JPS62127168A - Method and device for ac square wave plasma arc welding - Google Patents

Method and device for ac square wave plasma arc welding

Info

Publication number
JPS62127168A
JPS62127168A JP26790385A JP26790385A JPS62127168A JP S62127168 A JPS62127168 A JP S62127168A JP 26790385 A JP26790385 A JP 26790385A JP 26790385 A JP26790385 A JP 26790385A JP S62127168 A JPS62127168 A JP S62127168A
Authority
JP
Japan
Prior art keywords
circuit
welding
inverter
time
plasma arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26790385A
Other languages
Japanese (ja)
Other versions
JPH0413071B2 (en
Inventor
Hirohisa Fujiyama
藤山 裕久
Harumichi Ichimura
治通 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26790385A priority Critical patent/JPS62127168A/en
Publication of JPS62127168A publication Critical patent/JPS62127168A/en
Publication of JPH0413071B2 publication Critical patent/JPH0413071B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To execute exactly an arc re-ignition at the time of converting the polarity of one set of power source, and to improve the welding operability by executing the welding by using an AC square wave voltage which can adjust optionally a frequency and a time ratio of a positive electrode component and a negative electrode component, as a welding power source. CONSTITUTION:A square wave signal which has been obtained by an oscillating circuit 6 is set to a desired optional ratio by a straight polarity/opposite polarity time ratio adjusting circuit 5. This signal is amplified to a value which can drive an inverter, by a pre-amplifying circuit 4 for an inverter circuit 3, and applied to each transistor 11-14 in the circuit 3. In this state, when one pair 11, 14 or 12, 13 of them has been cut off, a current flows by a small charge which has remained in the transistors. A short circuit between each transistor at that time is prevented by a control circuit 7. Thereafter, the other pair of transistors are conducted electrically at the same time, cut off after a prescribed time, the electric conduction is repeated alternately without being short-circuited as mentioned above, and a DC which has been obtained from a transformer 1 having a high no-load voltage and a rectifying circuit 2 is outputted as an AC square wave. This square wave becomes a plasma arc flame between an electrode 8 in a nozzle 9 and a base material 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマアーク溶接方法および装置に係り、
特にインバータを用いて直流を交流に変換して行う交流
矩形波プラズマアーク溶接方法およびその装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma arc welding method and apparatus,
In particular, the present invention relates to an AC rectangular wave plasma arc welding method and an apparatus therefor, which is performed by converting DC to AC using an inverter.

〔従来の技術〕[Conventional technology]

一般にプラズマアーク溶接では、狭いノズル内を流れる
アルゴンガスにより著しく冷却される結果プラズマアー
クは、熱放散の増大に対処しようと表面積を縮小し細く
収縮する熱的ピンチ効果を生ずる事が知られている。し
たがってプラズマアークが収縮すれば母材における熱の
集中度が高く局部的に加熱されることで、熱影響部を最
小限の範囲にとどめることができる。またプラズマガス
が高速度で噴出することによりキーホールと呼ばれる穴
を母材を貫通して発生させることができるため100%
の溶は込みと充分な裏波ビードを得ることができる。
In general, in plasma arc welding, it is known that as a result of being significantly cooled by argon gas flowing within a narrow nozzle, the plasma arc causes a thermal pinch effect in which the surface area shrinks and narrows in order to cope with the increased heat dissipation. . Therefore, when the plasma arc contracts, the heat is highly concentrated in the base material and heated locally, making it possible to keep the heat-affected zone within a minimum range. In addition, by ejecting plasma gas at high speed, a hole called a keyhole can be created by penetrating the base material, so 100%
It is possible to obtain a sufficient amount of welding and a sufficient Uranami bead.

