JPS62126851A - Magnetic pole of pulse motor - Google Patents

Magnetic pole of pulse motor

Info

Publication number
JPS62126851A
JPS62126851A JP26769085A JP26769085A JPS62126851A JP S62126851 A JPS62126851 A JP S62126851A JP 26769085 A JP26769085 A JP 26769085A JP 26769085 A JP26769085 A JP 26769085A JP S62126851 A JPS62126851 A JP S62126851A
Authority
JP
Japan
Prior art keywords
disc
magnetic
pole
magnetic pole
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26769085A
Other languages
Japanese (ja)
Inventor
Yoshitaka Iida
飯田 好高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26769085A priority Critical patent/JPS62126851A/en
Publication of JPS62126851A publication Critical patent/JPS62126851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PURPOSE:To make it possible to reduce the weight and decrease the inertia moment in a simple constitution by making the thickness of plate on the outside circumference of the disc magnetic pole thinner than the portion the radius of which is small. CONSTITUTION:On the outside circumference of a disc magnet pole 1-1 a tooth portion 2 is provided. By providing an additional disc pole 11 in the middle portion of this disc pole 1-1, the thickness of the plate on the outside circumference of the disc pole is made thinner than the portion the radius of which is small. By selecting the thickness of plate of pole at the value in inverse proportion to the radius in principle, the flux density is kept constant on the disc, i.e. the flux density is kept to the extremity that no magnetic saturation may arise, and the unnecessary plate thickness is eliminated.

Description

【発明の詳細な説明】 〔概 要〕 この発明は、外周部が歯形である円板状磁極の外周部の
板厚を、その半径が小さい部分よりも薄くすることによ
り、重量の軽減と、それが回転子である場合は更に慣性
能率の1トモ減を行う。
[Detailed Description of the Invention] [Summary] This invention reduces the weight by making the outer peripheral part of a disc-shaped magnetic pole whose outer peripheral part has a tooth shape thinner than the part where the radius is small. If it is a rotor, the inertia factor is further reduced by one.

〔産業上の利用分野〕[Industrial application field]

電気パルスモータの重量軽減に係わり、さらに詳しく言
えば、円板状磁極の外周部の板厚をその半径の小さい部
分よりも薄くすることに関する。
The present invention relates to reducing the weight of an electric pulse motor, and more specifically, to making the outer peripheral part of a disc-shaped magnetic pole thinner than the part having a smaller radius.

さらに内回転子型の場合、慣性能率の軽減をも行い、軽
量化と高追従性を要求される個所に用いられる。
Furthermore, the inner rotor type also reduces the inertia factor and is used in locations where weight reduction and high tracking performance are required.

ステップモータ或いはステッパとも呼ばれるパルスモー
タの要部構造を第5図〜第7図に示す。
The main structure of a pulse motor, also called a step motor or a stepper, is shown in FIGS. 5 to 7.

