JPS62127390A - Method of fluid heat treatment for coal liquefaction residual pitch - Google Patents

Method of fluid heat treatment for coal liquefaction residual pitch

Info

Publication number
JPS62127390A
JPS62127390A JP26888185A JP26888185A JPS62127390A JP S62127390 A JPS62127390 A JP S62127390A JP 26888185 A JP26888185 A JP 26888185A JP 26888185 A JP26888185 A JP 26888185A JP S62127390 A JPS62127390 A JP S62127390A
Authority
JP
Japan
Prior art keywords
pitch
particles
fed
coal liquefaction
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26888185A
Other languages
Japanese (ja)
Other versions
JPH0437876B2 (en
Inventor
Yoneshiro Tazaki
田崎 米四郎
Junichi Kawabata
河端 淳一
Senji Honma
本間 専治
Akira Yumiyama
弓山 翠
Shiyouhei Takeda
武田 詔平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP26888185A priority Critical patent/JPS62127390A/en
Publication of JPS62127390A publication Critical patent/JPS62127390A/en
Publication of JPH0437876B2 publication Critical patent/JPH0437876B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)

Abstract

PURPOSE:To minimize the troubles attributed to the adhesion of pitch, by heating the ground pitch obtd. by grinding a solid coal liquefaction residual pitch in the presence of a granular porous substance and subjecting the heated ground pitch to fluid heat treatment. CONSTITUTION:1pt.wt. solid coal liquefaction residual pitch and 1-4pts.wt. granular porous substance (e.g., coal gasified ash) having a grain size of 5mm or less are fed from a hopper 1 to a double-screw feeder 2 heated by a heater 9' at 300-350 deg.C, thereby effecting grinding and melting of the pitch while causing the pitch to be stuck and adsorbed to the granular porous substance. The non-adhesive grains are fed onto the top of a grating 3' of a fluid oven 3. On the other hand, oxygen is fed from a bomb 4 through a flow meter 5 to a mixer 6, where the oxygen is mixed with the steam fed from a steam generator 7 through an orifice 8 to obtain a mixed gas. The mixed gas heated to 800-1,100 deg.C is fed under the grating 3', thereby fluidizing the non-adhesive grains to attain heat treatment thereof. The temp. within the oven 3 is detected using a thermocouple 10, and the revolution rate of a drive motor 2' for the feeder 2 is controlled through a thermostat 11.

Description

【発明の詳細な説明】 本発明は、石炭液化残渣ピッチの流動熱処理方法に関し
、更に詳しくは、石炭液化残渣ピッチを流動炉内で流動
ガス化又は流動燃焼処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for fluidized heat treatment of coal liquefaction residue pitch, and more particularly to a method for fluidized gasification or fluidized combustion treatment of coal liquefaction residue pitch in a fluidized fluidized furnace.

石炭液化プロセスにおける液化生成物の真空蒸留工程か
らは石炭液化残渣ピッチが排出される。
Coal liquefaction residue pitch is discharged from the vacuum distillation step of the liquefaction product in the coal liquefaction process.

このピッチは、燃料やガス化原料として有用であるが、
常温で固体でありしかも7C11程度の塊状であるため
、そのままでは燃焼やガス化処理を施すことはできず、
一般にペンシル状に造粒したり、粉砕したり、更にはス
ラリー状にして用いられている。このような炭素液化残
渣ピッチのガス化又は燃焼処理を行う場合、流動層方式
を採用するのが処理効率を高める上で望ましいが、ピッ
チは粘着し易く流動層方式でピッチを安定して処理する
ことは極めて困難であった。
This pitch is useful as a fuel and gasification feedstock, but
Since it is solid at room temperature and is in the form of a block of about 7C11, it cannot be burned or gasified as it is.
It is generally used by granulating it into a pencil shape, pulverizing it, or making it into a slurry. When performing gasification or combustion treatment of such carbon liquefaction residue pitch, it is desirable to use a fluidized bed method to increase treatment efficiency, but pitch tends to stick, so a fluidized bed method is recommended to stably process the pitch. This was extremely difficult.

