JPS62126605A - Cryogenic vessel - Google Patents

Cryogenic vessel

Info

Publication number
JPS62126605A
JPS62126605A JP60266155A JP26615585A JPS62126605A JP S62126605 A JPS62126605 A JP S62126605A JP 60266155 A JP60266155 A JP 60266155A JP 26615585 A JP26615585 A JP 26615585A JP S62126605 A JPS62126605 A JP S62126605A
Authority
JP
Japan
Prior art keywords
liquid helium
vessel
tank
cooling pipe
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60266155A
Other languages
Japanese (ja)
Other versions
JPH0324045B2 (en
Inventor
Katsuyoshi Toyoda
豊田 勝義
Takashi Murai
隆 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60266155A priority Critical patent/JPS62126605A/en
Priority to DE19863639760 priority patent/DE3639760A1/en
Priority to US06/934,992 priority patent/US4713941A/en
Publication of JPS62126605A publication Critical patent/JPS62126605A/en
Publication of JPH0324045B2 publication Critical patent/JPH0324045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/10Vessels not under pressure with provision for thermal insulation by liquid-circulating or vapour-circulating jackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/013Reinforcing means in the vessel, e.g. columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling

Abstract

PURPOSE:To manufacture a cryogenic vessel subject to less evaporation of a liquid helium vessel with the temperature in upper part of liquid helium vessel held at low value even if the level of liquid helium is lowered by a method wherein a cooling pipe is continuously connected to the upper part of liquid helium vessel and the peripheral surface of radiation shield. CONSTITUTION:A cooling pipe 10 is continuously connected to the upper part of a liquid helium vessel 3 and overall surface of a radiation shield 8. The helium gas evaporated from liquid helium 1 in a liquid helium vessel 3 enters said vessel 3 from an inlet 10a of the cooling pipe 10 passing through the upper part of said vessel 3 further over the surface of radiation shield 8 later to be discharged outside out of an outlet 10b of the cooling pipe 10. In such a constitution, the helium gas passes through the upper part of liquid helium vessel 3 to cool down all the part on the helium gas so that the temperature in the upper part of said vessel 3 may not be raised to restrain the evaporation of liquid helium 1 in said vessel 3 from increasing even if the level of liquid helium 1 is lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、極低温容器に関し、特に輻射熱が液体ヘリ
ウム槽内に侵入するのを防止するのに役立つ極低温容器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to cryogenic vessels, and more particularly to cryogenic vessels useful for preventing radiant heat from entering a liquid helium bath.

〔従来の技術〕[Conventional technology]

第2図は例えば特開昭56−116555号公報に示さ
れた従来の極低温容器を示ず断面図であり、液体ヘリウ
ム(1)中に浸漬された超電導コイル(2)が、強度お
よび溶接性の点からステンレス鋼からなる液体ヘリウム
槽(3)内に収納されている。この液体ヘリウム槽(3
)の外側には真空層(4)を介して室温にある外槽(5
)が設けられている。真空層(4)中には断熱材からな
る第1の支持部材(7a)と第2の支持部材(7b)と
で支持された輻射熱シールド板(8)が設けられている
。輻射熱シールド板(8)の表面には入口(9a)が液
体ヘリウム槽(3)の上部中央から液体ヘリウム槽(3
)内に臨んでいる冷却管(9)が設けられている。冷却
管(9)の出口(9b)は外槽(5)から外部に臨んで
いる。
FIG. 2 is a cross-sectional view of the conventional cryogenic container shown in, for example, Japanese Unexamined Patent Publication No. 56-116555, without showing the superconducting coil (2) immersed in liquid helium (1). For safety reasons, it is housed in a liquid helium tank (3) made of stainless steel. This liquid helium tank (3
) is connected to the outer tank (5) at room temperature via a vacuum layer (4).
) is provided. A radiant heat shield plate (8) supported by a first support member (7a) and a second support member (7b) made of a heat insulating material is provided in the vacuum layer (4). An inlet (9a) is provided on the surface of the radiant heat shield plate (8) from the upper center of the liquid helium tank (3) to the liquid helium tank (3).
) is provided with a cooling pipe (9) facing into the interior. The outlet (9b) of the cooling pipe (9) faces the outside from the outer tank (5).

