JPS62127460A - Surface treatment - Google Patents

Surface treatment

Info

Publication number
JPS62127460A
JPS62127460A JP26567685A JP26567685A JPS62127460A JP S62127460 A JPS62127460 A JP S62127460A JP 26567685 A JP26567685 A JP 26567685A JP 26567685 A JP26567685 A JP 26567685A JP S62127460 A JPS62127460 A JP S62127460A
Authority
JP
Japan
Prior art keywords
powder
steel
carbide layer
vacuum
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26567685A
Other languages
Japanese (ja)
Inventor
Fumio Toyama
文夫 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP26567685A priority Critical patent/JPS62127460A/en
Publication of JPS62127460A publication Critical patent/JPS62127460A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably form carbide layer superior in surface roughness on steel stock surface, by embedding steel stock into mixture of powder of metals and alloy of these in groups IVa-VIa of the periodic table, refractory powder and halogenide and heating, holding at a specified temp. in vacuum then cooling them. CONSTITUTION:10-60wt% total of one or 2 kinds among powders of metals such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W in groups IVa, Va, VIa of the periodic table, or alloy of these, 30-85wt% refractory powder such as oxide and nitride of Al, Si, Ca, Mg having 0.1-10mum particle diameter and 0.2-30wt% NH4Cl, NaCl and the other halogenides are mixed. Steel stock of >0.1% C finished to mirror surface is embedded into the mixture, these are heated and held at 700-1,200 deg.C in vacuum. Generated halogenide vapor of the metal is reacted with C in steel and high hardness metal carbide such as TiC, Cr3C2, WC is formed on steel stock surface in superior surface roughness state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋼の表面に硬質炭化物を形成させる表面処理方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface treatment method for forming hard carbides on the surface of steel.

〔従来の技術〕[Conventional technology]

従来より粉末中に鋼を埋没させて、鋼の表面にCrなど
の金属の拡散層を形成させる方法(例えば日本金属学会
編1表面処理〃54〜35ページ)や、炭化物層を形成
させる方法(例えば特開昭52−62140 )が知ら
れている。この場合、粉末および被処理材の酸化を防止
するために、水素流気中で加熱するか、容器をシール剤
などで固着密閉して大気中で加熱処理する必要がある。
Conventionally, there is a method of embedding steel in powder to form a diffusion layer of metal such as Cr on the surface of the steel (for example, Japan Institute of Metals, Volume 1, Surface Treatment, pages 54-35), and a method of forming a carbide layer ( For example, Japanese Patent Application Laid-Open No. 52-62140) is known. In this case, in order to prevent oxidation of the powder and the material to be treated, it is necessary to heat it in a hydrogen stream or to perform the heat treatment in the atmosphere with the container firmly sealed with a sealant or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、従来の水素流気中で加熱する場合は、安全上
の配慮から装置が高価となり、しかも、炭化物層の形成
が十分でない問題があった。また、容器を密閉して、大
気中で加熱する場合も、容器中の残存酸素による粉末お
よび被処理材の酸化がおこるため高価な粉末の使用寿命
が短かく、炭化物層の形成も十分でない問題があった。
However, when heating in a conventional hydrogen stream, the equipment becomes expensive due to safety considerations, and there is a problem in that the formation of a carbide layer is not sufficient. Furthermore, even when the container is sealed and heated in the atmosphere, the remaining oxygen in the container oxidizes the powder and the material to be treated, resulting in a short service life for the expensive powder and insufficient formation of a carbide layer. was there.

本発明は以上の問題点に鑑み、粉末および被処理材の酸
化を防止し、かつ良好な表面粗度を安定して得ることの
できる表面処理方法の提供を目的とする。
In view of the above problems, the present invention aims to provide a surface treatment method that can prevent oxidation of powder and treated materials and stably obtain good surface roughness.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、周期律表IVa族+Va族、VIa族元素の
金属あるいは合金粉末の1穐または2種以上を合計で1
0〜60wt%と粉末粒度0,1〜10μmの耐火物粉
末を30〜85wt%及びハロゲン化塩を0.2〜30
wt%混合してなる粉末中に鋼を埋没させ、真空中で加
熱保持、冷却を行なって鋼の表面に周期律表IVa族、
 Va族、VIa族元素の1穐または2種以上の炭化物
層を形成させることを特徴とする表面処理方法により前
記目的を達成するものである。
The present invention provides a total of one or more metals or alloy powders of group IVa + group Va and group VIa elements of the periodic table.
0 to 60 wt%, 30 to 85 wt% of refractory powder with a powder particle size of 0.1 to 10 μm, and 0.2 to 30 wt% of a halide salt.
Steel is immersed in a powder containing a mixture of wt%, heated and maintained in a vacuum, and cooled to coat the surface of the steel with groups IVa of the periodic table,
The above object is achieved by a surface treatment method characterized by forming a carbide layer of one or more types of Va group and VIa group elements.