本発明は常温で固体の石炭液化残渣ピッチを、粉砕機や
フィーダー及び流動炉におけるピッチの粘着に起因する
トラブルを抑制しつつ、効果的に流動熱処理する方法を
提供するものである。即ち、本発明によれば、固形状石
炭液化残渣ピッチを粒状多孔質物質の存在下で粉砕し、
得られた粉砕物をピッチの軟化点以上の温度で攪拌混合
して粒状多孔質物質にピッチを付着させ、次いでこれを
流動炉に導いて流動熱処理することを特徴とする石炭液
化残渣ピッチの流動熱処理方法が提供される。
The present invention provides a method for effectively fluidizing coal liquefaction residue pitch, which is solid at room temperature, while suppressing troubles caused by pitch sticking in a crusher, a feeder, and a fluidized fluidized furnace. That is, according to the present invention, solid coal liquefaction residue pitch is pulverized in the presence of a granular porous material,
Flow of coal liquefaction residue pitch characterized by stirring and mixing the obtained pulverized material at a temperature higher than the softening point of the pitch to adhere the pitch to the granular porous material, which is then introduced into a fluidized bed furnace and subjected to fluidized heat treatment. A heat treatment method is provided.

本発明で用いるピッチ原料は常温で固体であれば如何な
る石炭液化残渣ピッチでも使用できる。
As the pitch raw material used in the present invention, any coal liquefaction residue pitch can be used as long as it is solid at room temperature.

このようなピッチは通常塊状であって、本発明において
はこれを先ず約10mm以■、好ましくは5mm以ドの
粒−f−に粉砕する。この場合、粉砕は粒状多孔質物質
の存在下で行う必要がある。ピッチの粉砕工程において
は、ピッチに含まれる油分が浸出したり粉砕による熱の
発生によりピッチが軟化したりし、粉砕機の作動板、ブ
レード及び出口等への付符や閉塞を起し易いが、本発明
においては、粒状多孔質物質を添加することにより、油
分は多孔質物質に吸収され、軟化したピッチは多孔質物
質にまぶされ粘着性を示さないため安定して粉砕を行う
ことができる。
Such pitch is usually in the form of lumps, and in the present invention, it is first ground into particles of about 10 mm or larger, preferably 5 mm or larger. In this case, grinding must be carried out in the presence of a granular porous material. In the pitch grinding process, the oil contained in the pitch leaches out and the pitch softens due to the heat generated by grinding, which tends to cause seals and blockages in the operating plate, blades, and outlet of the grinder. In the present invention, by adding a granular porous material, the oil is absorbed by the porous material, and the softened pitch is sprinkled with the porous material and does not exhibit stickiness, so that stable pulverization can be performed. can.

粒状多孔質物質としては、熱的に溶融しないものであれ
ば種々の有機及び無機物質が使用可能である。経済性の
点から、石炭灰、特に石炭ガス化法の使用が好ましい。
As the granular porous material, various organic and inorganic materials can be used as long as they do not melt thermally. From the economic point of view, it is preferable to use coal ash, especially coal gasification.

多孔質物質は粒状のものを用いるが、その粒径は5m+
++以下、特に2mm以下とするのが良い。粒状多孔質
物質は、好ましくは石炭液化残渣ピッチ1重量部に対し
1〜4重量部、更に好ましくは2〜3重量部用いる。多
孔質物質の量が少な過ぎるとピッチが粘着性を発現する
恐れが強くなり、一方多過ぎると流動熱処理工程の処理
効率が低下する。
The porous material used is granular, and the particle size is 5m+
It is preferable to set it to ++ or less, especially 2 mm or less. The granular porous material is preferably used in an amount of 1 to 4 parts by weight, more preferably 2 to 3 parts by weight, per 1 part by weight of coal liquefaction residue pitch. If the amount of porous material is too small, there is a strong possibility that the pitch will develop stickiness, while if it is too large, the processing efficiency of the fluidized heat treatment step will be reduced.