次に、上記構成の動作について説明する。外槽(5)と
液体ヘリウム槽(3)との間には、約300にの温度差
があり、輻射熱シールド板〈8)がなければステファン
・ボルツマンの法則から解るように絶対温度の4乗の差
に比例する大きな輻射熱が、外槽(5)から液体ヘリウ
ム槽(3)に入射し、大量の液体ヘリウム(1)を蒸発
させる。輻射熱シールド板(8)は、外槽(5)から直
接液体ヘリウム槽(3)に入射する輻射熱を防止するも
のであり、この輻射熱シールド板(8)の温度が低いほ
ど液体ヘリウム槽(3)への入射熱は少ない。したがっ
て、輻射熱シールド板(8)の表面には、冷却管(9)
を取り付け、蒸発したヘリウムガスの寒冷を利用して輻
射熱シールド板(8)を冷却するようになっている。
Next, the operation of the above configuration will be explained. There is a temperature difference of approximately 300° between the outer tank (5) and the liquid helium tank (3), and if there is no radiant heat shield plate (8), the absolute temperature will be the fourth power as understood from the Stefan-Boltzmann law. A large amount of radiant heat proportional to the difference between the two enters the liquid helium tank (3) from the outer tank (5) and evaporates a large amount of liquid helium (1). The radiant heat shield plate (8) prevents radiant heat from directly entering the liquid helium tank (3) from the outer tank (5), and the lower the temperature of the radiant heat shield plate (8), the more the liquid helium tank (3) There is little heat incident on the Therefore, on the surface of the radiant heat shield plate (8), there are cooling pipes (9).
is installed, and the radiant heat shield plate (8) is cooled using the cold of the evaporated helium gas.

冷却管(9)の入口(9a)は通常1箇所であり、液体
ヘリウム槽(3)の上部の中央部付近にある。  □〔
発明が解決しようとする問題点〕 従来の極低温容器は以上のように構成されているので、
液体ヘリウム(1)が液体ヘリウム槽(3)内に充分に
満たされている場合には、液体ヘリウム槽(3)の上部
もヘリウムガスにより冷却されており、液体ヘリウム槽
(3)の上部から液体ヘリウム(1)への輻射熱は充分
小さい値であり、液体ヘリウム(1)の蒸発量は少ない
。しかしながら、液体ヘリウム(1)が蒸発し、液面が
下がると、ヘリウムガスの流れは第3図に示すように液
体へりラム槽(3)の上部の隅の部分を通過する量が少
なくなり、その隅の部分の冷却効果は悪くなるという問
題点があった。特に、液体ヘリウム槽(3)は、ステン
レス鋼から作られているので熱伝導が悪く、外槽(5)
からの輻射熱で上記隅の部分の温度が上昇し、液体ヘリ
ウム(1)への輻射熱が多くなり、その結果液体ヘリウ
ム(1)の蒸発量がさらに増加するといった問題点があ
った。
There is usually one inlet (9a) of the cooling pipe (9), which is located near the center of the upper part of the liquid helium tank (3). □〔
Problems to be Solved by the Invention] Since the conventional cryogenic container is configured as described above,
When the liquid helium tank (3) is sufficiently filled with liquid helium (1), the upper part of the liquid helium tank (3) is also cooled by helium gas, and the liquid helium tank (3) is cooled from the upper part of the liquid helium tank (3). The radiant heat to the liquid helium (1) is a sufficiently small value, and the amount of evaporation of the liquid helium (1) is small. However, as the liquid helium (1) evaporates and the liquid level drops, the amount of helium gas flowing through the upper corner of the liquid helium tank (3) decreases, as shown in Figure 3. There was a problem in that the cooling effect in the corner portions deteriorated. In particular, the liquid helium tank (3) is made of stainless steel, so it has poor heat conduction, and the outer tank (5)
There was a problem in that the temperature of the corner portion rose due to the radiant heat from the helium, increasing the amount of radiant heat to the liquid helium (1), and as a result, the amount of evaporation of the liquid helium (1) further increased.

この発明は、かかる問題点を解決するためになされたも
ので、液体ヘリウムの液面が降下しても液体ヘリウム槽
の上部全体を低温のままに保ち、液体ヘリウムの蒸発量
の少ない極低温容器を得ることを目的とする。
This invention was made to solve this problem, and is a cryogenic container that keeps the entire upper part of the liquid helium tank at a low temperature even when the liquid helium level drops, and that reduces the amount of evaporation of liquid helium. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る極低温容器は、冷却管を液体ヘリウム槽
の上部および輻射シールド板の周面に連設したものであ
る。
The cryogenic container according to the present invention has a cooling pipe connected to the upper part of the liquid helium tank and the circumferential surface of the radiation shield plate.