〔作 用〕[For production]

以下本発明の限定理由について述べる。 The reasons for the limitations of the present invention will be described below.

本発明によれは、被処理体および混合粉末は真空中で加
熱されるために、空気中の酸素によって酸化されること
はなく、粉末の使用寿命が大幅に向上すると同時に、炭
化物層も安定して形成できる。とくに、室温または70
0℃以下の比較的ハロゲン化塩の蒸発が少ない温度まで
十分に真空脱気した後に、バルブ等の調整によって排気
量を絞るか、あるいは完全に密閉して加熱すると、反応
蒸気(例えばVCLxなど)の排出を少なく抑える作用
があり、効果的である。
According to the present invention, since the object to be treated and the mixed powder are heated in a vacuum, they are not oxidized by oxygen in the air, and the service life of the powder is greatly improved, while the carbide layer is also stabilized. It can be formed by Especially at room temperature or 70℃
After sufficient vacuum degassing to a temperature below 0°C at which the evaporation of the halide salt is relatively small, reducing the exhaust volume by adjusting a valve, etc., or completely sealing and heating, the reaction vapor (e.g. VCLx, etc.) It is effective because it has the effect of suppressing the emission of.

本発明と比較して、水素流気中加熱方法で炭化物層の形
成が十分でなく、また粉末の寿命も短かい原因は水素流
気中では粉末間や粉末表面に残存している空気、水蒸気
を完全に除去できないことおよび、VCl2などの反応
蒸気が水素流気とともに排出されて有効に作用しないこ
とによる。同様に、密閉容器を大気中で加熱する方法で
も、容器中の残留空気や水蒸気を除去できないのが原因
である。
Compared to the present invention, the formation of a carbide layer is not sufficient in the heating method in a hydrogen stream, and the life of the powder is short. This is due to the fact that VCl2 and other reaction vapors cannot be completely removed, and that the reaction vapors such as VCl2 are exhausted together with the hydrogen stream and do not work effectively. Similarly, the method of heating a sealed container in the atmosphere also fails to remove residual air and water vapor inside the container.

これに対して、本発明では真空脱気により、粉末粒子間
や粉末表面に吸着している空気や水蒸気までも十分に除
去できるので、上記現象がおこらない0 周期律表第IVa族、第Va族、第VIa族元素の金属
あるいは合金の粉末は高温で同時に混合されるハロゲン
化塩の蒸気と反応して、VCl2などのハロゲン化合物
の蒸気を発生する。この蒸気は鋼の表面で還元され、鋼
中の炭素と第IVa族、第Va族、第VIa族元索の炭
化物を形成する作用がある。
In contrast, in the present invention, vacuum degassing can sufficiently remove air and water vapor adsorbed between powder particles and on the powder surface, so the above phenomenon does not occur. Powders of metals or alloys of Group VIa elements react at elevated temperatures with vapors of halide salts that are mixed in at the same time to generate vapors of halogen compounds such as VCl2. This vapor is reduced on the surface of the steel and has the effect of forming carbides of group IVa, group Va, and group VIa elements together with carbon in the steel.

しかし、第Fv’a族、Va族+Wa族元素の金属ある
いは合金粉末の1種または2種以上が合計で10wt%
未満では炭化物層が安定して形成されず、逆に60wt
96を越えると粉末どおしあるいは、粉末と被処理体が
焼結して著しく作業性を悪くし、さらに表面形状が悪く
なる。粉末の再使用ができないなどの弊害がおこる。
However, the total amount of one or more metals or alloy powders of group Fv'a, Va group + Wa group elements is 10 wt%.
If it is less than 60wt, the carbide layer will not be stably formed, and conversely
If it exceeds 96, the powder will sinter together or the powder and the object to be processed will sinter, significantly impairing workability and further deteriorating the surface shape. This causes disadvantages such as the inability to reuse the powder.