上記の如くして得られた粉砕混合物は、次にピッチの軟
化点以上の温度、好ましくは300〜350℃に加熱し
攪拌混合する。これにより、溶融ピッチは多孔質粒子に
付着、吸着され非粘着性の粒子を形成する。この攪拌混
合を加熱器を設けたダブルスクリユーフィーダーにより
行うと、攪拌混合と同時に流動炉への原料供給を行うこ
とができ、好ましい。
The pulverized mixture obtained as described above is then heated to a temperature above the softening point of pitch, preferably 300 to 350°C, and mixed with stirring. As a result, the molten pitch adheres to and is adsorbed to the porous particles, forming non-adhesive particles. It is preferable to carry out this stirring and mixing using a double screw feeder equipped with a heater, since this allows the raw materials to be fed to the fluidized bed furnace at the same time as the stirring and mixing.

斯くして得られたピッチを付着した多孔質粒子は、次に
、流動炉に導かれ所望の熱処理が施される。例えば、流
動化ガスとして酸素及び水蒸気を用い、800〜110
0℃、特に900〜1100℃でガス化を行ったり、又
は流動ガスとして空気を用い、700〜1100℃、特
に900〜1100℃で燃焼処理を行う。
The pitch-adhered porous particles thus obtained are then introduced into a fluidized bed furnace and subjected to a desired heat treatment. For example, using oxygen and water vapor as the fluidizing gas,
Gasification is carried out at 0°C, especially 900-1100°C, or combustion treatment is carried out at 700-1100°C, especially 900-1100°C, using air as the fluidizing gas.

本発明の方法により次のような効果が得られる。The method of the present invention provides the following effects.

(1)石炭液化残渣ピッチを粉砕する過程で石炭灰等多
孔質粒子を混合するのでピッチや油分が粉砕機に付着す
ることなく容易に粉砕することができる。
(1) Since porous particles such as coal ash are mixed in the process of pulverizing coal liquefaction residue pitch, it can be easily pulverized without pitch or oil adhering to the pulverizer.

(2)ダブルスクリユーフィーダーを加熱し石炭液化残
渣ピッチを溶融させ1石炭灰等多孔質粒子に付着、吸着
させて供給するためにダブルスクリユーフィーダー内が
詰まることなくスムーズに原料を流動炉に供給すること
ができる。
(2) The double-screw feeder is heated to melt the coal liquefaction residue pitch, which attaches to and adsorbs onto porous particles such as coal ash, and supplies the raw material to the fluidized fluidized furnace without clogging the inside of the double-screw feeder. can be supplied.

(3)流動炉内へ供給される付着粒子は、さらさらとし
た粒子性状のため、粒子が付着し合うことが無く良好に
流動化するので、吹抜は等による爆発は無<1lIII
!素によるガス化処理でも全く安全に運転ができる。
(3) The adhered particles supplied into the fluidized fluidized furnace have a smooth particle property, so the particles do not adhere to each other and are fluidized well, so there is no explosion due to stairwell etc.
! It can be operated completely safely even in gasification treatment using raw materials.

(4)付r1粒子はさらさらとした流動性を有する性状
のため、流動層下部から供給できるので層上部での局部
燃焼が起こることもなく炉内の温度分布を一様に維持す
ることができ、表にのスケールアップを図ることができ
る。
(4) Since the R1 particles have smooth fluidity, they can be fed from the bottom of the fluidized bed, so local combustion at the top of the bed will not occur and the temperature distribution in the furnace can be maintained uniformly. , it is possible to scale up the table.

実施例1 石炭液化残渣ピッチ1重量部に対し粒径1.68mm以
下、かき密度0.40 g /ccの石炭ガス化法粒子
を2.5重量部の割合で混合し、5IIIn+以下に粉
砕した。
Example 1 2.5 parts by weight of coal gasification particles with a particle size of 1.68 mm or less and a scraping density of 0.40 g/cc were mixed with 1 part by weight of coal liquefaction residue pitch, and pulverized to 5IIIn+ or less. .

