surface of the material tends to become rough during descaling.

本発明は、高温高圧水環境下においてNi基合金に粒界
損傷を発生させる要因である鉄系酸化物スケールを適切
な化学洗浄液により除去する方法を提供することを目的
とする。
An object of the present invention is to provide a method for removing iron-based oxide scale, which causes grain boundary damage to Ni-based alloys, using an appropriate chemical cleaning solution in a high-temperature, high-pressure water environment.

発明の構成 本発明は上記目的をもってなされたものであって、その
要旨とするところはエチレンジアミン四酢酸×10−3
moI171以上1mon/4以下とくえん酸IX10
−3mall/J2以上lXl0−’ mail/It
以下を含み、必要に応じ脂肪族カルボ/aまたは第1級
もしくは第2級アミンを添加し、アンモニアでpHを5
以上a5以下に調整してなる化学洗浄液を用いてNi!
合金面に生ずる鉄酸化物のスケールを除去する方法にあ
る。
Structure of the Invention The present invention has been made for the above-mentioned purpose, and its gist is that ethylenediaminetetraacetic acid x 10-3
moI 171 or more and 1 mon/4 or less and citric acid IX10
-3mall/J2 or more lXl0-' mail/It
Contains the following, adding aliphatic carbo/a or primary or secondary amine as necessary, and adjusting the pH to 5 with ammonia.
Ni! using a chemical cleaning solution adjusted to below A5!
A method for removing iron oxide scale that forms on alloy surfaces.

以下に、上記の化学洗浄液を用い上記a度範囲に限定し
た理由を説明する。
The reason why the above chemical cleaning solution is used and limited to the above range of degrees a is explained below.

エチレンジアミン四酢#(以下EDTAという)は高温
高圧水環境下においてNi基合金表面に生成するFe5
O4スケールと反応しFeを請塩として溶解させるが、
PH5〜B−5の条件下において、前記EDTAの濃度
が× 10−’ mou/j2未膚では、Fc504 
の溶解速一度は小さく、1mon/I1以上添加しても
溶解速度の増大は認められないことから、その1:t[
f範囲を 2 X 10−’ moIl/4以上1 m
olt/Il以下と定めた。
Ethylenediaminetetravinegar # (hereinafter referred to as EDTA) is a Fe5 compound that forms on the surface of a Ni-based alloy in a high-temperature, high-pressure water environment.
It reacts with O4 scale and dissolves Fe as salt, but
Under conditions of PH5 to B-5, when the concentration of EDTA is x 10-' mou/j2, Fc504
The dissolution rate of 1:t[
f range 2 x 10-' moIl/4 or more 1 m
It was determined to be olt/Il or less.

くえん酸はFe3O4スケールとNi基合金表面との間
隙に浸透し、該Ni基合金表面を極めて@量溶解させる
ことにより Fe5O4を合金表面から?り離する作用
をaするが、その0度がlXl0−’ moIl/1未
満では顕著な効果はみられず、I X 10−’ mo
fl/1を越えて添加すると合金表面の溶出が大きくな
り、鋼の肌荒れを生じさせることから、その濃度範囲を
IXlo−3mail/11以上lXl0−’ mol
/42以下と定めた。くえん酸はわずかではあるがFe
5o4を溶解させる働きと、EDTAと Fe3O4の
反応において生じた)1+による急激なpHの低下を防
止する働きも有する。
Citric acid penetrates into the gap between the Fe3O4 scale and the Ni-based alloy surface and dissolves a very large amount of the Ni-based alloy surface, thereby removing Fe5O4 from the alloy surface. However, when the 0 degree is less than lXl0-' moIl/1, no significant effect is observed, and I
If added in excess of fl/1, the elution on the alloy surface will increase, causing roughness of the steel, so the concentration range should be set to IXlo-3mail/11 or more lXlo-' mol
/42 or less. Citric acid has a small amount of Fe
It also has the function of dissolving 5o4 and preventing the rapid drop in pH due to 1+ (generated in the reaction of EDTA and Fe3O4).

前記化学洗浄液のpHは5より小さい酸性領域ではオー
バーピックリングなどにより前記Ni基合金表面に肌荒
れが生じてを効肉厚が薄くなり、材料の寿命が短縮され
、またα5よりも大きい領域では F e304の溶解
が進行しな(なることから、その範囲を5〜a5と定め
た。PHjl整にアンモニアを使用するのは、EDTA
がFe、oaと反応して生じたH+と結合し、洗浄液の
PHが酸性側へ移行するのを防1トする作用を有するか
らである。
If the pH of the chemical cleaning solution is in an acidic range of less than 5, the surface of the Ni-based alloy will be roughened due to over-pickling, resulting in a thinner wall thickness and shortened material life; Since the dissolution of e304 does not progress, the range was set as 5 to a5.
This is because it combines with H+ generated by the reaction with Fe and oa, and has the effect of preventing the pH of the cleaning solution from shifting to the acidic side.