第IVa族、第Va族、第VIa族元累の供給源として
は、Ti +Zr +Hf +V+Nb +Ta pc
r tMo、Wなどの金属粉末でもよいし、その金属ど
おしの合金粉末でもよい。さらに、上記金属とFe 、
 Ni 。
Sources of Group IVa, Group Va, and Group VIa elements include Ti +Zr +Hf +V+Nb +Ta pc
It may be a metal powder such as Mo or W, or it may be an alloy powder of these metals. Furthermore, the above metal and Fe,
Ni.

Co r Mnなどとの合金粉末でも十分に効果が発揮
できる。粉末の粒度はとくに限定されないが、−20メ
ツシュ程度のものが、被処理材の表面性状、粉末とおし
の耐焼結性の点ですぐれている。
An alloy powder with Cor Mn or the like can also exhibit sufficient effects. Although the particle size of the powder is not particularly limited, a particle size of about -20 mesh is excellent in terms of the surface quality of the material to be treated and the sintering resistance of the powder.

耐火物粉末は上記第IVa族、第Va族、第VIa族元
素の金l1r4または合金粉末と被処理体あるいは粉末
どおしの焼結を防止する目的で50〜85wt%添加す
る030%未満では焼結防止効果が少なく、逆に、85
%を越えると炭化物層の形成が安定しなくなる。耐火物
粉末としてはht + St r Ca+Mgの酸化物
、窒化物などのような、高温で安定で、金属との反応が
少ない性質を有するものであればとくに限定されない。
The refractory powder is added in an amount of 50 to 85 wt% for the purpose of preventing sintering of the gold l1r4 or alloy powder of the above Group IVa, Group Va, and Group VIa elements and the object to be treated or the powder. The sintering prevention effect is small, and on the contrary, 85
%, the formation of the carbide layer becomes unstable. The refractory powder is not particularly limited as long as it is stable at high temperatures and has a property of being less likely to react with metals, such as ht+StrCa+Mg oxides and nitrides.

耐火物粉末の粒度は、形成される炭化物層の表面粗度に
大きく影響を与える。表面粗度が悪い場合は耐摩耗性が
劣り、またきびしい表面性状を要求される精密加工品の
分野に適用しえない場合がある。
The particle size of the refractory powder greatly influences the surface roughness of the carbide layer formed. If the surface roughness is poor, the wear resistance will be poor, and it may not be applicable to the field of precision processed products that require severe surface properties.

耐火物粉末粒が炭化物層の結晶粒度に比べて十分大きい
場合には、被処理物に接触する位置にある耐火物粉末は
炭化物層中に埋め込まれるような形で接着し、これが表
面粗度悪化の原因となるのである。
If the refractory powder grains are sufficiently larger than the crystal grain size of the carbide layer, the refractory powder that is in contact with the object to be treated will be embedded in the carbide layer and adhere to it, resulting in worsening of the surface roughness. This is the cause of

そこで、本発明においては、耐火物粉末の粒度を炭化物
層に形成される炭化物結晶粒度と同等以下にして、耐火
物粉末の炭化物層中への埋込まれ、接着を防止するので
ある。炭化物結晶粒度は、形成温度によって異なってく
るのが本手法による一般的な条件では、通常0.1μm
〜10μmであり、したがってこれを耐火物粉末粒度範
囲として適用することができる。
Therefore, in the present invention, the particle size of the refractory powder is made equal to or smaller than the carbide crystal grain size formed in the carbide layer to prevent the refractory powder from being embedded in the carbide layer and from adhering. The carbide crystal grain size varies depending on the formation temperature, but under the general conditions of this method, it is usually 0.1 μm.
˜10 μm, so this can be applied as the refractory powder particle size range.

一方、耐火物粉末粒度があまり細かすぎると、粉末を真
空脱気する際の真空系への悪影響を排除するのが困難と
なり、壕だ作業衛生上からも好ましくない。さらに細か
すき゛る粉末は炭化物層へ、別の悪影響金与える危険性
もあるため、粉末粒度の下限上0.1μmとする。
On the other hand, if the particle size of the refractory powder is too fine, it will be difficult to eliminate an adverse effect on the vacuum system when vacuum degassing the powder, which is also undesirable from the viewpoint of hygiene in trench work. Furthermore, since there is a risk that a powder that is too fine may have another negative effect on the carbide layer, the lower limit of the powder particle size is set to 0.1 μm.

