JPS62125793A - Chrominance signal processing circuit for video tape recorder - Google Patents

Chrominance signal processing circuit for video tape recorder

Info

Publication number
JPS62125793A
JPS62125793A JP60266701A JP26670185A JPS62125793A JP S62125793 A JPS62125793 A JP S62125793A JP 60266701 A JP60266701 A JP 60266701A JP 26670185 A JP26670185 A JP 26670185A JP S62125793 A JPS62125793 A JP S62125793A
Authority
JP
Japan
Prior art keywords
signal
color signal
circuit
sampling
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60266701A
Other languages
Japanese (ja)
Other versions
JPH0528960B2 (en
Inventor
Shigenori Shibue
重教 渋江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60266701A priority Critical patent/JPS62125793A/en
Publication of JPS62125793A publication Critical patent/JPS62125793A/en
Publication of JPH0528960B2 publication Critical patent/JPH0528960B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Abstract

PURPOSE:To prevent the deterioration of a picture quality by making the frequency band of a chrominance signal processed, recorded and reproduced by a chrominance signal recording and processing circuit, a chrominance signal reproducing and processing circuit and a tape head system narrow and making substantially the chrominance signal a wide band. CONSTITUTION:Initially, during recording, an input carrier chrominance signal to a terminal 18 is demodulated to the chrominance signal of two color difference signals R-Y, B-Y by a chrominance signal demodulator 19. A sampling signal generated by the first sampling generating circuit 26 becomes a pulse sequence in which a phase is dislocated by 1/2 cycle every one field by a repeating frequency (fp). According to this sampling signal, the first sampling circuits 20, 20' are sampled by the chrominance signal. The chrominance signal in which a band is compressed by low-pass filters 27, 27' is modulated into the carrier chrominance signal by a carrier chrominance signal modulator 28, an unnecessary component is removed at a band-pass filter 29, the carrier chrominance signal in which the band is compressed is obtained and magnetically recorded on a tape by the tape head system 9.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はビデオテープレコーダ(以下VTRという)
の色信号処理回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a video tape recorder (hereinafter referred to as VTR).
The present invention relates to a color signal processing circuit.

[従来の技術] 第7図は従来の民生用VTRにおいて採用されているカ
ラーアンダ一方式と呼ばれる色信号処理回路の記録及び
再生系を示すブロック線図である。
[Prior Art] FIG. 7 is a block diagram showing a recording and reproducing system of a color signal processing circuit called a color under one type which is employed in a conventional consumer VTR.

図において(1)は輝度信号と周波数f 5c(N T
 S C方式では3.58MHz)の色副搬送波で変調
された色信号(以下搬送色信号という)を含むコンポジ
ットビデオ信号を入力する入力端子、(2)は中心周波
数Escで±500kHzの帯域をもつ搬送色信号を取
出す帯域フィルタ、(3)は周波数変換器、(4)は、
次式で示す周波数fcの信号発生器、 fc=fsc+fs VH3NTSC方式では f c=3.58M Hz+40 f H=3.58M
 Hz+629 k Hz・= (1)ここに、fsc
S色副搬送波周波数 fH:水平走査周波数 fS:低域変換色副搬送波周波数 (5)は移相器で、端子(6)への水平同期信号によっ
て1水平走査(IH)毎にO’ 、90’ 、180″
’ 、270’と位相を、端子(7)への1フイール毎
にヘッドのチャンネル(CH)を切換えるチャンネル切
換信号によって、CHIの時は進め、CH2の時は遅ら
すよう動作する。(8)は周波数変換器(3)からの信
号の内、中心周波数fscの搬送色信号と周波数fcで
IH毎に90’位相が変わる信号との差周波数fsで変
調された色信号(以下低域変換色信号という)のみを通
過させる低域フィルタ、(9)は低域フィルタ(8)か
らの低域変換色信号を記録・再生するテープ・ヘッド系
、(10)は再生信号から低域変換色信号を取出す低域
フィルタ、(11)は中心周波数fsの再生低域変換色
信号を中心周波数fscの搬送色信号に変換する周波数
変換器、(12)は搬送色信号のみを通過させる帯域フ
ィルタ、(13)は水平走査周波数間隔で阻止域をもつ
クロストーク除去用のくし形フィルタで、第8図はその
構成例を示し、−水平走査遅延回路(14)と減算器(
15)とからなっている。
In the figure (1) is the luminance signal and the frequency f 5c (NT
(2) is an input terminal for inputting a composite video signal containing a color signal (hereinafter referred to as carrier color signal) modulated with a color subcarrier of 3.58 MHz in the SC system, and has a band of ±500 kHz at the center frequency Esc. A bandpass filter for extracting the carrier color signal, (3) a frequency converter, and (4),
A signal generator with a frequency fc shown by the following formula, fc = fsc + fs In the VH3NTSC system, f c = 3.58 MHz + 40 f H = 3.58 M
Hz + 629 kHz Hz・= (1) Here, fsc
S color subcarrier frequency fH: horizontal scanning frequency fS: low-pass conversion The color subcarrier frequency (5) is a phase shifter, and is set to O', 90 every horizontal scan (IH) by the horizontal synchronization signal to the terminal (6). ', 180''
', 270', the phase is advanced by a channel switching signal sent to the terminal (7) to switch the channel (CH) of the head every 1 fill, and is operated to advance when it is CHI and to lag when it is CH2. (8) Among the signals from the frequency converter (3), the color signal (hereinafter referred to as low (9) is a tape head system that records and plays back the low-pass converted color signal from the low-pass filter (8); (10) is the low-pass filter that passes only the low-pass converted color signal from the low-pass filter (8); A low-pass filter that takes out the converted color signal, (11) a frequency converter that converts the reproduced low-pass converted color signal with a center frequency fs into a carrier color signal with a center frequency fsc, and (12) a band that passes only the carrier color signal. The filter (13) is a comb-shaped filter for crosstalk removal having a stop band at the horizontal scanning frequency interval, and FIG. 8 shows an example of its configuration.
15).