また、必要に応じ脂肪族カルボ/酸または第1級もしく
は第2級アミンを添加するのは、それらが腐食抑制剤と
して働き、前記合金表面が局部的に侵されるのを防止す
る作用を打するからである。その添加琶としては、特に
規定するものではないがα05容量%〜0.5容量%が
好ましい。
Additionally, if necessary, aliphatic carboxylic acids or primary or secondary amines may be added because they act as corrosion inhibitors and prevent the alloy surface from being locally attacked. It is from. The addition amount is not particularly specified, but is preferably α05% by volume to 0.5% by volume.

0.05容量%未宿では腐食抑制の効果が小さく、0.
5容量%を越えると費用が高(つく。
At 0.05% by volume, the effect of inhibiting corrosion is small;
If it exceeds 5% by volume, the cost will be high.

以上はNi基合金表面に形成されたFe1g4スケール
を対象に説明したが、以下に述べる実施例から明らかな
ように、炭素鋼表面に形成されたFe3O4スケールに
対しても適用可能である。
The above description has been made with reference to Fe1g4 scale formed on the surface of a Ni-based alloy, but as is clear from the examples described below, it is also applicable to Fe3O4 scale formed on the surface of carbon steel.

実    施    例 以下実施例にもとづいて詳細に説明する。Example A detailed explanation will be given below based on examples.

実施例 1 第1表に示す5Iaの化学洗浄液を試験液とし、それぞ
れIIlを試験容器に採り、Fe、04の粉末をFeと
してa5X1cm’ mofl/Itとなるように加え
、撹拌しながら70℃に加温保持し、Fe、0゜の溶解
試験を行なった。Fe504の溶解性の評価は、Fe、
04を所定時間浸漬し、溶解させた後、未溶解のFe5
O4をミリポアフィルタ−でi濾過分殖し、試験液中に
溶解したFeを原子吸光光度法により定量して行なった
Example 1 The 5Ia chemical cleaning solution shown in Table 1 was used as the test liquid, and each IIl was placed in a test container. Fe and 04 powders were added as Fe to give a5X1cm' mofl/It, and the mixture was heated to 70°C while stirring. The material was kept heated and a Fe dissolution test was conducted at 0°. Evaluation of solubility of Fe504 is as follows:
After immersing 04 for a predetermined time and dissolving it, undissolved Fe5
O4 was subjected to i-filtration and multiplication using a Millipore filter, and Fe dissolved in the test liquid was quantitatively determined by atomic absorption spectrophotometry.

結果を第1図に示す。同図において、横軸は浸漬時間、
縦軸はFe量であられした溶解Fe、O。
The results are shown in Figure 1. In the figure, the horizontal axis is the immersion time,
The vertical axis shows the amount of dissolved Fe and O.

−1,1テ、縦軸f) a5X 10−” moj2/
4から横軸に平行にひいた破線は試験液に加えたFe5
Oaの全量を示す。なお試験液のPHはアンモニアでa
5に調整した。同図から、本発明例に該当する曲II 
(1)〜(4)ノうち、E DTAの0度がlXl0−
” mofl/4 以上である曲線(1)〜(3)の場
合はFe3O4を試験液に浸漬後9〜12時間で全量が
溶解し、濃度が2×10−’ mail/Aである曲!
I(41についても溶解が比較的大きい速度で進んでい
るが、比較例である濃度がIXIO−3mou/4 の
曲線(5)の場合は浸漬時間を長くとっても溶解量は少
い。同図からEDTAの0度は× 10−’ moIl
/4以上であることが必要であり、txto−’ ma
il/Ilを超えて5X 10−’ mo +/、N添
加しても溶解速度はそれほど増大しないことがわかる。
-1,1te, vertical axis f) a5X 10-” moj2/
The broken line drawn parallel to the horizontal axis from 4 indicates the Fe5 added to the test solution.
The total amount of Oa is shown. The pH of the test solution is ammonia.
Adjusted to 5. From the same figure, song II that corresponds to the example of the present invention
Among (1) to (4), 0 degree of E DTA is lXl0-
” In the case of curves (1) to (3) with mofl/4 or more, the entire amount of Fe3O4 is dissolved in 9 to 12 hours after being immersed in the test solution, and the concentration is 2 × 10-' mail/A.
The dissolution of I(41) is also proceeding at a relatively high rate, but in the case of the comparative example, curve (5) with a concentration of IXIO-3mou/4, the amount of dissolution is small even if the immersion time is long.From the same figure, 0 degree of EDTA is × 10-' moIl
/4 or higher is required, and txto-' ma
It can be seen that even when 5X 10-' mo +/, N is added in excess of il/Il, the dissolution rate does not increase significantly.