しかしながらTIG溶接法の場合のアーク形状は、円錐
状を呈しておりその頂角は約45度程度であり、アーク
長を変化させると母材表面におけるアークの広がりは、
大幅に増減し単位面積当りの母材への入熱量は変化し溶
は落ちや融合不良を生じる。したがってTIG溶接の場
合熱集中のためにアーク長を短かくし、しかも変動がほ
とんど無い様に制御せねばならず、その溶接作業性は、
きわめて困難となる。したがって溶接部の微小部分に熱
を集中させることが必要なプラズマアーク溶接は、TI
G溶接では不可能な極薄板の溶接ができることが知られ
ている。さらにプラズマアーク溶接またはTIG溶接に
おいては、極性の接続方法により特性が異なり、母材を
陽極、電極を陰極とした正極性接続では、深い溶は込み
が得られ、また母材を陰極、電極を陽極とした逆極性接
続では溶は込みは浅いが、母材表面の酸化膜を除去する
清浄効果が有る事が知られている。特に、アルミニウム
、あるいはアルミニウム合金等のように母材表面が溶融
温度の高い酸化膜で覆われている材料を溶接する場合、
清浄効果が必要なことから交流を用い溶接が行なわれて
いる。しかしながらプラズマ溶接に限らず1通常の商用
周波数を用いた交流アーク溶接では、1秒間に50ない
し60回の割合で正極逆極が交番する第4図のような正
弦波交流である。したがって同図に示すが如く無負荷電
圧14は必ず0ボルトを通過し、除々に上昇し最大値に
至り除々に下降しOボルトに近付き、0ボルトに至る。
However, in the case of TIG welding, the arc shape is conical and the apex angle is about 45 degrees, and when the arc length is changed, the spread of the arc on the base metal surface is
The amount of heat input to the base metal per unit area changes significantly, causing melt drop and poor fusion. Therefore, in the case of TIG welding, the arc length must be shortened to allow heat concentration, and it must be controlled so that there is almost no fluctuation, and the welding workability is
It becomes extremely difficult. Therefore, plasma arc welding, which requires heat to be concentrated in a minute part of the weld, requires TI
It is known that it is possible to weld extremely thin plates, which is impossible with G welding. Furthermore, in plasma arc welding or TIG welding, the characteristics differ depending on the polarity connection method. Positive polarity connection, in which the base metal is the anode and the electrode is the cathode, provides deep penetration; Although the weld penetration is shallow in reverse polarity connection using an anode, it is known that it has a cleaning effect by removing the oxide film on the surface of the base material. In particular, when welding materials such as aluminum or aluminum alloys whose base metal surfaces are covered with an oxide film with a high melting temperature,
Welding is performed using alternating current because a cleaning effect is required. However, not only plasma welding but also AC arc welding using a normal commercial frequency is a sinusoidal alternating current as shown in FIG. 4, in which the positive and negative poles alternate at a rate of 50 to 60 times per second. Therefore, as shown in the figure, the no-load voltage 14 always passes through 0 volts, gradually increases, reaches the maximum value, gradually decreases, approaches O volts, and reaches 0 volts.

0ボルトを通過した該電圧は負極側でも同様に上昇、下
降を繰り返す。この様に正弦波交流では、電圧がOボル
トになる正極負極の境界付近においては、極性変換が緩
慢である。
The voltage that has passed 0 volts repeats rising and falling on the negative electrode side as well. In this way, in the sine wave AC, the polarity change is slow near the boundary between the positive and negative electrodes where the voltage becomes O volts.