ハロゲン化塩は前記のごとく、第IVa族、 Va族。As mentioned above, the halogenated salts are Group IVa and Group Va.

VIa族元素のハロゲン化合物蒸気を発生させ、鋼表面
への炭化物層生成反応を促進する作用がある。
It has the effect of generating halogen compound vapor of group VIa elements and promoting the reaction of forming a carbide layer on the steel surface.

ハロケン化塩の添加がD 、 2 wt%未満では上記
作用が少なく、逆に30wt%を越えると融着・固化が
おこり、作業性、粉末の再利用性を著しく阻害する。ハ
ロゲン化塩としては、NH4C1、Na CL +KC
1+ NH4F + NaF * NH4Iなどの10
00℃以下の温度で盛んに蒸発をおこし、第R’a族、
第Va族。
If the amount of the halosaponide salt added is less than 2 wt%, the above effects will be small, whereas if it exceeds 30 wt%, fusion and solidification will occur, which will significantly impede workability and reusability of the powder. Halogenated salts include NH4C1, Na CL +KC
1+ NH4F + NaF * 10 such as NH4I
Active evaporation occurs at temperatures below 00°C, and group R'a,
Group Va.

第VI a族元素のハロゲン化合物蒸気を形成する性質
を有するものであればとくに限定されない。
It is not particularly limited as long as it has the property of forming a vapor of a halogen compound of a Group VIa element.

本発明における鋼とは、0.1%以上の炭素を含有する
慣造用鋼、#殊用途鋼などの鉄鋼材料の他鋳鉄、鍛鋼お
よび焼結材料を包含しており、0.1チ以上の炭素を含
有しておればハロゲン化合物蒸気を還元させしめて、そ
の表面に炭化物層を形成する作用がある。
Steel in the present invention includes steel materials such as conventional steel and #special purpose steel containing 0.1% or more carbon, as well as cast iron, forged steel, and sintered materials, and includes 0.1% or more carbon. If it contains carbon, it has the effect of reducing the halogen compound vapor and forming a carbide layer on its surface.

被処理体を混合粉末中に埋没させて加熱する温度は70
0℃〜1200℃の間で選択する。処理時間は処理温度
、目的とする炭化物層の厚さによって任意に変えるもの
であり、あらかじめ予備実験にて、適正時間を求めてお
く必要がある。
The temperature at which the object to be processed is immersed in the mixed powder and heated is 70°C.
Select between 0°C and 1200°C. The treatment time can be arbitrarily changed depending on the treatment temperature and the desired thickness of the carbide layer, and it is necessary to determine the appropriate time in advance through preliminary experiments.

上記範囲の加熱温度と時間で加熱処理後、鋼表面上に形
成された炭化物層が酸化されない処理温度以下の所定の
温度(通常500℃以下〉以下までそのまま真空中で冷
却するのがよいが、とくに冷却速度を速くしたい場合は
、N2 、 Arなどの不活性ガスを導入して冷却して
も本発明を実施できる0〔実施例〕 次に本発明の実施例について説明する。
After heat treatment at a heating temperature and time within the above range, it is preferable to cool it in vacuum to a predetermined temperature below the treatment temperature (usually 500°C or below) at which the carbide layer formed on the steel surface is not oxidized. In particular, when it is desired to increase the cooling rate, the present invention can be carried out by introducing an inert gas such as N2 or Ar for cooling. [Example] Next, an example of the present invention will be described.

実施例 一20メツシュのFe−V粉末(86%V)を60wt
%と工業用NHsC4粉末2 wt%、残部をAt20
s粉末とする混合粉末を直径150馴のステンレスボッ
トに入れ、この混合粉末中に鐘面仕上した5KD61の
丸棒材(直径30mm)をよく洗浄させて埋没させた。
Example 1 60wt of 20 mesh Fe-V powder (86%V)
% and industrial NHsC4 powder 2 wt%, the balance is At20
A mixed powder to be used as S powder was placed in a stainless steel bot with a diameter of about 150 mm, and a round bar material (30 mm in diameter) of 5KD61 with a bezel finish was thoroughly washed and buried in the mixed powder.