第  1  表 実施例 2 実施例1と同じ試験方法により、Fe5O4の溶解にお
よぼすpHの影響を調べた。試験時間は8時間で、ED
TAQC度を(イ) IXIF’ mail/11 。
Table 1 Example 2 Using the same test method as in Example 1, the influence of pH on the dissolution of Fe5O4 was investigated. The exam time is 8 hours, ED
TAQC degree (a) IXIF' mail/11.

(o) I X 10−” man/Il および(ハ
)IXIO−’ mol/1とし、比較のため幹)ED
TAを含まない場合についても行なった。くえん酸はい
ずれの場合もIXl 0−’ mo fl/J2添加し
た。一方1)Hの調整は硫酸または水酸化ナトリウムで
行なった。
(o) I
The test was also carried out in the case where TA was not included. Citric acid was added in an amount of IXl 0-' mo fl/J2 in all cases. On the other hand, 1) H was adjusted using sulfuric acid or sodium hydroxide.

結果を第2図に示す。同図において横軸はf)H1縦軸
はFe量であられした溶解Fe、04量で、図中の破線
は第1図におけると同様、試験液に加えたFe3O4の
全量を示す。同図からpH2以下の強い酸性f1域では
EDTAが含まれていなくてもFe504の溶解は進む
が、pi−12〜a5の範囲ではEDTAが存在しなけ
れば溶解せず、pH7以上ではE DTAが存在しても
溶解は進行しないことがわかる。pHが5より小さい隈
性領域ではスケール除去の際、材料表面に肌荒れが生ず
るので、PHの実用範囲は図中Aで示した5〜a5であ
る。
The results are shown in Figure 2. In the same figure, the horizontal axis is f) H1, the vertical axis is the amount of dissolved Fe, and the broken line in the figure shows the total amount of Fe3O4 added to the test solution, as in FIG. 1. The figure shows that in the strongly acidic f1 region below pH 2, dissolution of Fe504 proceeds even if EDTA is not included, but in the pi-12 to a5 range it does not dissolve unless EDTA is present, and at pH 7 or above, EDTA does not dissolve. It can be seen that even if it exists, dissolution does not proceed. In a dark area where the pH is less than 5, roughness occurs on the surface of the material during scale removal, so the practical pH range is 5 to a5, indicated by A in the figure.

実施例 3 第2表に示す3種の化学洗浄液を試験液とし、実施例1
と同じ試験方法により Fe5O4の溶解におよぼすア
ミンの影響を調べた。
Example 3 Three types of chemical cleaning solutions shown in Table 2 were used as test liquids, and Example 1
The influence of amines on the dissolution of Fe5O4 was investigated using the same test method as described above.

結果を第3図に示す。第1図と同様に横軸は浸漬時間、
縦軸はFe量であられした溶解Fe5(L量で、破線は
試験液に加えたFe5O4の全量を示す。また、図中の
(31、(4) 、 (5)の符号を付した破線は、実
施例1に対応する第1図に示した曲!!a (31。
The results are shown in Figure 3. As in Figure 1, the horizontal axis is the immersion time,
The vertical axis is the amount of dissolved Fe5 (L), and the broken line shows the total amount of Fe5O4 added to the test solution. , the song shown in FIG. 1 corresponding to Example 1!!a (31.

(4)および(5)をあられす。同図からジエチルアミ
ンを添加した本発明例に該当する曲線(61、(71お
上び比較例(8)が示すFe5O4の溶解性はそれぞれ
ジエチルアミンを添加していない破12F31.(ψお
よび(9と殆んど変らず、洗浄時に金輯表面が局部的に
侵されるのを防止する腐食抑制剤として使用できること
がわかる。
Hail (4) and (5). From the same figure, the solubility of Fe5O4 shown by curves (61, (71) and comparative example (8) corresponding to the present invention example in which diethylamine was added is 12F31.(ψ and (9), respectively, where diethylamine was not added. It can be seen that there is almost no difference, and it can be used as a corrosion inhibitor to prevent local corrosion of the metal surface during cleaning.