その結果、油分やピッチが粉砕機に付着することなく長
時間の運転でも容易に粉砕することができる。次に第1
図に示す流動炉のダブルスクリユーフィーダーへこの粒
子を入れ、ダブルスクリユーフィーダーを300℃〜3
50°Cに加熱し流動炉へ供給した。5+w以下に粉砕
されているピッチはダブルスクリユーフィーダー内で溶
融し共に供給されて行く石炭ガス化法粒子に付着、吸着
され、非粘着性粒子となって流動炉内へ送り込まれた。
As a result, the grinder can be easily ground even during long-term operation without oil or pitch adhering to the grinder. Then the first
The particles were put into the double screw feeder of the fluidized fluidized furnace shown in the figure, and the double screw feeder was heated at 300°C to 30°C.
It was heated to 50°C and supplied to a fluidized fluidized furnace. The pitch crushed to 5+W or less was melted in the double screw feeder and adhered to and adsorbed to the coal gasification particles that were being fed together, becoming non-adhesive particles and being fed into the fluidized bed furnace.

石炭液化残渣ピッチは灰分を約lO%、未燃分を約90
%含み、石炭ガス化法粒子は灰分を約80%、未燃分を
約20%含んでいた。石炭液化残渣ピッチの性状とピッ
チを石炭ガス化法粒子に付着、吸着させた付着粒子の性
状を表−1に示す。
Coal liquefaction residue pitch has an ash content of approximately 10% and an unburned content of approximately 90%.
%, and the coal gasification particles contained about 80% ash and about 20% unburned matter. Table 1 shows the properties of the coal liquefaction residue pitch and the properties of the adhering particles obtained by adhering the pitch to the coal gasification particles.

表−1 液化残渣ピッチの元素分析値、発熱量 付着粒子の元素分析値、発熱量 付着粒子の工業分析値 又、付着粒子のかさ密度は0.53 g /ccとなり
、元の石炭ガス化成粒子の0.40 g /ccより大
きくなり、ピッチを付着、吸着して重くなっていること
がわかる。次に付着粒子と元の石炭ガス化成粒子の粒径
分布と平均粒径を第2図に示す。付着粒子は石炭ガス化
成粒子に比へ粒径が4 、0mm以下と大きい方に位置
し、さらに平均粒径も石炭ガス化成粒子の0.52mn
+から0.65mmと大きくなりピッチが付着して粒径
が大きくなっていることが良くわかる。
Table 1 Elemental analysis value of liquefied residue pitch, elemental analysis value of calorific value adhered particles, industrial analysis value of calorific value adhered particles.The bulk density of the adhered particles was 0.53 g/cc, which was the same as that of the original coal gasification particles. It can be seen that the pitch is larger than 0.40 g/cc, and the weight is increased due to the adhesion and adsorption of pitch. Next, Fig. 2 shows the particle size distribution and average particle size of the adhered particles and the original coal gasification particles. The attached particles have a larger particle size than the coal gas chemical particles, less than 4.0 mm, and the average particle size is also 0.52 mm compared to the coal gas chemical particles.
It can be clearly seen that the particle size increases from + to 0.65 mm, and the pitch is attached and the particle size is increased.