同図において、■は外周部に歯形を有する円板状磁極、
2は円板状磁極1の歯形部、3はコア、4は永久磁石、
5は心棒、6は線輪、7は外側磁極、8は外側磁極7の
歯形部、9は磁束密度が最も高くなる部分、10は磁力
線である。第6図に外周部に歯形を有する円板磁極1の
斜視図を示す。同円板状磁極は軟鉄のような高透磁率を
有する材nが用いられる。パルスモータには種々の方式
があるが、その1例では円板状磁極は1−1〜1−4の
4個を備え、互いに、その歯形がAピッチずつ回転方向
にずれて取りつけられている。この磁極歯形部と作用す
る相手磁極は、第7図に斜視図にて示すごとく、外側磁
極7の内周側にあって中心方向に向は突出している歯形
部があり、その歯形部は軸方向に長く円板磁極4個全部
を覆い、円板磁極1と同様の高透磁率材料が用いられる
。これら内側にあって外側を向く歯形2と外側から内側
を向く歯形8は互いに近接して向かいあっている。コア
3も同様高透磁率材料が用いられる。永久磁石4は軸方
向に磁化され、フェライト、希土類、コバルト磁石など
が用いられる。
In the same figure, ■ is a disk-shaped magnetic pole with tooth shapes on the outer periphery;
2 is a toothed portion of the disc-shaped magnetic pole 1, 3 is a core, 4 is a permanent magnet,
5 is a mandrel, 6 is a wire ring, 7 is an outer magnetic pole, 8 is a toothed portion of the outer magnetic pole 7, 9 is a portion where the magnetic flux density is highest, and 10 is a line of magnetic force. FIG. 6 shows a perspective view of a disc magnetic pole 1 having tooth profiles on its outer periphery. The disc-shaped magnetic pole is made of a material having high magnetic permeability, such as soft iron. There are various types of pulse motors, but one example has four disk-shaped magnetic poles, numbered 1-1 to 1-4, and their tooth profiles are offset from each other by A pitch in the rotation direction. . As shown in the perspective view of FIG. 7, the opposing magnetic pole that acts with this magnetic pole tooth profile has a tooth profile located on the inner peripheral side of the outer magnetic pole 7 and protruding toward the center. The material is long in the direction and covers all four disk magnetic poles, and is made of the same high magnetic permeability material as the disk magnetic pole 1. The tooth profile 2 located on the inside and facing outward and the tooth profile 8 facing from the outside inward are close to each other and face each other. Similarly, the core 3 is made of a high magnetic permeability material. The permanent magnet 4 is magnetized in the axial direction, and is made of ferrite, rare earth, cobalt magnet, or the like.

線輪6−1.6−2は、TL磁線輪であ、って外部の制
御)1)回路によって、パルス電流が印加されて、それ
ぞれ軸方向に磁界を発生し、その方向はそれぞれ、独立
して、永久磁石4の磁化の方向と同一と反対の両方向を
発生し得る。そうして、所定の磁極のみを選択的に電磁
コイルにてパルス励磁することにより、永久磁石4の磁
界との関係によって、回転子を歯形の2ピツチ(1相励
磁、2相励磁の場合)の角度ずつ回転させるものである
。この時の磁力線の代表的な例(l相励磁)を第5図の
7にて示す。心棒5はステンレスのような非磁性体材料
により構成される。
The wire rings 6-1 and 6-2 are TL magnetic wire rings, and external control) 1) A pulse current is applied by the circuit to generate a magnetic field in the axial direction, and the direction is Independently, both the same and opposite directions of magnetization of the permanent magnet 4 can be generated. Then, by selectively pulse-exciting only the predetermined magnetic poles with the electromagnetic coil, the rotor is moved to two tooth-shaped pitches (in the case of one-phase excitation, two-phase excitation) depending on the relationship with the magnetic field of the permanent magnet 4. It rotates by an angle of . A typical example of magnetic lines of force at this time (l-phase excitation) is shown at 7 in FIG. The mandrel 5 is made of a non-magnetic material such as stainless steel.

尚、第5図と上記説明の構造は(d極1と磁極′lは、
いづれもが、回転子にも固定子にもなり得るものである
。また、外側磁(へ7の歯形は線輪6の取りつけのため
に欠如されることがある。
In addition, the structure of FIG. 5 and the above explanation (d pole 1 and magnetic pole 'l are
Any of them can be used as a rotor or a stator. In addition, the tooth profile of the outer magnet (7) may be omitted for attachment of the wire ring 6.

これらパルスモータは自動B械に多く用いられて来たが
、最近は多関節型ロボットの先端の物品握持部或いは関
節部にも用いられることが多くなってきた。従って、重
量が軽くて高性能のパルスモータが要望されるようにな
ってきた。
These pulse motors have often been used in automatic B machines, but recently they have also been increasingly used in article gripping parts or joint parts at the tips of articulated robots. Accordingly, there has been a demand for light-weight, high-performance pulse motors.