次にその動作を第9図によって説明する。第9図は各部
の信号の周波数スペクトル図で、図においてaは搬送色
信号、bは記録される低域変換色信号で黒色はヘッドチ
ャンネル1(CHI)の低域変換色信号を、白色はチャ
ンネル2(CH2)の低域変換色信号、Cは再生された
チャンネル1の搬送色信号、dはくし形フィルタ(13
)の通過特性、eはフィルタ(13)通過後のチャンネ
ル1の搬送色信号を示している。端子(1)へのコンポ
ジットビデオ信号からフィルタ(2)によって第9図a
に示す搬送色信号が取出される。この信号はfscを中
心に両サイドにfHの間隔で強いスペク1−ルを持って
いる。このような搬送色信号が周波数変換器(3)へ供
給される。−力信号発生器(4)からの周波数fcの信
号はCH1のヘッドに切換え時は移相器(5)でIHz
毎に906位相が進まされ、CH2のヘッドに切換え時
はIHz毎に90°位相が遅らされる。
Next, the operation will be explained with reference to FIG. Figure 9 is a frequency spectrum diagram of the signals of each part. In the figure, a is the carrier color signal, b is the recorded low-frequency conversion color signal, black is the low-frequency conversion color signal of head channel 1 (CHI), and white is the low-frequency conversion color signal of the head channel 1 (CHI). The low-pass converted color signal of channel 2 (CH2), C is the reproduced carrier color signal of channel 1, and d is the comb filter (13
), and e indicates the carrier color signal of channel 1 after passing through the filter (13). Figure 9a from the composite video signal to terminal (1) by filter (2)
The carrier color signal shown in is extracted. This signal has a strong spectrum with fsc as the center and an interval of fH on both sides. Such a carrier color signal is supplied to a frequency converter (3). - The signal of frequency fc from the force signal generator (4) is converted to IHz by the phase shifter (5) when switching to the CH1 head.
The phase is advanced by 906 every time, and when switching to the CH2 head, the phase is delayed by 90° every IHz.