ALzOs粉末粒度は350μm以下(平均径約200
μm)のもの、70μm以下(平均径約30μm)のも
の10μm以下(平均径約3μm)のものの3s類を用
いた。真空加熱炉中に上記のポットを置き真空脱気した
あと、930℃迄加熱し、加熱が終了した時点で真空系
へつながるパルプを閉じ、8Hr保持したのち冷却した
。第1表に各々のAt*Os粒度に対する炭化物層の表
面粗度を示す。なお、パルプの調整により密閉大気中に
ても同様に処理したが、炭化物層は形成されていなかっ
た。
The ALzOs powder particle size is less than 350 μm (average diameter approximately 200 μm)
3s), 70 μm or less (average diameter approximately 30 μm), and 10 μm or less (average diameter approximately 3 μm) were used. The pot was placed in a vacuum heating furnace, degassed under vacuum, and then heated to 930°C. When the heating was completed, the pulp connected to the vacuum system was closed, and the pot was maintained for 8 hours before being cooled. Table 1 shows the surface roughness of the carbide layer for each At*Os particle size. Although the pulp was similarly treated in a closed atmosphere by adjusting the pulp, no carbide layer was formed.

第   1   表 第1表から、Al2O5粉末粒度がIOam(%均粒度
約3μm)(試験A I )の場合は70層の表面粗度
が、ALxO3粉末粒度350 μm以下(平均粒度2
00μm)、70μm以下(平均粒度ろ0μm)の場合
に比べ著しく向上していることがわかる。
Table 1 From Table 1, when the Al2O5 powder particle size is IOam (% average particle size about 3 μm) (test A I ), the surface roughness of the 70 layer is 350 μm or less (average particle size 2
00 μm) and 70 μm or less (average particle size 0 μm).

第1図には、試験A I 、 A 3に係る試験片を用
いて摩耗試験を行なった結果を示す。試験は大越式摩耗
試験により、摩擦距離40C1t、#P、荷重6.8神
、相手材SCM21とした。なお、表面処理をしていな
いJISSKDll、5KD61の摩耗試験の結果も合
わせて示す。図から、本発明により、耐摩耗性が顕著に
向上していることがわかる。
FIG. 1 shows the results of an abrasion test using test pieces related to Tests A I and A3. The test was conducted using the Okoshi type abrasion test, with a friction distance of 40 C1t, #P, a load of 6.8 mm, and a mating material SCM of 21. In addition, the results of the abrasion test for JISSKDll and 5KD61 without surface treatment are also shown. The figure shows that the present invention significantly improves wear resistance.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、従来不充分であった粉末
法による炭化物層の表面粗度を大幅に向上させ、かつ炭
化物層の酸化も防止し良好な破膜特性を付与できるため
、粉末による表面処理方法の実用性が大幅に向上する。
As described above, according to the present invention, it is possible to significantly improve the surface roughness of the carbide layer obtained by the powder method, which has been insufficient in the past, and also to prevent oxidation of the carbide layer and impart good membrane rupture properties. The practicality of the surface treatment method is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は大越式摩耗試験による、本発明、比較例および
表面処理をしていないJIS 5KD11 。 61の摩耗試験の結果を示す図である。 第1図 摩擦速度 1m/11
FIG. 1 shows the present invention, a comparative example, and JIS 5KD11 without surface treatment according to the Okoshi type abrasion test. 61 is a diagram showing the results of the wear test of No. 61. Figure 1 Friction speed 1m/11

Claims (1)

【特許請求の範囲】[Claims] 1、周期律表IVa族、Va族、VIa族元素の金属あるい
は合金粉末の1種または2種以上を合計で10〜60w
t%と粉末粒度0.1〜10μmの耐火物粉末を30〜
85wt%及びハロゲン化塩を0.2〜30wt%混合
してなる粉末中に鋼を埋没させ、真空中で加熱保持、冷
却を行なって、鋼の表面に第IVa族、Va族、VIa族元
素の1種または2種以上の炭化物層を形成させることを
特徴とする表面処理方法。
1. A total of 10 to 60w of one or more metals or alloy powders of group IVa, Va, and VIa elements of the periodic table.
refractory powder with t% and powder particle size of 0.1 to 10 μm.
Steel is immersed in powder made of a mixture of 85 wt% and 0.2 to 30 wt% of halide salts, heated and held in vacuum, and cooled to coat the surface of the steel with Group IVa, Va, and VIa elements. A surface treatment method comprising forming one or more carbide layers.
JP26567685A 1985-11-26 1985-11-26 Surface treatment Pending JPS62127460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26567685A JPS62127460A (en) 1985-11-26 1985-11-26 Surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26567685A JPS62127460A (en) 1985-11-26 1985-11-26 Surface treatment