〔従来の技術と発明が解決しようとする問題点〕従来の
パルスモータの外周部が歯形である円板“状磁極は第6
図に示す如く、均一な板厚の磁性母材をプレスで打ち抜
いて製作されることが多いが、その板厚は次の2つの条
件によって決定される。
[Problems to be solved by the prior art and the invention] The disc-shaped magnetic pole whose outer periphery is tooth-shaped in the conventional pulse motor has a sixth
As shown in the figure, it is often manufactured by punching out a magnetic base material with a uniform thickness using a press, and the thickness of the plate is determined by the following two conditions.

その第1の条件は歯先2における磁気飽和であり、第2
の条件はその半径の小さい個所、即ちコア3の外径付近
9における磁気飽和である。
The first condition is magnetic saturation at the tooth tip 2, and the second condition is magnetic saturation at the tooth tip 2.
The condition is magnetic saturation at a small radius point, that is, near the outer diameter 9 of the core 3.

即ち、第1の条件は対向する磁極との吸引によリモータ
の回転力を発生するための、磁力線を供給する重要な個
所であり、磁気飽和による磁力線の減少はそのまま回転
力の減少を意味する。−労咳個所は軽量化および、これ
が回転子の場合は更に慣性モーメント減少を図って、歯
先断面積を磁気飽和の発生しないぎりぎりの最小限にし
たい個所でもある。第2の条件は、外周部から円板中心
部へ向かった磁力線は、同円板状磁極の板厚か同じであ
るので、半径の減少しただけ、半径方向に面した断面積
が減少し、磁束密度が高くなる。若し磁気飽和を起こす
ならば、外周部の磁力線をも減少し、回転力を減するご
とになるので、ここでも磁気飽和は許せない。
In other words, the first condition is an important point that supplies lines of magnetic force to generate the rotational force of the remoter through attraction with the opposing magnetic poles, and a decrease in the lines of magnetic force due to magnetic saturation directly means a decrease in the rotational force. . - The coughing part is also a part where it is desired to reduce the weight and, if this is a rotor, further reduce the moment of inertia, and minimize the cross-sectional area of the tooth tip to the extent that magnetic saturation does not occur. The second condition is that the lines of magnetic force from the outer periphery to the center of the disc have the same thickness as the disc-shaped magnetic pole, so the cross-sectional area facing the radial direction decreases as the radius decreases. Magnetic flux density increases. If magnetic saturation were to occur, the lines of magnetic force at the outer periphery would also be reduced and the rotational force would be reduced, so magnetic saturation cannot be tolerated here either.

従って、該円板状磁極の板厚は上記の条件を考慮し、実
際は外周部に対しては厚めの板厚が選択されていた。
Therefore, in consideration of the above conditions, a thicker plate thickness was actually selected for the outer peripheral portion of the disc-shaped magnetic pole.

そのために、不必要な重量増加と、さらにこれが回転子
の場合は慣性モーメントの増加をもたらしていた。
This results in an unnecessary increase in weight and, in the case of a rotor, an increase in the moment of inertia.

本発明はこのような点にかんがみて考案されたもので、
簡易な構成で重量軽減とこれが回転子の場合は更に慣性
モーメントの減少が可能なパルスモータの磁極を提供す
ることを目的としている。
The present invention was devised in view of these points.
The object of the present invention is to provide a magnetic pole for a pulse motor that has a simple configuration and can reduce the weight and further reduce the moment of inertia if the rotor is a rotor.

〔問題点を解決するための手段〕[Means for solving problems]

円板状磁極の外周部の板厚を、その半径が小さい部分よ
りも薄くするごとにより、上記問題点は解決される。
The above problem can be solved by making the outer circumference of the disc-shaped magnetic pole thinner than the part where the radius is smaller.

〔作 用〕[For production]

漏洩磁束を無視するならば、円板状妊1極の半径方向の
磁力線の磁束密度はその個所の半径に反比例する。従っ
て、該TJiI極の板厚を原則としてその半径に反比例
した値に選ぶことにより、磁束密度をその円板上一定に
、即ち磁気飽和の発生しないぎりぎりの磁束密度に保ち
、無駄な板厚部分を排除する。
If leakage magnetic flux is ignored, the magnetic flux density of the magnetic field lines in the radial direction of one disc-shaped pole is inversely proportional to the radius of that location. Therefore, by selecting the plate thickness of the TJiI pole to a value inversely proportional to its radius, the magnetic flux density can be kept constant over the disk, that is, the magnetic flux density as low as possible without causing magnetic saturation, and the unnecessary plate thickness can be eliminate.