したがって無負荷電圧が、アーク放電開始電圧に到る第
4図中19の間、アーク放電しない。また無負荷電圧が
反転し、アークが再点弧するまでの同図中20−a、2
0−bの間はアークの自己保持性あるいは回路のりアク
ドルのみにより保たれているだけの不安定な状態である
。したがって交流アークでは電流の半波毎にその流れる
方向が反転しその度毎にアークは一度消弧し、改めて逆
方向に再点弧しなければならず、もし再点弧に失敗した
とすると再点弧は不可能となり、アークは消失する。溶
接中に一度アークが消失すると融合不良あるいはスラグ
巻き込み等の溶接欠陥を誘発し、溶接作業性も悪化し健
全な溶接継手を作成することは著しく困難となる。交流
アークを直流アークに比べ維持しにくいのは、この再点
弧の困難さにある。したがって、従来技術では特開昭5
5−126384号公報に示される如く再点弧を助成さ
せるために、電圧が0ボルトとなった直後スパイク状の
高電圧を印加したり、あるいはTIG溶接、プラズマア
ーク溶接等においては、高圧高周波電圧を重畳すること
によりアーク再点弧を強制しアークを安定維持させるこ
とが知られている。しかしながら、前述方法では、溶は
込み深さを制御するには、溶接電圧、溶接電流、あるい
は溶接速度を制御する必要がある。また、前述高圧高周
波を用いる方法では、火花放電により該高周波を発生せ
しめているために、空中に電磁波を放射し、この電磁波
により他の装置例えばテレビ、ラジオ、あるいはコンピ
ュータ等に障害を与えるという問題が有る。またTIG
溶接あるいはプラズマアーク溶接のような非消耗電極溶
接式の溶接方法において、逆極性時における電極の発熱
量は母材から発生した電子が電極に衝突することにより
正極時の場合の発熱量と比べて遥かに大きい。したがっ
て通常同一電極径において、流すことのできる電流範囲
は直流正極性の場合と直流逆極性の場合とでは約10倍
直流逆極性の方が少ない、交流溶接時においても同様で
あり、商用の正弦波交流を用いた溶接では、正極性逆極
性比がl:lであるため約5倍の電極の熱容量を必要と
するため、7r1極径、溶接トーチ自身の大きさ等制約
もあり、+8接作業性を考えると大型化し好ましいとは
言えない。
Therefore, no arc discharge occurs during the period 19 in FIG. 4 when the no-load voltage reaches the arc discharge starting voltage. 20-a and 2 in the same figure until the no-load voltage is reversed and the arc is re-ignited.
Between 0 and b, it is an unstable state that is maintained only by the self-holding property of the arc or the circuit accelerator. Therefore, in an AC arc, the direction of flow is reversed every half wave of current, and each time the arc must be extinguished and then re-ignited in the opposite direction, and if the re-ignition fails, it will be re-ignited. Ignition is no longer possible and the arc is extinguished. Once the arc is extinguished during welding, welding defects such as poor fusion or slag entrainment are induced, welding workability deteriorates, and it becomes extremely difficult to create a sound welded joint. The reason that AC arcs are more difficult to maintain than DC arcs is the difficulty of restriking. Therefore, in the conventional technology,
As shown in Publication No. 5-126384, in order to assist re-ignition, a spike-like high voltage is applied immediately after the voltage becomes 0 volts, or a high-voltage high-frequency voltage is applied in TIG welding, plasma arc welding, etc. It is known that by superimposing the arc, the arc is forced to restart and the arc is maintained stably. However, in the above method, in order to control the penetration depth, it is necessary to control the welding voltage, welding current, or welding speed. Furthermore, in the method using high-voltage, high-frequency waves, since the high-frequency waves are generated by spark discharge, there is a problem in that electromagnetic waves are radiated into the air and this electromagnetic waves can cause interference with other devices such as televisions, radios, computers, etc. There is. Also T.I.G.
In non-consumable electrode welding methods such as welding or plasma arc welding, the amount of heat generated by the electrode during reverse polarity is greater than the amount of heat generated during positive electrode because electrons generated from the base material collide with the electrode. Much larger. Therefore, with the same electrode diameter, the current range that can be passed is approximately 10 times lower in the case of DC positive polarity than in the case of DC reverse polarity.The same is true for AC welding, In welding using wave alternating current, the positive/reverse polarity ratio is l:l, which requires approximately 5 times the heat capacity of the electrode, so there are restrictions such as the 7r1 pole diameter and the size of the welding torch itself, so +8 contact Considering the workability, it becomes large and cannot be said to be preferable.

そこで本発明者等は、すでに特開昭59−921760
公報による装置にて、プラズマアーク溶接を試みたが、
極性変換時に円滑かつ確実なアーク対点弧が行えずプラ
ズマアークは消失してしまい、健全な溶接継手を作成す
る事は困難であった。
Therefore, the present inventors have already published Japanese Patent Application Laid-Open No. 59-921760
I tried plasma arc welding using the device according to the official publication, but
At the time of polarity change, smooth and reliable arc-to-arc ignition could not be performed and the plasma arc would disappear, making it difficult to create a sound welded joint.

また、これら従来技術の問題点を改良すべくプラズマア
ーク溶接においてWELDING JOUrlNAL誌
In addition, in order to improve these problems of the conventional technology, welding journal in plasma arc welding.

FEBRUARY 19g4.  (25〜35頁)に
掲載されているが如く、正極性、逆極性用の2台の電源
を用い、これらを交互に切り換えることにより、電圧を
瞬時に切り換ることで前述再点弧または熱容量等の諸問
題を解決し交流プラズマ溶接を実施することが報告され
ている。
FEBRUARY 19g4. (pages 25 to 35), by using two power supplies for positive polarity and reverse polarity, and by switching these alternately, the voltage can be instantly switched, and the above-mentioned re-ignition or It has been reported that alternating current plasma welding can be used to solve various problems such as heat capacity.