Publications (1)

Publication Number Publication Date
JPS62127460A true JPS62127460A (en) 1987-06-09

Family

ID=17420447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26567685A Pending JPS62127460A (en) 1985-11-26 1985-11-26 Surface treatment

Country Status (1)

Country Link
JP (1) JPS62127460A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002843A2 (en) * 2000-06-29 2002-01-10 Borg Warner, Inc. Carbide coated steel articles and method of making them
JP2006336056A (en) * 2005-05-31 2006-12-14 Nippon Karoraizu Kogyo Kk Wear resistant steel component and its manufacturing method
JP2007009316A (en) * 2005-05-31 2007-01-18 Nippon Karoraizu Kogyo Kk Abrasion-resistant steel parts and manufacturing method therefor
JP2007063665A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2007063666A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2007063667A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
CN105887003A (en) * 2016-05-19 2016-08-24 中信锦州金属股份有限公司 Method for carrying out titanium seeping treatment on reactor by utilizing titanium sponge particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977841A (en) * 1972-12-01 1974-07-26
JPS61199066A (en) * 1985-02-28 1986-09-03 Hitachi Metals Ltd Treatment of surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977841A (en) * 1972-12-01 1974-07-26
JPS61199066A (en) * 1985-02-28 1986-09-03 Hitachi Metals Ltd Treatment of surface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002843A2 (en) * 2000-06-29 2002-01-10 Borg Warner, Inc. Carbide coated steel articles and method of making them
WO2002002843A3 (en) * 2000-06-29 2002-05-30 Borgwarner Inc Carbide coated steel articles and method of making them
JP2006336056A (en) * 2005-05-31 2006-12-14 Nippon Karoraizu Kogyo Kk Wear resistant steel component and its manufacturing method
JP2007009316A (en) * 2005-05-31 2007-01-18 Nippon Karoraizu Kogyo Kk Abrasion-resistant steel parts and manufacturing method therefor
JP2007063665A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2007063666A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2007063667A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
CN105887003A (en) * 2016-05-19 2016-08-24 中信锦州金属股份有限公司 Method for carrying out titanium seeping treatment on reactor by utilizing titanium sponge particles

Similar Documents

Publication Publication Date Title
AU2006243448B2 (en) Coating process for manufacture or reprocessing of sputter targets and X-ray anodes
JP5001323B2 (en) White yttrium oxide spray coating surface modification method and yttrium oxide spray coating coating member
JPH055892B2 (en)
US4569862A (en) Method of forming a nitride layer
EP3584022B1 (en) Ni-based thermal spraying alloy powder and method for manufacturing alloy coating
US4055706A (en) Processes for protecting refractory metallic components against corrosion
EP2204466A1 (en) METHOD OF TREATING SURFACE OF Ti-Al ALLOY AND TI-AL ALLOY OBTAINED BY THE SAME
JPS62127460A (en) Surface treatment
US5226977A (en) Method of hardfacing an engine valve of a titanium material
JPS6280258A (en) Method and apparatus for surface treatment
US3622374A (en) Diffusion coating of ferrous articles
US6887519B1 (en) Method for coating hollow bodies
US3157532A (en) Methods of treating metallic powders
JPS6223906A (en) Hot processing using no gas/fine pulverized powder
US6197436B1 (en) Method and composition for diffusion alloying of ferrous materials
JP2000034581A (en) Production of metal member excellent in oxidation resistance
JP2012136782A (en) Method for modifying surface of white yttrium oxide thermal-sprayed coating, and coated member with yttrium oxide thermal-sprayed coating
JPS61199066A (en) Treatment of surface
KR100305728B1 (en) Powder Composition for Simultaneous Coating of Chrome and Aluminium on Metal Surfaces and Coating Method Thereof
JPH05125519A (en) Method for diffusion coating treatment of niobium alloy
JP5001322B2 (en) Whitening method of black surface of yttrium oxide spray coating and white yttrium oxide spray coating covering member
JPS6270561A (en) Surface treatment of iron alloy material
US3574571A (en) Coatings for high-temperature alloys
JPH0258348B2 (en)
CA2269735A1 (en) Method and composition for diffusion alloying of ferrous materials