〔実施例〕〔Example〕

以下図面に示す実施例により本発明の要旨を具体的に説
明する。全図を通じ同一符号は同一対象物を示す。
The gist of the present invention will be specifically explained below with reference to embodiments shown in the drawings. The same reference numerals indicate the same objects throughout the figures.

第1図は1実施例を断面図で示すもので、1−1は外周
部に歯形2を有する円板状磁極、1)は追加円板磁極で
ある。
FIG. 1 shows a cross-sectional view of one embodiment, in which 1-1 is a disc-shaped magnetic pole having a tooth profile 2 on the outer periphery, and 1) is an additional disc-shaped magnetic pole.

第2図は他の実施例で板厚がテーパで変化され、外周部
に山形を有する円板状6H極12を示す。
FIG. 2 shows another embodiment of a disk-shaped 6H pole 12 whose plate thickness is tapered and has a chevron on its outer periphery.

本発明が用いられた場合の円板状磁極1−1は本発明を
用いてない場合の円板状磁極lと板厚が異なるのみで、
その他の形状は同しで3ちる。
The disc-shaped magnetic pole 1-1 when the present invention is used differs from the disc-shaped magnetic pole 1 when the present invention is not used only in plate thickness,
The other shapes are the same and there are 3 pieces.

第、3図に追加円板磁極1)全用いたパルスモータの構
成を示す。円板状磁!’+−+ 1−1 は、その歯型
部1部分において磁気飽和が発生ずる直前まで、板厚を
薄く選ばれである。従って、その歯先から軸方向に向か
いコア3に入る(分力線は、該コアの外周部に達する部
分9において、磁束密度が最高になり磁気飽和を起こす
ので、追加円板状磁極1)が円板磁極1−1に密着し7
て同心的に付設されている。
Figures 3 and 3 show the configuration of a pulse motor that uses all of the additional disk magnetic poles 1). Disc-shaped magnet! '+-+ 1-1, the plate thickness is selected to be thin until just before magnetic saturation occurs in the toothed portion 1. Therefore, it enters the core 3 from the tip of the tooth in the axial direction (the magnetic flux density is highest at the portion 9 that reaches the outer periphery of the core, causing magnetic saturation, so the additional disc-shaped magnetic pole 1) is in close contact with the disk magnetic pole 1-1 and 7
They are attached concentrically.

その結果、円板状磁極1−1にはその板厚が厚くなった
のと同様の効果が得られ、部分9における磁気飽和が解
消される。この処置は円板状磁極1−4においても同様
である。
As a result, the disk-shaped magnetic pole 1-1 has the same effect as if it were made thicker, and magnetic saturation in the portion 9 is eliminated. This procedure is the same for the disc-shaped magnetic poles 1-4.

円板状磁極1−2と1−3においては、部分9より半径
の大きい個所において永久(5り石4に磁カ腺が出入り
するため、追加円板磁極1)がなくてイ)磁気飽和は発
生しない。
In the disk-shaped magnetic poles 1-2 and 1-3, there is no permanent (additional disk magnetic pole 1 because the magnetic gland moves in and out of the 5-stone 4) magnetic saturation at the location where the radius is larger than that of the portion 9. does not occur.

円板状磁↑・klの外径が21mm、コア3の外径13
mmの実例において、本発明を適用することに紅り、円
板磁極Llの板厚は従来の2/3にベルず・−ことがで
きた。
The outer diameter of the disc-shaped magnet↑・kl is 21 mm, and the outer diameter of core 3 is 13
By applying the present invention, the thickness of the disc magnetic pole Ll could be reduced to 2/3 of that of the conventional one.