しかしながら前述の該2台の電源を用いる事は、溶接装
置の大型化あるいは溶接条件の設定等装置の操作が煩雑
となり、溶接作業性が悪(現場的な溶接装置とはいえな
い。
However, using the two power sources mentioned above increases the size of the welding device and complicates the operation of the device such as setting welding conditions, resulting in poor welding workability (it cannot be said to be an on-site welding device).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、これらの点に鑑みなされたものであって1台
の無負荷電圧の高い溶接電源および矩形波交流により極
性変換時のアークの再点弧を確実かつ円滑に行ない、該
極性変化の周期を任意に調整できるものとし、さらに正
極性時と逆極性時の時間の割合をも任意に調整すること
で例えば母材表面が溶融温度の高い酸化膜で覆われてい
るような材料の溶接に際しても、その溶接継手を健全か
つ簡便に作成する方法及び装置の提供を目的とするもの
である。
The present invention was made in view of these points, and uses a single high no-load voltage welding power source and square wave alternating current to reliably and smoothly re-ignite the arc at the time of polarity change. By making it possible to arbitrarily adjust the period and also arbitrarily adjusting the ratio of time between positive polarity and reverse polarity, it is possible to weld, for example, materials whose surfaces are covered with an oxide film with a high melting temperature. The object of the present invention is to provide a method and apparatus for producing a sound and simple welded joint.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、プラズマアーク溶接方法において溶接電源と
して周波数および正極性成分負極性成分の時間割合を任
意に調整可能な交流矩形波電圧を用いて溶接する事を特
徴する交流矩形波プラズマアーク溶接方法、および、無
負荷電圧の高い変圧器、交流を直流に変換する!!流回
路、該直流を交流矩形波に変換する2対のスイッチング
素子より成るインバータ回路、該インバータ回路を駆動
するためのインバータ回路用前置増幅回路、該インバー
ターの出力矩形波周波数および正極成分、負極成分の時
間割合を任意に調整するための制御回路、および該イン
バーターの2対のスイッチング素子間の相間短絡を防止
するための制御回路より構成される溶接装置である。
The present invention relates to an AC rectangular wave plasma arc welding method characterized in that welding is performed using an AC rectangular wave voltage as a welding power source in which the frequency and time ratio of positive polarity component and negative polarity component can be arbitrarily adjusted. And transformers with high no-load voltage, converting alternating current to direct current! ! a current circuit, an inverter circuit consisting of two pairs of switching elements that converts the direct current into an alternating current rectangular wave, a preamplifier circuit for the inverter circuit to drive the inverter circuit, an output rectangular wave frequency and positive polarity component of the inverter, and a negative polarity. This welding device includes a control circuit for arbitrarily adjusting the time ratio of the components, and a control circuit for preventing phase-to-phase short circuit between two pairs of switching elements of the inverter.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

〔作用〕[Effect]

第1図は本発明を一態様で実施するプラズマアーク溶接
装置の構成を示すブロック図である。これは、該図中無
負荷電圧の高い変圧器1、整流回路2.インバータータ
回路3.インバータ回路用前置増幅回路4、正極逆極性
時間比調整回路5、発振回路6、相間短絡防止回路7よ
り成る。
FIG. 1 is a block diagram showing the configuration of a plasma arc welding apparatus that implements one embodiment of the present invention. This is the transformer 1, rectifier circuit 2, which has a high no-load voltage in the figure. Inverter circuit 3. It consists of an inverter circuit preamplifier circuit 4, a positive/reverse polarity time ratio adjustment circuit 5, an oscillation circuit 6, and an interphase short circuit prevention circuit 7.

発振回路6により得られた矩形波信号は正極逆極性時間
比調整回路5により溶接者の希望する任意の比率に設定
される。次にインバータトランジスタの相間短絡を防止
するため相間短絡防止回路7により、矩形波が正極から
負極、あるいは負極から正極に移行する瞬時にごく僅か
な時間だけOレベルの時間をインバータトランジスタの
短絡による破壊を防ぐために設定する。
The rectangular wave signal obtained by the oscillation circuit 6 is set to an arbitrary ratio desired by the welder by the positive/reverse polarity time ratio adjusting circuit 5. Next, in order to prevent phase-to-phase short circuits of the inverter transistors, the phase-to-phase short circuit prevention circuit 7 prevents the short-circuiting of the inverter transistors from causing damage due to the short circuit of the inverter transistors. Set to prevent.

第3a図は本発明における、正極性負極性時間割合が5
:5の場合の出力電圧波形図、第3b図は正極性時間割
合が負極性時間割合に比べ遥かに大きい場合を表わす出
力電圧波形図であって、同図中15−a、15−b、1
6−a、16−bは前述相間短絡防止時間を示す。該設
定時間を設けられた矩形波信号はインバータ用前置増幅
回路4によりインバータトランジスタを充分駆動できる
規準値まで増幅される。
Figure 3a shows that the positive polarity to negative polarity time ratio is 5 in the present invention.
Figure 3b is an output voltage waveform diagram representing a case where the positive polarity time ratio is much larger than the negative polarity time ratio, and in the figure, 15-a, 15-b, 1
6-a and 16-b indicate the interphase short circuit prevention time described above. The rectangular wave signal provided with the set time is amplified by the inverter preamplifier circuit 4 to a reference value that can sufficiently drive the inverter transistor.

第2図は、インバータ回路3構成概略を示す回路図で、
増幅された該信号は、インバータ回路3内の同図に示す
各トランジスタ11,12,13゜14に印加される。
FIG. 2 is a circuit diagram showing a schematic configuration of the inverter circuit 3.
The amplified signal is applied to each transistor 11, 12, 13, 14 shown in the figure in the inverter circuit 3.