以上のような性状なる付着粒子を第1図に示す流動装置
を使用して酸素と水蒸気によってガス化反応実験を行な
った。即ち、まず粉砕された石炭液化残渣ピッチと混合
された石炭ガス化成粒子はホッパー1に入りヒーター9
′によって加熱されたダブルスクリユーフィーダー2に
より前述のようにピッチが石炭ガス化成粒子に付着、吸
着されさらさらしとした流動性のある粒子となって流動
炉3の11皿3′の直上へ供給される。流動炉3は内径
108mm、全長1mで目皿3′は開孔比2%、穴径2
mmのものを使用した。酸素は、酸素ボンベ・1よりJ
εス計5を経てミキサー6に入る。水蒸気は水蒸気発生
器7よりオリフィス8を通してミキサー6に入り、ここ
で酸素と混合されて流動炉の目皿下へ吹込まれ、目皿上
のピッチを付着、吸着した付着粒子を流動化し反応させ
る。スタートアップは外熱ヒーター9によって付着粒子
を着火させ、所定の温度まで昇温させた後、外熱ヒータ
ーを切って酸素と付着粒子の燃焼熱、いわゆる自燃によ
って設定温度まで昇温させる。流動炉温度が設定温度に
達したら熱電対10で炉内温度を検出し、温度調節計1
1を通してダブルスクリユーフィーダー2の駆動モータ
ー2′の回転速度を制御し供給する付着粒子の量を増減
する方法、すなわち供給する付着粒子の加熱に必要な顕
熱による冷却効果を利用する方法によって炉内温度を制
御した。この方法により炉内温度を±5℃以内に制御す
ることが出来た。第1国中、12は溢流物受器、13は
集a器、14はガス放出管、15はガスサンプリング口
である。
A gasification reaction experiment was carried out on the adhered particles having the properties described above using oxygen and water vapor using a flow apparatus shown in FIG. That is, first, the coal gasification particles mixed with the crushed coal liquefaction residue pitch enter the hopper 1 and pass through the heater 9.
As mentioned above, the pitch adheres to the coal gas conversion particles by the double screw feeder 2 heated by 1, becomes adsorbed, becomes smooth and fluid particles, and is fed directly above the 11 plates 3' of the fluidized bed furnace 3. be done. The fluidized fluid furnace 3 has an inner diameter of 108 mm, a total length of 1 m, and a perforated plate 3' with an opening ratio of 2% and a hole diameter of 2.
mm was used. Oxygen is J from oxygen cylinder 1
It enters the mixer 6 via the ε spacer 5. Steam enters the mixer 6 from the steam generator 7 through the orifice 8, where it is mixed with oxygen and blown under the perforated plate of the fluidized bed, where it adheres to the pitch on the perforated plate and fluidizes and reacts the adhering particles. For startup, the attached particles are ignited by the external heat heater 9 and the temperature is raised to a predetermined temperature, and then the external heater is turned off and the temperature is raised to the set temperature by combustion heat of oxygen and the attached particles, so-called self-combustion. When the fluidized furnace temperature reaches the set temperature, the thermocouple 10 detects the furnace temperature, and the temperature controller 1
1, the rotational speed of the drive motor 2' of the double screw feeder 2 is controlled to increase or decrease the amount of attached particles to be supplied, that is, a method that utilizes the cooling effect of the sensible heat necessary to heat the attached particles to be supplied. The internal temperature was controlled. By this method, the temperature inside the furnace could be controlled within ±5°C. In the first country, 12 is an overflow receiver, 13 is a collector, 14 is a gas discharge pipe, and 15 is a gas sampling port.

以上の方法により前述の付着粒子を炉内流速57am/
5ec一定とし、ガス化反応温度1000℃一定として
酸素濃度を21%〜約32%まで変えた時のガス化実験
結果を第3図に示す。第3図より酸素濃度の増加と共に
C02が低下しCOが増加し粗ガス発熱量も次第に上昇
していく。表−2に酸素濃度31.7%の時のガス分析
値を示した。
By the above method, the above-mentioned adhered particles were removed at an in-furnace flow rate of 57 am/
Fig. 3 shows the results of a gasification experiment when the oxygen concentration was varied from 21% to about 32% with the gasification reaction temperature constant at 5 ec and 1000°C. From FIG. 3, as the oxygen concentration increases, CO2 decreases, CO increases, and the crude gas calorific value gradually increases. Table 2 shows the gas analysis values when the oxygen concentration was 31.7%.

表−2 表−2より酸素濃度32%近(ではCOが44%、H2
が34%となり粗ガスのカロリーも2540にcal/
Nrn’となり、中カロリーガスが取得出来、多目的に
使用可能である。流動炉内では石炭ガス化成粒子に付着
、吸着された石炭液化残渣ピッチはガス化され、石炭ガ
ス化成粒子は溢流物受器に入って取り出され、再び液化
残渣ピッチと混合して前述したようにして使用すること
ができる。
Table 2 From Table 2, oxygen concentration is close to 32% (CO is 44%, H2
is 34%, and the calories of crude gas are 2540 cal/
Nrn', medium calorie gas can be obtained, and it can be used for many purposes. In the fluidized bed reactor, the coal liquefaction residue pitch attached to and adsorbed on the coal gasification particles is gasified, and the coal gasification particles enter the overflow receiver and are taken out, where they are mixed with the liquefaction residue pitch again and regenerated as described above. It can be used as