第  2  表 実施例 4 炭素鋼およびNi 75%、Cr 15%、Fe8%を
含有するNiI&合金を試験材とし、脱気した5%Na
OH溶液中に250℃、40気圧の条件下で200時間
浸漬して材料表面に Fe30aスケールを形成させた
後、第2表の本発明例(6)に示す化学洗浄液中に浸漬
し、80℃で4時間化学洗浄を行なった。
Table 2 Example 4 Carbon steel and NiI alloy containing 75% Ni, 15% Cr, and 8% Fe were used as test materials, and degassed 5% Na
After immersing it in an OH solution for 200 hours at 250°C and 40 atm to form Fe30a scale on the material surface, it was immersed in the chemical cleaning solution shown in Invention Example (6) in Table 2 and heated at 80°C. Chemical cleaning was performed for 4 hours.

その結果、炭素鋼s Ni基合金のいずれにおいても表
面に形成された Fe3O4スケールは完全に除去され
、局部的な侵食のない清浄な表面が得られた。
As a result, the Fe3O4 scale formed on the surface of both the carbon steel and the Ni-based alloy was completely removed, and a clean surface without local erosion was obtained.

発明の詳細 な説明したように、E D T A  2xlO−’ 
mou/1以上1 m o II / fl以下とくえ
ん酸IXIO−3mail/4以上lXl0−’ ma
il/1  以下を含み、77モニアでplIを5以上
e、、5以下に調整してなる化学洗浄液を用いる本発明
のスケール除去方法は、高温高圧の環境下でNi基合金
面に形成されたFe5Oaからなるスケールを、該Ni
基合金面に肌荒れ等局部的な侵食を生じさせることなく
容易にかつ完全に除去することができ、Fe、Oaの存
在に起因するNi基合金の粒界損傷防止に対し極めて作
動な手段を提供するものである。
As described in the detailed description of the invention, EDTA 2xlO-'
mou/1 or more and 1 m o II/fl or less and citric acid IXIO-3 mail/4 or more lXl0-' ma
The scale removal method of the present invention uses a chemical cleaning solution containing il/1 or less and adjusted to plI of 5 or more and 5 or less with 77 monia. The scale made of Fe5Oa is
It can be easily and completely removed without causing local erosion such as surface roughness on the base alloy surface, and provides an extremely effective means for preventing grain boundary damage in Ni-based alloys caused by the presence of Fe and Oa. It is something to do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe5O4の溶解と化学洗浄液中のEDTAの
′eJ度との関係を示す線図、第2図はFc、04の溶
解に対する化学洗浄液のpHの影響を示す線図、第3図
はFe504の溶解に対する化学洗浄液中のアミンの影
響を示す線図、第4図はNi基合金の粒界損傷に対する
Fe50.スケールの影響を調査するための試験におけ
る試験片の形状および保持方法を示す説明図、第5図は
Ni基合金の粒界損傷に対するFc5O4スケールの影
響を示す図である。 1・・・リング状試験片  2・・・ナツト3・・・ボ
ルト 第1図 漫シ1吟/ll (&) 第2図 H 第3図 ン1  st e%  the  (6ン第4図
Figure 1 is a diagram showing the relationship between the dissolution of Fe5O4 and the 'eJ degree of EDTA in the chemical cleaning solution, Figure 2 is a diagram showing the influence of the pH of the chemical cleaning solution on the dissolution of Fc, 04, and Figure 3 is A diagram showing the effect of amine in a chemical cleaning solution on the dissolution of Fe504, Figure 4 shows the influence of Fe50. FIG. 5 is an explanatory diagram showing the shape and holding method of a test piece in a test to investigate the influence of scale, and FIG. 5 is a diagram showing the influence of Fc5O4 scale on grain boundary damage in a Ni-based alloy. 1... Ring-shaped test piece 2... Nut 3... Bolt Fig. 1 1 gin/ll (&) Fig. 2 H Fig. 3 1st e% the (6 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] エチレンジアミン四酢酸2×10^−^3mol/l以
上1mol/l以下と、くえん酸1×10^−^3mo
l/l以上1×10^−^1mol/l以下を含み、必
要に応じ脂肪族カルボン酸または第1級もしくは第2級
アミンを添加し、アンモニアでpH5以上6.5以下に
調整してなる化学洗浄液を用いてNi基合金面に生ずる
鉄酸化物のスケールを除去する方法。
Ethylenediaminetetraacetic acid 2 x 10^-^3 mol/l or more and 1 mol/l or less and citric acid 1 x 10^-^3 mo
l/l or more and 1 x 10^-^1 mol/l or less, and if necessary, an aliphatic carboxylic acid or a primary or secondary amine is added, and the pH is adjusted to 5 or more and 6.5 or less with ammonia. A method of removing iron oxide scale that forms on Ni-based alloy surfaces using a chemical cleaning solution.
JP26804585A 1985-11-27 1985-11-27 Method for removing scale Pending JPS62127484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26804585A JPS62127484A (en) 1985-11-27 1985-11-27 Method for removing scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26804585A JPS62127484A (en) 1985-11-27 1985-11-27 Method for removing scale