〔作用〕[Effect]

この発明においては、液体ヘリウム槽内の液体ヘリウム
の蒸発したヘリウムガスが冷却管を通過することにより
、液体ヘリウム槽の上部は一様に冷却される。
In this invention, the helium gas obtained by evaporating the liquid helium in the liquid helium tank passes through the cooling pipe, so that the upper part of the liquid helium tank is uniformly cooled.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す断面図であり、第2
図、第3図と同一または相当部分は同一符号を付し、そ
の説明は省略する。図において、冷却管(10)は、液
体ヘリウム槽(3)の上部および輻射熱シールド板(8
)の全表面に連設されている。冷却管(10)の入口部
(1,Oa)は液体ヘリウム槽(3)の上部中央から槽
内に臨んでおり、その出口部(10b)は外槽(5)か
ら外部に臨んでいる。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
The same or corresponding parts as in FIG. In the figure, the cooling pipe (10) is connected to the upper part of the liquid helium tank (3) and the radiant heat shield plate (8).
) are continuously installed on the entire surface of the The inlet (1, Oa) of the cooling pipe (10) faces into the tank from the upper center of the liquid helium tank (3), and the outlet (10b) faces outside from the outer tank (5).

このように構成された極低温容器においては、液体ヘリ
ウム槽(3)の液体ヘリウム(1)の蒸発したヘリウム
ガスは、冷却管(10)の入口部(10a)から入って
液体ヘリウム槽(3)の上部を通過し、その後輻射熱シ
ールド板(8)の表面を通過して冷却管(10)の出口
部(10b)から外部に放出される。ヘリウムガスが液
体ヘリウム槽(3)の上部を通過するとき、その上部全
体を冷却するので、液体ヘリラム(1)の液面が降下し
てもヘリウム槽(3)の上部で温度上昇する箇所はなく
、液体ヘリウム槽(3)内の液体ヘリウム(1)の蒸発
量は抑制される。
In the cryogenic container configured in this way, the helium gas evaporated from the liquid helium (1) in the liquid helium tank (3) enters from the inlet (10a) of the cooling pipe (10) and flows into the liquid helium tank (3). ), and then passes through the surface of the radiant heat shield plate (8) and is emitted to the outside from the outlet (10b) of the cooling pipe (10). When helium gas passes through the upper part of the liquid helium tank (3), it cools the entire upper part, so even if the liquid level of the liquid helium (1) falls, the temperature rises at the upper part of the helium tank (3). Therefore, the amount of evaporation of the liquid helium (1) in the liquid helium tank (3) is suppressed.

なお、上記実施例では冷却管(10)を液体ヘリウム槽
(3)の外側に設けたが、冷却管(10)を液体ヘリウ
ム槽(3)の内側に取り付けても上記実施例と同様の効
果を奏する。
In the above embodiment, the cooling pipe (10) was installed outside the liquid helium tank (3), but the same effect as in the above embodiment can be obtained even if the cooling pipe (10) is installed inside the liquid helium tank (3). play.

〔発明の効果〕 以上のように、この発明によれば、液体ヘリウム槽の上
部にも冷却管を設けたことにより、ヘリウムガスが冷却
管を通過するときに液体ヘリウム槽の上部は一様に冷却
される。その結果、液体ヘリウム槽内の液体ヘリウムに
侵入する輻射熱は液体ヘリウムの液面降下に関係なく常
に小さく、液体ヘリウムの蒸発量を低く抑えることがで
きるという効果がある。
[Effects of the Invention] As described above, according to the present invention, since the cooling pipe is also provided at the upper part of the liquid helium tank, when the helium gas passes through the cooling pipe, the upper part of the liquid helium tank is uniformly distributed. cooled down. As a result, the radiant heat that penetrates into the liquid helium in the liquid helium tank is always small regardless of the drop in the liquid helium level, and the effect is that the amount of evaporation of the liquid helium can be kept low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す断面図、第2図は従
来の極低温容器の一例を示す断面図、第3図は第2図の
極低温容器の別の使用態様を示す断面図である。 (1)・・・液体ヘリウム、(2)・・・超電導コイル
、(3)・・・液体ヘリウム槽、(4)・・・真空層、
(5)・・・外槽、(10)・・・冷却管、(10a)
・・・入口部、(iob)・・・出口部。 なお、各図中、同一符号は同一または相当部分を示す。 W−)1図 1  表体へリウ偽 2   超電導フィル 3  液体ヘリウム槽 4  鼻7層 5    タし槽 ]o :  7ン乞p督E
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a sectional view showing an example of a conventional cryogenic container, and Fig. 3 is a sectional view showing another usage of the cryogenic container shown in Fig. 2. It is a diagram. (1)...Liquid helium, (2)...Superconducting coil, (3)...Liquid helium tank, (4)...Vacuum layer,
(5)...Outer tank, (10)...Cooling pipe, (10a)
...Inlet part, (iob)...Exit part. In each figure, the same reference numerals indicate the same or corresponding parts. W-) 1 Figure 1 Surface layer fake 2 Superconducting film 3 Liquid helium tank 4 Nose 7 layer 5 Water tank]