本発明を凹・転子に用いた場合二二:b、丁た ノ°ル
スモークの重要な要求特性である1j7 jlモー7メ
ントが減少する。即ら、慣性モーノンl−1は、水径が
rの個所の質量をnlとすると、I=mr2である。
When the present invention is applied to concaves and trochanters, the 1j7 jl moment, which is an important characteristic required for normal smoke, is reduced. That is, the inertial moron l-1 is I=mr2, where nl is the mass at the point where the water diameter is r.

従って半径が大きくなるに従って、(屋7が薄くなるこ
とは、慣性モーメンl−の低減2こ大きく寄与でき、回
転子の即応性を改善できる。
Therefore, as the radius becomes larger, the thickness of the shaft 7 can greatly contribute to the reduction of the moment of inertia l- by 2, and the responsiveness of the rotor can be improved.

第1図の実施例は磁極部品費低減の目的から、打ち抜き
部品を重ねて用いるが、第2図に示すような板厚の変化
をd!M的にテーパ状;こした1個のC仕種部品で形成
した場合は、部品加■費は高くなるが、その重1軽減の
極限を追求する場合に有効である。即ら、テーパによっ
て円板状磁極の板厚をどの半径位置においても、磁気飽
和の発生せぬぎりぎりにまで追求出来て、無駄な重要の
排除が出来る。
The embodiment shown in Fig. 1 uses stacked punched parts for the purpose of reducing the cost of magnetic pole parts, but the change in plate thickness as shown in Fig. 2 is d! If it is formed from a single M-tapered C type part, the parts cost will be high, but it is effective in pursuing the ultimate reduction in weight. That is, the taper allows the plate thickness of the disc-shaped magnetic pole to be set to the very limit without causing magnetic saturation at any radial position, thereby eliminating unnecessary importance.

第4図にテーパ状円板磁極I2の適用例を示す。FIG. 4 shows an example of application of the tapered disc magnetic pole I2.

図において、線輪13はコア3およびテーパっき円板桟
部(蛋12の上に直接巻かれている。一般には線輪は第
3図の線輪6のようQこ、部品として予め巻かれたもの
が組立てられるが、これは加工費がこの方が少ないから
である。しかし、加工費よりも性能を優先される場合に
は、第4図の構成が採用される。特に外側磁極7を回転
子としてロボットの腕に用いる場合その軸方向長を短く
出来ることも、大きく評価される。尚、第4図において
、円板磁極12は外側2カ所にのみ用いられたが、4個
所全てに磁極12を用い得ることは勿論である。
In the figure, the wire ring 13 is wound directly on the core 3 and the tapered disk crosspiece (the hook 12).In general, the wire ring is pre-wound as a component, like the wire ring 6 in FIG. This is because the machining cost is lower.However, when performance is given priority over machining cost, the configuration shown in Fig. 4 is adopted.In particular, the outer magnetic pole 7 is assembled. When used as a rotor in the arm of a robot, the ability to shorten the axial length is also highly appreciated.In addition, in Fig. 4, the disc magnetic poles 12 are used only at two outer locations, but they can be used at all four locations. Of course, magnetic poles 12 can also be used.