このように位相制御された信号のスペクトルはCHIの
場合1/4・fHだけ高い方にシフトしてfc+1/4
・f +1とあり、CH2の場合1/4・fHだけ低い
方にシフトしてfc−1/4・fHとなる。このような
スペクトルをもつ信号がキャリヤ信号として周波数変換
器(3)に供給され、搬送色信号とのビートが取られフ
ィルタ(8)にて不要成分が除去されると第9図すに示
す周波数スペクトルの低域変換色信号が得られる。即ち
、fs(VHS、NTSC(7)場合40f++)を中
心にしてCHlは1/4・fH上側八へH2では1/4
・f H下側にシフトされ、結果的にCHI及びCH2
の相対的な周波数オフセットは1/2・fHとなる。こ
の低域変換色信号はFM輝度信号等と合成された後テー
プ・ヘッド系(9)へ供給され録画される。
In the case of CHI, the spectrum of the signal whose phase is controlled in this way is shifted higher by 1/4・fH and becomes fc+1/4.
・f +1, and in the case of CH2, it is shifted lower by 1/4・fH and becomes fc-1/4・fH. A signal with such a spectrum is supplied as a carrier signal to the frequency converter (3), beats with the carrier color signal are taken, and unnecessary components are removed by the filter (8), resulting in the frequency shown in Figure 9. A spectral low-pass converted color signal is obtained. That is, centering on fs (40f++ in case of VHS, NTSC (7)), CHl is 1/4・fH to the upper eight, and H2 is 1/4
・fH is shifted downward, resulting in CHI and CH2
The relative frequency offset of is 1/2·fH. This low frequency converted color signal is combined with an FM luminance signal, etc., and then supplied to a tape head system (9) for recording.

次に再生過程について述べる。テープ・ヘッド系(9)
から再生された信号は低域フィルタ(10)によって低
域変換色信号のみが取出される。この信号にはCHI、
CH2間にガートバンドがない場合には隣接4チヤンネ
ルからのクロストークが混入している。低域フィルタ(
10)からの中心周波数fsの低域変換色信号は周波数
変換器(11)に供給され中心周波数fscの搬送色信
号に戻されるのであるが、周波数変換器(11)へのキ
ャリア信号は記録時と同様に信号発生器(4)、移相器
(5)をへて供給される。周波数変換器(11)からの
出力信号は帯域フィルタ(12)によって不要成分が除
去される。
Next, we will discuss the regeneration process. Tape head system (9)
A low-pass filter (10) extracts only the low-pass converted color signal from the reproduced signal. This signal has CHI,
When there is no guard band between CH2, crosstalk from four adjacent channels is mixed. Low-pass filter (
The low frequency converted color signal with center frequency fs from 10) is supplied to the frequency converter (11) and returned to the carrier color signal with center frequency fsc, but the carrier signal to the frequency converter (11) is Similarly, the signal is supplied through a signal generator (4) and a phase shifter (5). The output signal from the frequency converter (11) has unnecessary components removed by a bandpass filter (12).

このようにしてCHIを再生したときの再生搬送波色信
号のスペクトルは第9図Cに示すようにfscを中心と
するCHIスペクトルに対して1/2・f Hのオフセ
ットをもってCH2のクロストーク成分が混入している
。このクロストーク成分は、第9図dに示す周波数特性
をもつくし形フィルタ(13)によって除去され、第9
図eに示す周波数スペクトルの再生搬送色信号が得られ
る。
When CHI is reproduced in this way, the spectrum of the reproduced carrier color signal is as shown in Figure 9C, where the CH2 crosstalk component has an offset of 1/2 f H with respect to the CHI spectrum centered at fsc. It's mixed in. This crosstalk component is removed by a rectangular filter (13) having the frequency characteristics shown in FIG.
A reproduced carrier color signal with the frequency spectrum shown in Figure e is obtained.

[発明が解決しようとする問題点コ 従来のV、T Rの色信号処理回路は、以上のように構
成され、色信号が帯域フィルタ(2)(12)、低域フ
ィルタ(8) (10)、くし形フィルタ(13)及び
テープヘッド系(9)を記録・再生過程で通るので、色
信号帯域が狭くなり画質が劣化し、特にダビング時には
この過程を2度繰り返すことになり画質がさらに劣化す
る。また第10図に示す記録ビデオ信号周波数スペクト
ルに(VHS、NTSCの場合)かられかるように低域
変換色信号の上側帯波と、FM輝度信号の下側帯波のオ
ーバラップ部における干渉が互いの画質を劣化させる等
の問題点を有していた。
[Problems to be Solved by the Invention] The conventional V, TR color signal processing circuit is configured as described above, and the color signal is transmitted through the band filters (2) (12), the low pass filters (8) (10 ), comb filter (13), and tape head system (9) during the recording/playback process, the color signal band narrows and the image quality deteriorates.Especially when dubbing, this process is repeated twice, which further deteriorates the image quality. to degrade. In addition, as shown in the recorded video signal frequency spectrum shown in Figure 10 (in the case of VHS and NTSC), there is interference between the upper side band of the low frequency conversion color signal and the lower side band of the FM luminance signal in the overlapped part. This had problems such as deterioration of image quality.