Publications (1)

Publication Number Publication Date
JPS62127484A true JPS62127484A (en) 1987-06-09

Family

ID=17453112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26804585A Pending JPS62127484A (en) 1985-11-27 1985-11-27 Method for removing scale

Country Status (1)

Country Link
JP (1) JPS62127484A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845125A (en) * 1987-11-10 1989-07-04 Indianapolis Center For Advanced Research, Inc. Chemolytic EDTA-citric acid composition for dissolution of calculi
CN105483717A (en) * 2015-12-22 2016-04-13 芜湖恒坤汽车部件有限公司 Clutch rust remover material composition and preparation method of clutch rust remover

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845125A (en) * 1987-11-10 1989-07-04 Indianapolis Center For Advanced Research, Inc. Chemolytic EDTA-citric acid composition for dissolution of calculi
CN105483717A (en) * 2015-12-22 2016-04-13 芜湖恒坤汽车部件有限公司 Clutch rust remover material composition and preparation method of clutch rust remover

Similar Documents

Publication Publication Date Title
EP0086245B1 (en) Aqueous acid metal cleaning composition and method of use
US3297580A (en) Neutral metal cleaning compositions containing hydrazine and a polycarboxylamino acid
Sedriks et al. Inconel alloy 690-A new corrosion resistant material
US9390822B2 (en) Oxidation decontamination reagent for removal of the dense radioactive oxide layer on the metal surface and oxidation decontamination method using the same
US3248269A (en) Scale removal
US5024805A (en) Method for decontaminating a pressurized water nuclear reactor system
US4636327A (en) Aqueous acid composition and method of use
US20170345519A1 (en) Ambient temperature decontamination of nuclear power plant component surfaces containing radionuclides in a metal oxide
KR930005582B1 (en) Hypohalite oxidation in decontaminating nuclear reators
JPS62127484A (en) Method for removing scale
JPH0765204B2 (en) Method for dissolving and removing iron oxide
US20090010377A1 (en) INHIBITOR OF CORROSION AND STRESS CORROSION CRACKING CONTAINING NICKEL BORIDE (NiB) IN THE SECONDARY SIDE OF STEAM GENERATOR TUBES IN A NUCLEAR POWER PLANT AND INHIBITING METHOD USING THE SAME
Ji et al. PICKLING–PASSIVATION MECHANISM AND PROCESS OPTIMIZATION OF Q235 STEEL PIPELINE
JPS62146283A (en) Method for preventing grain boundary damage in nickel base alloy
US3582402A (en) Technique for decontaminating metal surfaces in nuclear reactors
Crum et al. Corrosion resistance of nickel alloys in caustic solutions
Boyd et al. Stress Corrosion Cracking Behavior of Nickel and Nickel Alloys
JPS6054391B2 (en) How to pickle stainless steel
Whitcraft Corrosion of Pharmaceutical Equipment
JPH0892677A (en) Nickel-based alloy excellent in corrosion resistance in high temperature water
Yau et al. Practice for Conducting Corrosion Coupon Tests on Zirconium and its Alloys
Howells CAUSTIC STRESS CORROSION: Tests on Stainless Steel
Call et al. Closure to “Discussions of ‘Chemical Removal of Copper From Boilers’”(1951, Trans. ASME, 73, pp. 129–132)
Dick Discussion:“Chemical Removal of Copper From Boilers”(Call, RG, and Webb, WL, 1951, Trans. ASME, 73, pp. 125–129)
Cardwell Discussion:“Chemical Removal of Copper From Boilers”(Call, RG, and Webb, WL, 1951, Trans. ASME, 73, pp. 125–129)