印加された該信号によりインバータ内のどちらか一方の
対を成すインバータ11.14又は12.13が遮断さ
せられた時、トランジスタの特性により該トランジスタ
の電荷蓄積効果により、すなわちトランジスタ内に残留
した僅かな電荷により電流が流れる現象を生じる。
When either inverter 11.14 or 12.13 of the inverter pair is cut off by the applied signal, due to the characteristics of the transistor, due to the charge accumulation effect of the transistor, the small amount remaining in the transistor is The electric charge causes a phenomenon in which current flows.

その時他方の一対のトランジスタ12.13又は11.
14が導通すると相互のトランジスタは負荷を通らず短
絡を生ずる。そこで他方の一対のトランジスタが導通す
る時間を僅かに遅らせ、いずれの対を成すトランジスタ
11,12,13゜14が同時に導通、短絡しない時間
、すなわち前述相間短絡防止回路7により設定された時
間が設けられる。該時間は、前述電荷残留時間より長く
Then the other pair of transistors 12.13 or 11.
14 conducts, the mutual transistors do not pass through the load and are short-circuited. Therefore, the time for which the other pair of transistors becomes conductive is slightly delayed, and a time is established in which the transistors 11, 12, 13, 14 of any pair are not simultaneously conductive and short-circuited, that is, the time set by the phase-to-phase short circuit prevention circuit 7. It will be done. This time is longer than the charge residual time described above.

またプラズマアークが再点弧せずに消失してしまう時間
よりも短かく設定されている。その後他方の該図中一対
のトランジスタ12.13又は11゜14を同時に導通
させ、一定時間後に遮断し、前述同様に相間短絡防止時
間を設けることにより、対を成すトランジスタは短絡せ
ずに交互に導通を繰り返し、無負荷電圧の高い変圧器l
および整流回路2より得た直流を交流矩形波として出力
する。
Also, it is set shorter than the time required for the plasma arc to disappear without being re-ignited. Thereafter, the other pair of transistors 12, 13 or 11, 14 in the figure are made conductive at the same time, and are cut off after a certain period of time. By providing a phase-to-phase short-circuit prevention time in the same way as described above, the transistors forming the pair can be alternately connected without short-circuiting. A transformer that repeatedly conducts and has a high no-load voltage
And the direct current obtained from the rectifier circuit 2 is output as an alternating current rectangular wave.

ここで、該無負荷電圧の高い変圧器は、プラズマアーク
の発生時あるいは再点弧時に際して、前記第4図の正極
時アーク放電開始点23−a、 23−b。
Here, in the transformer with a high no-load voltage, when a plasma arc is generated or re-ignited, the arc discharge start points 23-a and 23-b at the positive electrode shown in FIG.

負極性時アーク放電開始点24に示すが如く、アークが
持続している状態よりも高い電圧が必要であるために、
無負荷電圧は該放電電圧より高い程、プラズマアークス
タートあるいは再点弧が円滑かつ確実なものとなる働き
をする。
As shown at the negative polarity arc discharge starting point 24, a higher voltage is required than when the arc is sustained.
The higher the no-load voltage is than the discharge voltage, the smoother and more reliable the plasma arc start or re-ignition becomes.

この様にして、出力された該矩形波は、第1図中におけ
るノズル9内の電極8と母材10間において高温のプラ
ズマアーク炎となり、溶接が実施される。その時、交流
矩形波の正極成分は母材の溶は込みを確保し、また逆極
性成分は、母材表面に生成された酸化膜を清浄する。し
たがって、板厚の変化による溶は込み深さの18′!1
あるいは、溶接者が希望する溶は込み深さの調整および
清浄効果域の調整を、例えば第3b図の如く正極性と逆
極性成分の割合を可変することで任意に制御することが
可能となる。また、周波数を可変することにより、各溶
接条件においては溶接作業性を最良の状態に改善するこ
とができる。いうまでもなくプラズマアークの再点弧は
、高い無負荷電圧と矩形波による瞬間的な極性変換によ
り、任意の周波数、正極逆極性時間の割合に何ら関係す
ることなく消失せずに行なわれ、健全な溶接継手を作成
することが可能となる。
The rectangular wave thus output becomes a high-temperature plasma arc flame between the electrode 8 in the nozzle 9 and the base material 10 in FIG. 1, and welding is performed. At this time, the positive electrode component of the alternating current rectangular wave ensures penetration of the base material, and the opposite polarity component cleans the oxide film formed on the surface of the base material. Therefore, the penetration depth due to the change in plate thickness is 18'! 1
Alternatively, it is possible to arbitrarily control the welding person's desired adjustment of the weld penetration depth and cleaning effect area by varying the ratio of positive polarity and reverse polarity components, for example, as shown in Figure 3b. . Further, by varying the frequency, welding workability can be improved to the best condition under each welding condition. Needless to say, the plasma arc can be re-ignited without extinction due to the high no-load voltage and instantaneous polarity change using a square wave, regardless of any frequency or the ratio of positive to reverse polarity time. It becomes possible to create a sound welded joint.