実施例2 実施例1と同様な方法で炉内流速57cm/5ee一定
とし酸素濃度25.2%一定として炉内温度を950℃
Example 2 Using the same method as in Example 1, the flow rate in the furnace was constant at 57 cm/5ee, the oxygen concentration was constant at 25.2%, and the temperature in the furnace was 950°C.
.

1000℃、1050℃と変えた時のガス化実験結果を
第4図に示す。炉内温度の上昇と共にCO2が増加し燃
焼反応が進んでいることを示している。炉内温度の昇温
は付着粒子を自然させることによって昇温するので、酸
素濃度が一定の時は炉温の上昇と共に発熱量が下がって
来ている。炉内温度1050℃の時の溢流粒子と集塵器
ダストの工業分析値を表−3に示す。
Figure 4 shows the results of gasification experiments when the temperature was changed to 1000°C and 1050°C. CO2 increases as the temperature inside the furnace increases, indicating that the combustion reaction is progressing. The temperature inside the furnace is raised by letting the attached particles grow, so when the oxygen concentration is constant, the amount of heat generated decreases as the furnace temperature rises. Table 3 shows industrial analysis values for overflow particles and dust collector dust when the furnace temperature was 1050°C.

表−3 表−3より溢流物受器から排出される溢流粒子はほとん
ど灰化しており流動燃焼に近い状態になっている。この
付着粒子を流動燃焼する場合は、酸素と水蒸気を使用せ
ず、第1図に示すように空気ブロア16によって空気を
使用すれば良い。集塵器ダストは未燃分が多いのでホッ
パーに戻して再び流動炉へ送り込み、溢流粒子は元の石
炭ガス化灰粒子であり未燃分がほとんどないので石炭液
化残渣ピッチと混合して再び利用する。第5図にこの実
験での温度チャートを示した。付着粒子はさらさらとし
た。1を動性を有する性状のため、また、流動炉の目皿
上に供給されるので流動状態が良く、炉内温度が±5℃
以内で制御されていることがわかる。炉内の昇温も容易
に行うことが出来、全く安定に安全に流動炉を操作する
ことが可能であり、炉のスケールアップを図ることがで
きるのである。
Table 3 Table 3 shows that most of the overflow particles discharged from the overflow receiver have been ashed and are in a state close to fluidized combustion. When fluidizing and burning these adhered particles, oxygen and water vapor may not be used, but air may be used using an air blower 16 as shown in FIG. Since the dust collector dust has a large amount of unburned matter, it is returned to the hopper and sent to the fluidized bed furnace again.The overflow particles are the original coal gasification ash particles and have almost no unburned matter, so they are mixed with the coal liquefaction residue pitch and recycled again. Make use of it. FIG. 5 shows a temperature chart in this experiment. The adhered particles were smooth. 1 has a dynamic property, and since it is supplied onto the perforated plate of the fluidized bed furnace, it has a good fluidity, and the temperature inside the furnace is ±5℃.
It can be seen that it is controlled within The temperature inside the furnace can be easily raised, the fluidized fluidized furnace can be operated completely stably and safely, and the furnace can be scaled up.