この発明は上記のような問題点を解消するためになされ
たもので、色信号を実質的に広帯域化し。
This invention was made to solve the above-mentioned problems by substantially widening the color signal band.

フィルタ等の狭帯域化による画質の劣化、輝度信号との
干渉も減少させることができる高画質のVTRの色信号
処理回路を得ることを目的としている。
The object of the present invention is to obtain a color signal processing circuit for a VTR with high image quality that can reduce deterioration in image quality due to narrow band filters and the like and interference with luminance signals.

[問題点を解決するための手段] この発明にかかるVTRの色信号処理回路は、色信号を
それの最高周波数より高く、その最高周波数fIIla
xの2倍よりは低いf Hの整数倍の周波数fpをもち
、かつ1フィールド毎に位相が172周期ずれるサンプ
リング信号でサンプリングし、このサンプリング周波数
の172以下の周波数成分のみを取出して、低域変換色
信号に変換して記録し、再生時には再生低域変換色信号
を色信号に変換して、記録時と同じサンプリング信号で
サンプリングすると共に、このサンプリング信号と同一
周期で、フィールドメモリ回路で遅延した1フィールド
前の信号を切換え重畳して色信号を得るよう構成したも
のである。
[Means for Solving the Problems] The color signal processing circuit of the VTR according to the present invention processes the color signal at a frequency higher than its highest frequency, fIIla.
Sampling is performed using a sampling signal that has a frequency fp that is an integer multiple of fH, which is lower than twice x, and whose phase is shifted by 172 periods for each field. It is converted to a converted color signal and recorded, and during playback, the reproduced low-frequency converted color signal is converted to a color signal, and sampled with the same sampling signal as during recording, and delayed in the field memory circuit at the same period as this sampling signal. The color signal is obtained by switching and superimposing the signal of the previous field.

[作 用] この発明においては、色信号の1/2・fρ以下の成分
と、fpの信号により変調され下側帯波として低域側に
折返された色信号の1/2fp以」二の成分とが、フィ
ールド周波数の172の周波数シフトされて重畳され、
0〜f maxの色信号が0〜1/2fpに周波数圧縮
される。一方再生時は、再生色信号を記録時間様のサン
プリング信号でサンプリングし、この信号に1フィール
ド前の172周期ずれた位相でサンプリングされた信号
とを重畳して補間した信号を再生色信号とする。このよ
うに色信号の周波数を圧縮して記録するので色信号の実
質的な広帯域化が計れる。
[Function] In this invention, a component of 1/2 fρ or less of the color signal and a component of 1/2 fp or less of the color signal modulated by the fp signal and reflected to the low frequency side as a lower sideband are used. are frequency-shifted by 172 of the field frequency and superimposed,
A color signal of 0 to f max is frequency compressed to 0 to 1/2 fp. On the other hand, during playback, the playback color signal is sampled using a recording time-like sampling signal, and a signal sampled one field before with a phase shift of 172 cycles is superimposed and an interpolated signal is used as the playback color signal. . Since the frequency of the color signal is compressed and recorded in this way, it is possible to substantially widen the band of the color signal.