ここで、第1図中のインバータ回路3内の対を成すトラ
ンジスタの個々は、単数または複数あるいは、モジュー
ルの様な複合素子であってもがまわない。また電界効果
トランジスタをインバータ素子として用いる事により、
該素子は電圧制御形であり、駆動電力をほとんど要しな
い素子であり、また電荷蓄積効果がないため第1図中イ
ンバータ回路用前置増幅回路4あるいは、相間短絡防止
回路7を簡略化する事が可能どなり、装置の簡素化ある
いは、性能の向上を計る事ができる。
Here, each of the transistors forming a pair in the inverter circuit 3 in FIG. 1 may be a single transistor, a plurality of transistors, or a composite element such as a module. Also, by using field effect transistors as inverter elements,
This element is a voltage controlled type element that requires almost no driving power, and has no charge accumulation effect, so that it is possible to simplify the inverter circuit preamplifier circuit 4 or the phase-to-phase short circuit prevention circuit 7 in Fig. 1. This makes it possible to simplify the device or improve its performance.

なお、本発明の方法及び装置はアルミニウム、アルミニ
ウム合金の他にも、チタン、チタン合金、ステンレス鋼
等の溶接にも適用が可能である。
Note that the method and apparatus of the present invention can be applied to welding not only aluminum and aluminum alloys but also titanium, titanium alloys, stainless steel, and the like.

以下、本発明に基づいて交流矩形波を用いた移行式のプ
ラズマアーク溶接法の実施例について説明する。
Hereinafter, an embodiment of a transfer type plasma arc welding method using an AC rectangular wave will be described based on the present invention.

〔実施例〕〔Example〕

使用した溶接試験片は、幅1100n、長さ500+n
m、仮Jブ5mのJISA 1050アルミ板を用い、
溶接電源は、無負荷電圧が135■、電流容量が30O
Aのプラズマアーク溶接用の電源を用いて実施した。そ
の時の溶接電流は100Aでありプラズマアーク電圧は
30Vであった。矩形波交流の周波数は1KHzを用い
、相間短絡防止時間はO,10m秒とし、正極逆極性の
割合を2.5:1と設定して、溶接速度を15 cm 
/秒で試験片上にビードオンプレート溶接を実施した。
The welding test piece used was 1100n in width and 500+n in length.
m, using a JISA 1050 aluminum plate with a temporary J-bu 5m,
The welding power source has a no-load voltage of 135■ and a current capacity of 30O.
This was carried out using the power source for plasma arc welding shown in A. The welding current at that time was 100A and the plasma arc voltage was 30V. The frequency of the rectangular wave alternating current was 1 KHz, the phase-to-phase short circuit prevention time was 0.10 msec, the ratio of positive and reverse polarity was set to 2.5:1, and the welding speed was 15 cm.
A bead-on-plate weld was performed on the specimen at 1/sec.

なおこの時に使用したパイロットガスおよびシールドガ
スは、100%のアルゴンを用いた。
Note that the pilot gas and shield gas used at this time were 100% argon.

その結果、ビード外観は、ビード幅平均7.8閣、清浄
効果の表われた幅平均1.5wnで均一な表面欠陥の無
い奇麗なビード外観が得られ、その時の溶は込み深さは
2.4閣を得た。その後、X線透過試験を実施したが、
ブローホール、割れ等の内部欠陥も無く、健全な溶接ビ
ードを作製することができた。
As a result, the bead appearance was 7.8 mm on average, and the average width was 1.5 wn, showing the cleaning effect, and a beautiful bead appearance with no uniform surface defects was obtained, and the penetration depth was 2. . Obtained 4 cabinets. After that, an X-ray transmission test was conducted, but
It was possible to produce a sound weld bead with no internal defects such as blowholes or cracks.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の商用周波数を用いた交流プラズ
マ溶接法と比べ、正極成分、負極成分の割合を可変する
ことで母材の溶は込み深さあるいは清浄効果域の幅を任
意に調整でき、溶接1’l!流の大小にかかわらず、常
に安定した交流矩形波プラズマアークを維持することが
できる。また正極成分、負極成分の割合において正極成
分を多くする程?l!極径を細くすることができ、した
がって溶接1−−チを小型、軽量にすることができる。
According to the present invention, compared to the conventional AC plasma welding method using a commercial frequency, by varying the ratio of the positive electrode component and the negative electrode component, the penetration depth of the base metal or the width of the cleaning effect area can be adjusted arbitrarily. Done, welding 1'l! Regardless of the size of the flow, a stable AC rectangular wave plasma arc can be maintained at all times. Also, is it possible to increase the ratio of positive and negative electrode components? l! The pole diameter can be made thinner, and therefore the welding parts 1--1 can be made smaller and lighter.