以上のようにして石炭ガス化の廃棄物である石炭ガス化
灰粒子と石炭液化の残渣物であるピッチを混合し流動化
が可能な粒子として、このような簡単な方法で安定にし
かも安全にガス及び熱を取得することができる。
As described above, coal gasification ash particles, which are the waste products of coal gasification, and pitch, which is the residue of coal liquefaction, are mixed to form particles that can be fluidized, stably and safely using such a simple method. Gas and heat can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した装置のフローシート、第2図
は石炭ガス化灰粒子と、石炭液化残渣ピッチを付着、吸
着した石炭ガス化灰粒子との粒径分布及び平均粒径を比
較した図、第3図は炉内温度を一定とし酸素濃度を変え
て付着粒子をガス化した時の生成ガスの変化を示すグラ
フ、第4図は、酸素濃度を一定とし、炉内温度を変えて
付着粒子をガス化した時の生成ガスの変化を示すグラフ
、及び第5図は、本発明を実施した時の流動炉の温度チ
ャートである。図中、lは供給用ホッパー、2はダブル
スクリユーフィーダー、2′はダブルスクリユーフィー
ダーの駆動モーター、3は流動炉装置、3′はその目皿
、4は酸素ボンベ、5は流量計、6はガス混合器、7は
水蒸気発生器、8はオリフィス、9は着火用のヒーター
、9′はダブルスクリユーフィーダーを加熱するヒータ
ー、10は炉内温度を検出する熱電対、11は炉内温度
を一定にコントロールするため、ダブルスクリユーフィ
ーダーの駆動モーターの回転速度を制御し、付着粒子の
供給社を調節する調節計、12は溢流物受器、 13は
集塵器、14はガス放出管、15はガスサンプリング口
、16は流動燃焼用の空気ブロワである。 特許出願人 工業技術院長 等 々 力   達指定代
理人 工業技術院北海道工業開発試験所長後藤藤太部 粒 J王 Cmm) お 3目 6Rム、虜lオ(%)
Figure 1 is a flow sheet of an apparatus implementing the present invention, and Figure 2 is a comparison of the particle size distribution and average particle size of coal gasification ash particles and coal gasification ash particles to which coal liquefaction residue pitch has been attached and adsorbed. Figure 3 is a graph showing the change in the generated gas when adhering particles are gasified by changing the oxygen concentration while keeping the furnace temperature constant. FIG. 5 is a graph showing changes in the generated gas when adhering particles are gasified, and FIG. 5 is a temperature chart of the fluidized bed furnace when the present invention is carried out. In the figure, l is a supply hopper, 2 is a double-screw feeder, 2' is a drive motor for the double-screw feeder, 3 is a fluidized flow furnace, 3' is its perforated plate, 4 is an oxygen cylinder, 5 is a flow meter, 6 is a gas mixer, 7 is a steam generator, 8 is an orifice, 9 is a heater for ignition, 9' is a heater that heats the double screw feeder, 10 is a thermocouple that detects the temperature inside the furnace, 11 is inside the furnace In order to keep the temperature constant, there is a controller that controls the rotational speed of the drive motor of the double screw feeder and adjusts the supply of adhering particles; 12 is an overflow receiver; 13 is a dust collector; 14 is a gas A discharge pipe, 15 is a gas sampling port, and 16 is an air blower for fluidized combustion. Patent applicant: Director of the Agency of Industrial Science and Technology, etc. Designated agent: Director of the Hokkaido Industrial Development Testing Institute, Agency of Industrial Science and Technology, Goto, Abe, J.K., Cmm)

Claims (1)

【特許請求の範囲】[Claims] (1)固形状石炭液化残渣ピッチを粒状多孔質物質の存
在下で粉砕し、得られた粉砕物をピッチの軟化点以上の
温度で攪拌混合して粒状多孔質物質にピッチを付着させ
、次いでこれを流動炉に導いて流動熱処理することを特
徴とする石炭液化残渣ピッチの流動熱処理方法。
(1) Pulverize solid coal liquefaction residue pitch in the presence of a granular porous material, stir and mix the resulting pulverized product at a temperature above the softening point of the pitch to adhere the pitch to the granular porous material, and then A method for fluid heat treatment of coal liquefaction residue pitch, which is characterized by introducing the pitch into a fluidized fluid furnace and subjecting it to fluid heat treatment.
JP26888185A 1985-11-28 1985-11-28 Method of fluid heat treatment for coal liquefaction residual pitch Granted JPS62127390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26888185A JPS62127390A (en) 1985-11-28 1985-11-28 Method of fluid heat treatment for coal liquefaction residual pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26888185A JPS62127390A (en) 1985-11-28 1985-11-28 Method of fluid heat treatment for coal liquefaction residual pitch