[実施例] 以下この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示すブロック線図である
。図において(9)は第8図と同様のテープ・ヘッド系
、(16)は第7図の帯域フィルタ(2)周波数変換器
(3)、信号発生器(4)、移相器(5)、低域フィル
タ(8)からなる従来同様の色信号記録処理回路、(+
7)は同様に低域フィルタ(10)、周波数変換器(1
1)、帯域フィルタ(12)、くし形フィルタ(13)
からなる従来同様の色信号再生処理回路、(18)は3
.58M +−(z(N T S C方式)の搬送色信
号が入力される入力端子、(19)は搬送色信号を2つ
の色差信号R−Y、B−Y(以下色信号という)に復調
する第1の色信号復調器、(20) (20’ )は色
信号をサンプル保持する第1のサンプリング回路、(2
1)は周波数f!(の水平同期信号入力端子、 (22
)は水平走査周波数f Hを次式で示す条件の周波数f
pに逓倍する周波数逓倍器である。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, (9) is the same tape head system as in Figure 8, and (16) is the bandpass filter (2), frequency converter (3), signal generator (4), and phase shifter (5) in Figure 7. , a conventional color signal recording processing circuit consisting of a low-pass filter (8), (+
7) similarly includes a low-pass filter (10) and a frequency converter (1).
1), bandpass filter (12), comb filter (13)
(18) is a conventional color signal reproduction processing circuit consisting of 3
.. 58M +-(z (NTSC system) input terminal into which the carrier color signal is input, (19) demodulates the carrier color signal into two color difference signals R-Y, B-Y (hereinafter referred to as color signals) (20') is a first sampling circuit that samples and holds a color signal;
1) is the frequency f! (Horizontal synchronization signal input terminal of (22)
) is the frequency f under the condition that the horizontal scanning frequency fH is expressed by the following formula.
This is a frequency multiplier that multiplies p.

fp”N ftl、  fmax<fp<2 fmax
  −(2)ここにNは整数、f maxは色信号の最
高周波数(通常約500kI(z)である。(23)は
周波数逓倍器(22)からのパルス出力の位相を172
周期遅らす移相器、(24)は1フィールド毎に切換え
られるヘッドのチャンネル情報信号印加端子、(25)
は周波数逓倍器(22)及び移相器(23)からのパル
ス信号を端子(24)からのチャンネル情報信号に応じ
1フィールド毎に切換えられて第1のサンプリング回路
(20) (20’ )に印加するスイッチで、例えば
CHIの場合周波数逓倍器(22)からの出力を、CH
2の場合移相器(23)からの出力を選択するものとす
る。
fp”N ftl, fmax<fp<2 fmax
- (2) where N is an integer and f max is the maximum frequency of the color signal (usually about 500 kI(z)). (23) is the phase of the pulse output from the frequency multiplier (22)
A phase shifter for delaying the period, (24) is a head channel information signal application terminal that is switched every field, (25)
The pulse signals from the frequency multiplier (22) and phase shifter (23) are switched every field according to the channel information signal from the terminal (24) and sent to the first sampling circuit (20) (20'). For example, in the case of CHI, the output from the frequency multiplier (22) is
In the case of 2, the output from the phase shifter (23) is selected.

(26)は上記周波数逓倍器(22)、移相器(23)
及びスイッチ(25)からなる第1のサンプリング信号
発生回路、(27) (27’ )は上記サンプリング
信号周波数fPの172の fo=1/2・fp以下の
周波数の信号のみを通過させる低域フィルタ、(28)
は低域フィルタ(27) (27”)からの色信号を3
.58MHzの副搬送波で直角二相変調する搬送色信号
変調器、(29)は不要成分を取除く帯域フィルタ、(
30)は上記各回路(+9) (20) (20’ )
 (26) (27) (27”) (28)及び(2
9)からなる色信号周波数圧縮回路、(31)は再生搬
送色信号を2つの色差信号R−Y、B−Yである色信号
に復調する第2の色信号復調器、(32) (32’ 
)は色信号をサンプル・保持する第2のサンプリング回
路、(33)は上記第1のサンプリング信号発生回路(
26)と同様の周波数逓倍回路(34)、移相器(35
)及びスイッチ(36)からなる第2のサンプリング信
号発生回路、(37) (37’ )は第2のサンプリ
ング回路(32)(32’)からのサンプリング色信号
を1フイ一ルド周期(NTSC方式で1760秒)だけ
遅延させるフィールドメモリ、(38) (38’ )
は回路(33)からのサンプリング信号と同一周期で切
換えられる切換えスイッチ、(39)はこの切換えスイ
ッチ(38) (38’ )からの色信号を3.58 
M Hzの副搬送波で直角二相変調する搬送色信号変調
器、 (40)は不要成分を取除く帯域フィルタ、(4
1)は上記再生側各回路(31)(32)(32′)(
33)(37)(37′)(38)(38′)(39)
及び(40)からなる色信号補間回路である。
(26) is the frequency multiplier (22) and phase shifter (23)
and a switch (25), and (27) (27') is a low-pass filter that passes only signals with frequencies below 172 fo = 1/2 fp of the sampling signal frequency fP. , (28)
is the color signal from the low-pass filter (27) (27”)
.. A carrier color signal modulator performs quadrature two-phase modulation using a 58 MHz subcarrier, (29) is a bandpass filter that removes unnecessary components, (
30) is each of the above circuits (+9) (20) (20')
(26) (27) (27”) (28) and (2
(9) is a color signal frequency compression circuit, (31) is a second color signal demodulator that demodulates the reproduced carrier color signal into color signals that are two color difference signals R-Y and B-Y, (32) (32) '
) is the second sampling circuit that samples and holds the color signal, and (33) is the first sampling signal generation circuit (
26), a frequency multiplier circuit (34) and a phase shifter (35) similar to
) and a switch (36), the second sampling signal generating circuit (37) (37') generates the sampling color signal from the second sampling circuit (32) (32') at one field period (NTSC system). field memory, (38) (38')
is a changeover switch that is switched at the same cycle as the sampling signal from the circuit (33), and (39) is a changeover switch that changes the color signal from this changeover switch (38) (38') by 3.58
A carrier color signal modulator that performs quadrature two-phase modulation using a MHz subcarrier, (40) is a bandpass filter that removes unnecessary components, and (40) is a bandpass filter that removes unnecessary components;
1) is each circuit on the playback side (31) (32) (32') (
33) (37) (37') (38) (38') (39)
and (40).