したがって溶接者の負荷を軽減でき、さらには常に安定
した健全な溶接継手を作成することができ溶接品質の向
上および均一化を計ることができる。
Therefore, the load on the welder can be reduced, and furthermore, stable and sound welded joints can be created at all times, and welding quality can be improved and made more uniform.

また本発明を溶接ロボットと組合せることにより、無監
視溶接ひいては、無人化操業のようなきわめて能率の高
い溶接作業が可能となる。あるいは、本発明による方法
であれば交流矩形波を用いているため磁気吹きの影響が
少ないので、多電極にし、溶加材を添加することで、l
パス当りの古着量を増大することも可能であり、従来の
方法に比べて遥かに高能率な溶接が可能となる。
Further, by combining the present invention with a welding robot, unsupervised welding and even highly efficient welding work such as unmanned operation becomes possible. Alternatively, since the method according to the present invention uses AC rectangular waves, the influence of magnetic blowing is small, so by using multiple electrodes and adding filler metal, l
It is also possible to increase the amount of used clothing per pass, making welding much more efficient than conventional methods.

この様に本発明はきわめて工業的価値の高い溶接方法お
よび装置を提供するものである。
In this manner, the present invention provides a welding method and apparatus of extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を一態様で実施するプラズマアーク溶
接装置の構成を示すブロック図、第2図は、第1図に示
すインバータ回路3の構成概要を示す電気回路図である
。第3a図は、本発明における溶接電極に印加する電圧
波形を示すグラフであり、正極性負極性時間割合が5:
5の場合を示し、第3b図は、正極性時間割合が負極性
時間割合に比へて遥かに長い場合を示すグラフである。 第4図は、従来の一般的な交流アーク溶接における溶接
電極印加電圧波形の概略を表わす図である。 1・・・無負荷電圧の高い変圧器 2・・・整流回路3
・・インバータ回路 4・・インバータ回路用前置増幅回路 5・・・正極逆極性時間比調整回路 3・・・発振回路  7・・・相間短絡防止回路8・・
・電極    9・・・ノズル IO・・母材11.1
2,13.14・・・インバーターを構成するトランジ
スタ 15−a、15−b・・・正極性より負極性に変化する
場合の相間短絡防止時間 16−a、16−b・・・負極性より正極性に変化する
場合の相間短絡防止時間 17−a、17−b・・・正極性成分 18−a、1g−b−負極性成分 19・・・溶接開始後アーク放電するまでの時間20−
 a 、 20− b・・・無負荷電圧0ボルトからア
ークが再点弧するまでの時間
FIG. 1 is a block diagram showing the configuration of a plasma arc welding apparatus that embodies the present invention in one embodiment, and FIG. 2 is an electric circuit diagram showing the outline of the configuration of the inverter circuit 3 shown in FIG. 1. FIG. 3a is a graph showing the voltage waveform applied to the welding electrode in the present invention, in which the time ratio of positive polarity to negative polarity is 5:
FIG. 3b is a graph showing the case where the positive polarity time ratio is much longer than the negative polarity time ratio. FIG. 4 is a diagram schematically showing a voltage waveform applied to a welding electrode in conventional general AC arc welding. 1... Transformer with high no-load voltage 2... Rectifier circuit 3
... Inverter circuit 4 ... Inverter circuit preamplifier circuit 5 ... Positive and reverse polarity time ratio adjustment circuit 3 ... Oscillation circuit 7 ... Phase-to-phase short circuit prevention circuit 8 ...
・Electrode 9... Nozzle IO... Base material 11.1
2, 13.14... Transistors 15-a, 15-b forming an inverter... Inter-phase short circuit prevention time when changing from positive polarity to negative polarity 16-a, 16-b... From negative polarity Phase-to-phase short circuit prevention time when changing to positive polarity 17-a, 17-b...Positive polarity components 18-a, 1g-b-Negative polarity component 19...Time from start of welding to arc discharge 20-
a, 20-b...Time from no-load voltage of 0 volts until the arc re-ignites

Claims (2)