Claims (1)

【特許請求の範囲】[Claims] 液体ヘリウム中に浸漬された超電導コイルを収納してい
る液体ヘリウム槽と、この液体ヘリウム槽の外側に真空
層を介して設けられている外槽と、前記真空層中に前記
液体ヘリウム槽を囲って設けられている輻射シールド板
と、前記液体ヘリウム槽の上部および前記輻射シールド
板の周面に連設され、前記液体ヘリウムの蒸発したヘリ
ウムガスが通過して液体ヘリウム槽の上部および輻射シ
ールド板を冷却する冷却管とを備えていることを特徴と
する極低温容器。
A liquid helium tank housing a superconducting coil immersed in liquid helium, an outer tank provided outside the liquid helium tank via a vacuum layer, and a liquid helium tank surrounding the liquid helium tank in the vacuum layer. a radiation shield plate provided on the top of the liquid helium tank and a circumferential surface of the radiation shield plate, through which the helium gas evaporated from the liquid helium passes through the top of the liquid helium tank and the radiation shield plate; A cryogenic container characterized by being equipped with a cooling pipe for cooling.
JP60266155A 1985-11-28 1985-11-28 Cryogenic vessel Granted JPS62126605A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60266155A JPS62126605A (en) 1985-11-28 1985-11-28 Cryogenic vessel
DE19863639760 DE3639760A1 (en) 1985-11-28 1986-11-21 COOLANT CONTAINER
US06/934,992 US4713941A (en) 1985-11-28 1986-11-26 Cryogenic vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266155A JPS62126605A (en) 1985-11-28 1985-11-28 Cryogenic vessel

Publications (2)

Publication Number Publication Date
JPS62126605A true JPS62126605A (en) 1987-06-08
JPH0324045B2 JPH0324045B2 (en) 1991-04-02

Family

ID=17427053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266155A Granted JPS62126605A (en) 1985-11-28 1985-11-28 Cryogenic vessel

Country Status (1)

Country Link
JP (1) JPS62126605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113310U (en) * 1988-01-26 1989-07-31

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113310U (en) * 1988-01-26 1989-07-31

Also Published As

Publication number Publication date
JPH0324045B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
US4655045A (en) Cryogenic vessel for a superconducting apparatus
US4713941A (en) Cryogenic vessel
JPS62126605A (en) Cryogenic vessel
JP2001077434A (en) Superconducting magnet
JPS62126606A (en) Cryogenic vessel
JPS62126604A (en) Cryogenic vessel
JP2843307B2 (en) Ozone concentration apparatus and ozone concentration method
JPH05267728A (en) Cryostat
US3769161A (en) Reactor vessel supporting device
JPS60234385A (en) Cryostat
JP3417797B2 (en) Superfluid helium generator
JPH01170880A (en) Magnetic shielding device
JP3110901B2 (en) Fast breeder reactor
JPH05180987A (en) Radioactive liquid container vessel
JPH10134652A (en) Cooling container for oxide superconductor
JPS60128862A (en) Horizontal shaft superconductive rotor
JPS58184775A (en) Heat insulating container for superconductive magnet
JPH0656807B2 (en) Cryogenic container for superconducting electromagnet device
JPH031632B2 (en)
JPS6310911B2 (en)
JPS61227356A (en) Cooling apparatus of charged particle beam application device
JPS5827305A (en) Superconductive coil
JPH09196528A (en) Heat exchanger for high-efficiency cooling
JP3102084B2 (en) Sample cooling device for thermal analyzer
JPS6366907A (en) Low-temperature device