次にその動作を第2図〜第6図によって説明する6第2
図は色信号周波数圧縮回路(3o)の各部の信号の周波
数スペクトル図、第3図はVTR画面上のサンプリング
動作を示す図、第4図はこの実施例における低域変換信
号の周波数スペクトル図、第5図は色信号補間回路(4
1)は動作説明図、第6図はこの実施例におけるクロス
トーク除去動作説明図である。
Next, the operation will be explained with reference to Figs. 2 to 6.
The figure is a frequency spectrum diagram of the signals of each part of the color signal frequency compression circuit (3o), Figure 3 is a diagram showing the sampling operation on the VTR screen, Figure 4 is a frequency spectrum diagram of the low frequency conversion signal in this embodiment, Figure 5 shows the color signal interpolation circuit (4
1) is an explanatory diagram of the operation, and FIG. 6 is an explanatory diagram of the crosstalk removal operation in this embodiment.

まず記録時において、端子(18)への入力搬送色信号
は第1の色信号復調器(19)で2つの色差信号R−Y
、B−Yである色信号に復調される。色信号の周波数ス
ペクトルは第2図aに示すようになっており、最高周波
数f maxは約500kHz程度である。−万端子(
21)からの周波数fHの水平同期信号は周波数逓倍器
(22)にてN倍に逓倍され、周波数fpのパルス信号
を得る。この信号の周波数fpは上述の(2)式に示す
関係となっている。このパルス信号はスイッチ(25)
の−接点に印加されると共に、移相器(23)にも印加
され、ここで18o。
First, during recording, the input carrier color signal to the terminal (18) is converted into two color difference signals R-Y by the first color signal demodulator (19).
, B-Y. The frequency spectrum of the color signal is as shown in FIG. 2a, and the maximum frequency f max is about 500 kHz. −10,000 terminals (
The horizontal synchronizing signal of frequency fH from 21) is multiplied by N times by a frequency multiplier (22) to obtain a pulse signal of frequency fp. The frequency fp of this signal has the relationship shown in equation (2) above. This pulse signal is sent to the switch (25)
- contact and is also applied to the phase shifter (23), where 18o.

(172周期)位相がずらされてスイッチ(25)の他
接点に印加される。スイッチ(25)は端子(24)へ
のチャンネル情報信号によって1フィールド毎のヘッド
チャンネル切換えに応じ切換えられる。従って第1のサ
ンプリング発生回路(26)によって発生するサンプリ
ング信号は繰り返し周波数fPで1フィールド毎に位相
が172周期ずれるパルス列となる。
(172 cycles) and is applied to the other contact of the switch (25) with its phase shifted. The switch (25) is switched according to the head channel switching for each field by a channel information signal sent to the terminal (24). Therefore, the sampling signal generated by the first sampling generation circuit (26) becomes a pulse train with a repetition frequency fP and a phase shift of 172 cycles for each field.