【特許請求の範囲】[Claims] (1)プラズマアーク溶接方法において溶接電源として
周波数および正極成分負極成分の時間割合を任意に調整
可能な交流矩形波電圧を用いて溶接する事を特徴とする
交流矩形波プラズマアーク溶接方法。
(1) An alternating current rectangular wave plasma arc welding method characterized in that welding is performed using an alternating current rectangular wave voltage as a welding power source in which the frequency and time ratio of positive electrode component and negative electrode component can be arbitrarily adjusted.
(2)プラズマアーク溶接装置において、無負荷電圧の
高い変圧器、交流を直流に整流する回路、該直流を交流
矩形波に変換する2対のスイッチング素子より成るイン
バータ回路、該インバータを駆動するためのインバータ
回路用前置増幅回路、該インバータの出力矩形波周波数
および正極成分と負極成分の時間割合を任意に調整する
ための制御回路、および、該インバータの2対のスイッ
チング素子間の相間短絡を防止するための制御回路より
構成される事を特徴とした交流矩形波プラズマアーク溶
接装置。
(2) In a plasma arc welding device, an inverter circuit consisting of a transformer with a high no-load voltage, a circuit for rectifying alternating current into direct current, two pairs of switching elements for converting the direct current into alternating current rectangular waves, and for driving the inverter. a preamplifier circuit for the inverter circuit, a control circuit for arbitrarily adjusting the output rectangular wave frequency and the time ratio of the positive polarity component and the negative polarity component of the inverter, and a phase-to-phase short circuit between the two pairs of switching elements of the inverter. An AC rectangular wave plasma arc welding device characterized by comprising a control circuit to prevent
JP26790385A 1985-11-28 1985-11-28 Method and device for ac square wave plasma arc welding Granted JPS62127168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26790385A JPS62127168A (en) 1985-11-28 1985-11-28 Method and device for ac square wave plasma arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26790385A JPS62127168A (en) 1985-11-28 1985-11-28 Method and device for ac square wave plasma arc welding

Publications (2)

Publication Number Publication Date
JPS62127168A true JPS62127168A (en) 1987-06-09
JPH0413071B2 JPH0413071B2 (en) 1992-03-06

Family

ID=17451220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26790385A Granted JPS62127168A (en) 1985-11-28 1985-11-28 Method and device for ac square wave plasma arc welding

Country Status (1)

Country Link
JP (1) JPS62127168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110877137A (en) * 2019-11-23 2020-03-13 上海沪工焊接集团股份有限公司 Arc striking control method and control system for inverter manual arc welding machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222552A (en) * 1975-08-15 1977-02-19 Hitachi Seiko Kk Arc welding equipment
JPS5717156A (en) * 1980-03-26 1982-01-28 Thomson Csf Sealing box for power module of hybrid circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222552A (en) * 1975-08-15 1977-02-19 Hitachi Seiko Kk Arc welding equipment
JPS5717156A (en) * 1980-03-26 1982-01-28 Thomson Csf Sealing box for power module of hybrid circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110877137A (en) * 2019-11-23 2020-03-13 上海沪工焊接集团股份有限公司 Arc striking control method and control system for inverter manual arc welding machine

Also Published As

Publication number Publication date
JPH0413071B2 (en) 1992-03-06

Similar Documents

Publication Publication Date Title
US20110248007A1 (en) Arc welding method and arc welding apparatus
JP2011206794A (en) Plasma mig welding method
CN109202216B (en) AC pulse argon arc welding machine
US4273986A (en) Method and apparatus for arc butt welding
JP3312713B2 (en) AC plasma arc welding machine
JPS62127168A (en) Method and device for ac square wave plasma arc welding
JP3712322B2 (en) Plasma arc welding method and apparatus
JP2711965B2 (en) Plasma arc welding machine
JPS58138568A (en) Tig arc and mig arc composite welding method
JPS62252677A (en) Plasma arc welding method using ac rectangular wave
JP5122736B2 (en) Consumable electrode arc welding method
JPH0139872B2 (en)
JP2873716B2 (en) Starting AC arc
RU2763912C1 (en) Method for plasma surfacing and welding by combination of arcs
JP2711138B2 (en) AC TIG welding method and apparatus
JPH0381071A (en) Nonconsumable electrode arc welding method for aluminum alloy
JP3856355B2 (en) Consumable electrode type AC gas shielded arc welding method and apparatus
JPS62114772A (en) Mig welding method
JPS62214873A (en) Multielectrode arc welding method
RU2135336C1 (en) Device for arc welding by different polarity square pulse current
JPH0813416B2 (en) Arc welding equipment
JPH06226Y2 (en) AC plasma arc welder
JP2002263840A (en) Arc welding method and arc welding machine
JPH0237974A (en) Consumable electrode type gas shielded arc welding method
JP2001225168A (en) Consumable electrode gas shielded arc welding method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term