Publications (2)

Publication Number Publication Date
JPS62127390A true JPS62127390A (en) 1987-06-09
JPH0437876B2 JPH0437876B2 (en) 1992-06-22

Family

ID=17464555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26888185A Granted JPS62127390A (en) 1985-11-28 1985-11-28 Method of fluid heat treatment for coal liquefaction residual pitch

Country Status (1)

Country Link
JP (1) JPS62127390A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142340A (en) * 2004-11-22 2006-06-08 Jfe Koken Corp Tube centering tool
CN103275744A (en) * 2013-05-30 2013-09-04 神华集团有限责任公司 Asphalt substance separated from direct coal liquefaction residues and method and application thereof
CN104845652A (en) * 2015-06-10 2015-08-19 神华集团有限责任公司 Treatment method for direct coal liquefaction residues

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669214A (en) * 1979-11-02 1981-06-10 Kureha Chem Ind Co Ltd Preparation of globular carbon or grobular active carbon
JPS56145973A (en) * 1980-04-15 1981-11-13 Kureha Chem Ind Co Ltd Making molded pitch product infusible
JPS59122587A (en) * 1982-12-28 1984-07-16 Fuji Standard Res Kk Production of molded slightly fusible or infusible pitch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669214A (en) * 1979-11-02 1981-06-10 Kureha Chem Ind Co Ltd Preparation of globular carbon or grobular active carbon
JPS56145973A (en) * 1980-04-15 1981-11-13 Kureha Chem Ind Co Ltd Making molded pitch product infusible
JPS59122587A (en) * 1982-12-28 1984-07-16 Fuji Standard Res Kk Production of molded slightly fusible or infusible pitch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142340A (en) * 2004-11-22 2006-06-08 Jfe Koken Corp Tube centering tool
CN103275744A (en) * 2013-05-30 2013-09-04 神华集团有限责任公司 Asphalt substance separated from direct coal liquefaction residues and method and application thereof
CN104845652A (en) * 2015-06-10 2015-08-19 神华集团有限责任公司 Treatment method for direct coal liquefaction residues
CN104845652B (en) * 2015-06-10 2018-06-26 神华集团有限责任公司 The processing method of coal directly-liquefied residue

Also Published As

Publication number Publication date
JPH0437876B2 (en) 1992-06-22

Similar Documents

Publication Publication Date Title
US5226927A (en) Wood gasifier
US4029550A (en) Process for the dry distallation of rubber
CA2827407C (en) Waste treatment
GB2423079A (en) Combined gasification and plasma treatment of waste
EP2566809B1 (en) Waste treatment
US5133780A (en) Apparatus for fixed bed coal gasification
JP7278385B2 (en) Combustibles treatment method and equipment
JPS62127390A (en) Method of fluid heat treatment for coal liquefaction residual pitch
US5145490A (en) Process for fixed bed coal gasification
JPS59100303A (en) Method of partially burning solid fuel containing recirculation of fly ash
JP2003213269A (en) High temperature carbonization installation and high temperature carbonization method
JPH0238159B2 (en)
CN110358581A (en) A kind of aqueous dregs of fat are granulated again the device and method of pyrolytic gasification
JPS63226511A (en) Operation controller for fluidized-bed combustion device
JP2903045B2 (en) Rotary carbonization furnace
JP2003261887A (en) Carbonization gasification method for plastic
JPS59172593A (en) Method and equipment for preparation of fuel from wastes such as garbage
JP5084273B2 (en) Method and apparatus for producing solid carbon fuel and plastic mixed solid fuel
RU2174948C1 (en) Method of heat treatment of carbon-containing raw material including production of carbon sorbent and plant for realization of this method
US4998487A (en) Novel coal combustion method
JP3511720B2 (en) Apparatus and method for supplying combustibles to combustion furnace
CN117186913A (en) Biomass internal heating type airflow rotary carbonization method and carbon steam co-production equipment
JPS58125791A (en) Combustion process of waste plastic
JPH06158066A (en) Production of slurry containing waste plastic
JPH07150151A (en) Method for gasifying tire chip

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term