このサンプリング信号によって第1のサンプリング回路
(20) (20・)で色信号がサンプリングされる。
A color signal is sampled by the first sampling circuit (20) (20.) using this sampling signal.

このサンプリングされた色信号の周波数スペクトルは第
2図すに示すようになり、実線で示す色信号成分と、破
線で示す周波数fpのサンプリング信号によって振幅変
調された成分とからなっている。これら両信号が重なり
合っている周波数領域における周波数スペクトルのfH
のn高調波成分のみを拡大して示した図が第2図Cであ
る。図中白丸で示したスペクトルは色信号のスペクトル
で周知のようにnfHを中心に両側にフィールド周波数
ffの間隔で分布している。これに対して黒丸で示した
スペクトルはサンプリング信号で変調されたN−n番目
下側帯波成分で、サンプリング信号がフィールド周期毎
に位相が反転するため、フィールド周波数fpの172
、即ちフレーム周波数f F(N T S Cでは30
F(z)だけオフセットされて、色信号成分にインター
リーブされている。従ってfpの1/2のfo以下の周
波数帯域に、色信号のf。
The frequency spectrum of this sampled color signal is as shown in FIG. 2, and consists of a color signal component shown by a solid line and a component whose amplitude is modulated by the sampling signal of frequency fp shown by a broken line. fH of the frequency spectrum in the frequency domain where these two signals overlap
FIG. 2C is an enlarged view of only the n harmonic components of . The spectrum indicated by white circles in the figure is the spectrum of the color signal, and as is well known, it is distributed at intervals of the field frequency ff on both sides with nfH at the center. On the other hand, the spectrum indicated by the black circle is the N-nth lower sideband component modulated by the sampling signal, and since the phase of the sampling signal is inverted every field period, the spectrum shown by the black circle is 172
, that is, the frame frequency f F (30 in N TSC
It is offset by F(z) and interleaved with the color signal components. Therefore, f of the color signal is in the frequency band below fo, which is 1/2 of fp.

以下の低域成分と、fPによって変調されたfO以上の
高域成分とが含まれ、低域フィルタ(27) (27’
 )によって第2図dに示すようにfO以下に周波数帯
域を制限しても、色信号の全帯域が伝送される。
The following low-pass components and high-frequency components above fO modulated by fP are included, and the low-pass filter (27) (27'
), as shown in FIG. 2d, even if the frequency band is limited to below fO, the entire color signal band is transmitted.

このサンプリング動作を画面上に対応させれば第3図に
示すようになる。このように低域フィルタ(27) (
27′)によって帯域圧縮された色信号は搬送色信号変
調器(28)によって搬送色信号に変調され帯域フィル
タ(29)にて不要成分が取り除かれ、第2図eに示す
ような帯域が圧縮された搬送色信号が得られる。この搬
送色信号は第7図に示す従来と同様の色信号記録処理回
路(16)に印加されて低域変換色信号に変換されFM
輝度信号と合成されてテープ・ヘッド系(9)にてテー
プに磁気記録される。この時の記録される低域変換色信
号の周波数スペクトルは第4図のようになり、CHIの
172f +1のオフセットをもっCH2の折り返し信
号スペクトルは重ならない。
If this sampling operation is made to correspond to the screen, it will become as shown in FIG. 3. In this way, the low-pass filter (27) (
27') is modulated into a carrier color signal by a carrier color signal modulator (28), unnecessary components are removed by a bandpass filter (29), and the band is compressed as shown in Figure 2e. A conveyed color signal is obtained. This carrier color signal is applied to a color signal recording processing circuit (16) similar to the conventional one shown in FIG. 7, and is converted into a low frequency conversion color signal.
It is combined with the luminance signal and magnetically recorded on a tape by a tape head system (9). The frequency spectrum of the low frequency converted color signal recorded at this time is as shown in FIG. 4, and the aliased signal spectrum of CH2 does not overlap with the offset of 172f +1 of CHI.