〔発明の効果〕〔Effect of the invention〕

上記の誹うに、本発明によるパルスモータの磁極を用い
るごとにより、パルスモータの重萌の軽減と、また、本
発明を回転子に用いた場合は慣性モーメントの低減がな
され、パルスモータの即応性が向上し、ロボットの腕先
のような、1f!、品軽減と性能の追求がなされる用途
において、特にその実用的効果は頗る大である。
In view of the above, by using the magnetic poles of the pulse motor according to the present invention, the heavy load of the pulse motor can be reduced, and when the present invention is used in the rotor, the moment of inertia can be reduced, and the quick response of the pulse motor can be improved. Improved, 1F, like the tip of a robot's arm! Its practical effects are especially great in applications where product reduction and performance are pursued.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例、 第2図は本発明の他の実施例、 第3図は第1の実施例の磁JMを用いたパルスモータ、 第4図は第2の実施例の&i I’r2を用いたパルス
モータ、 第5Mは従来のパルスモータ、 第6図は従来のパルスモータの円(反状磁(玉、第7図
は従来のパルスモータの外側磁極ごある。 図において、 ■は円板磁極、 2は円板f5(極の歯型部、 1)は本発明による追加用+Jx Til極、12はテ
ーパを用いた本発明の円板状磁1伍である。 第 4−
Fig. 1 shows one embodiment of the present invention, Fig. 2 shows another embodiment of the invention, Fig. 3 shows a pulse motor using the magnetic JM of the first embodiment, and Fig. 4 shows a second embodiment. A pulse motor using &i I'r2, No. 5M is a conventional pulse motor, Fig. 6 is a conventional pulse motor with a circle (reciprocal magnet (ball), and Fig. 7 is an outer magnetic pole of a conventional pulse motor. In the figure, ■ is a disk magnetic pole, 2 is a disk f5 (toothed part of the pole, 1) is an additional +Jx Til pole according to the present invention, and 12 is a disk-shaped magnetic pole according to the present invention using a taper. . 4th -

Claims (1)

【特許請求の範囲】 外周部が歯形(2)である円板状磁極(1)を有する電
気パルスモータにおいて、 該円板状磁極(1)の外周部の板厚を、その半径が小さ
い部分の板厚よりも薄くすることを特徴とするパルスモ
ータの磁極。
[Claims] In an electric pulse motor having a disc-shaped magnetic pole (1) whose outer periphery has a tooth shape (2), the thickness of the outer periphery of the disc-shaped magnetic pole (1) is defined as the part where the radius is small. The magnetic pole of a pulse motor is characterized by being thinner than the plate thickness of.
JP26769085A 1985-11-27 1985-11-27 Magnetic pole of pulse motor Pending JPS62126851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26769085A JPS62126851A (en) 1985-11-27 1985-11-27 Magnetic pole of pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26769085A JPS62126851A (en) 1985-11-27 1985-11-27 Magnetic pole of pulse motor

Publications (1)

Publication Number Publication Date
JPS62126851A true JPS62126851A (en) 1987-06-09

Family

ID=17448177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26769085A Pending JPS62126851A (en) 1985-11-27 1985-11-27 Magnetic pole of pulse motor

Country Status (1)

Country Link
JP (1) JPS62126851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385321B2 (en) 2003-09-22 2008-06-10 Japan Servo Co., Ltd. Motor having shifted teeth of pressed powder construction
JP2014054011A (en) * 2012-09-05 2014-03-20 Asmo Co Ltd Rotor and motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385321B2 (en) 2003-09-22 2008-06-10 Japan Servo Co., Ltd. Motor having shifted teeth of pressed powder construction
JP2014054011A (en) * 2012-09-05 2014-03-20 Asmo Co Ltd Rotor and motor

Similar Documents

Publication Publication Date Title
US4874975A (en) Brushless DC motor
US5168187A (en) Axial pole stepping motor
US4745312A (en) Stepping motor
US4682067A (en) Synchronous electric motor having a disc-shaped permanent magnet rotor
JP2001520498A (en) Linear electromagnetic machine
JPS6235347B2 (en)
IE56810B1 (en) Brushless dc motor
US4714854A (en) Electric motor with a multipolar permanent magnet rotor
US5038064A (en) Limited angle rotary actuator
US4724368A (en) Multiple phase electronically commutated torque motor
JPH0687651B2 (en) Linear pulse motor
JPS61180562A (en) Limit angle torque motor
JPS62126851A (en) Magnetic pole of pulse motor
US4908592A (en) Electromagnetic actuating device
JPH02254954A (en) Slot motor
US3038092A (en) Hysteresis synchronous electric motor
JPH0436225Y2 (en)
JPH0150183B2 (en)
JPH0150182B2 (en)
JPS61185051A (en) Ac motor
JPS61293148A (en) Brushless motor
JPH0732577B2 (en) Rotary actuator for multi-position control
JPS58109719A (en) Magnetic bearing
JPS62163553A (en) 10-phase permanent magnet type stepping motor
JPS61176977U (en)