次に再生過程について述べる。テープ・ヘッド系(9)
にて再生され、第7図に示す従来と同様の色信号再生処
理回路(17)にて変換された再生搬送色信号は、第2
の色信号復調器(31)に卓で2つの色差信号である色
信号に変換され第2のサンプリング回路(32) (3
2’ )に印加される。この色信号はおよそ第2図dに
示すようにスペクトルをもっている。一方サンプリング
信号が記録時と全く同様に、水平同期信号を周波数逓倍
器(34)でfp=Nfl(迄逓倍され、この逓倍信号
と移相器(35)で172周期遅延された信号とを1フ
ィールド毎にスイッチ(36)にて切換えることによっ
て第2のサンプリング信号発生回路(33)で発生され
る。このサンプリング信号によって再生色信号が第2の
サンプリング回路(32) (32’ )でサンプリン
グし保持される。
Next, we will discuss the regeneration process. Tape head system (9)
The reproduced carrier color signal which is reproduced by the color signal reproduction processing circuit (17) similar to the conventional one shown in FIG.
The color signal demodulator (31) converts the color signal into two color difference signals at the console and sends it to the second sampling circuit (32) (3
2'). This color signal has a spectrum approximately as shown in FIG. 2d. On the other hand, the sampling signal is exactly the same as when recording, the horizontal synchronizing signal is multiplied by a frequency multiplier (34) until fp=Nfl (this multiplied signal and a signal delayed by 172 periods by a phase shifter (35) are multiplied by 1 By switching the switch (36) for each field, the second sampling signal generating circuit (33) generates the reproduced color signal.This sampling signal causes the reproduced color signal to be sampled in the second sampling circuit (32) (32'). Retained.

このサンプリングされた色信号の周波数スペクトルは第
5図aに示すようになり、記録時におけるサンプリング
後のスペクトル(第2図b)と同様になる。このサンプ
リングされた色信号はフィールドメモリ(37) (3
7’ )及び切換えスイッチ(3g) (3g′)のa
接点に供給される。フィールドメモリ(37)(37’
 )では入力された色信号を1フィールド1/ f f
(NTSCでは1760秒)だけ遅延して切換えスイッ
チ(38) (3g’ )のb接点に供給する。切換え
スイッチ(38) (38’ )は第5図すで示すよう
に、白丸で示した記録時のサンプリングポイント間を、
黒丸で示す1フィールド前の信号で補間する動作を行な
う。この切換えのタイミングはサンプリング信号発生回
路(33)からのサンプリング信号で行なう。
The frequency spectrum of this sampled color signal is as shown in FIG. 5a, and is similar to the spectrum after sampling during recording (FIG. 2b). This sampled color signal is stored in the field memory (37) (3
7' ) and selector switch (3g) (3g') a
Supplied to the contacts. Field memory (37) (37'
), the input color signal is divided into one field 1/ f f
(1760 seconds in NTSC) and then supplies it to the b contact of the changeover switch (38) (3g'). As already shown in Figure 5, the changeover switches (38) (38') switch between the sampling points during recording indicated by white circles.
Interpolation is performed using the signal from one field before, which is indicated by a black circle. The timing of this switching is determined by the sampling signal from the sampling signal generation circuit (33).

このような補間操作を行なうことによって、本来1/ 
f pの間隔でサンプルされた信号が等価的に172f
pの間隔でサンプルされたことになり、サンプリング定
理によってfpまでの信号を再現できることになる。こ
の時の切換えスイッチ(38) (38’ )からの出
力色信号の周波数スペクトルは第5図Cに示すようにな
り記録信号の周波数スペクトルが再現される。以上のよ
うに処理された色信号は搬信号変調器(39)にて直角
二相変調され、帯域フィルタ(40)にて不要成分が除
去されて再生搬送色信号が得られる。
By performing such an interpolation operation, the original 1/
A signal sampled at an interval of f p is equivalently 172f
This means that the signals are sampled at intervals of p, and according to the sampling theorem, signals up to fp can be reproduced. At this time, the frequency spectrum of the output color signal from the changeover switch (38) (38') becomes as shown in FIG. 5C, and the frequency spectrum of the recording signal is reproduced. The color signal processed as described above is subjected to quadrature two-phase modulation in a carrier signal modulator (39), and unnecessary components are removed in a bandpass filter (40) to obtain a reproduced carrier color signal.

以上の再生動作は隣接トラックからのクロストークがな
い場合について述べたが、クロストークが含まれる場合
は、再生色信号変換回路(17)において得られる搬送
色信号の周波数スペクトルには第6図aに示すようにク
ロストーク成分が本来の信号成分と1/2 f I+の
オフセットをもっている。しかしこの発明では色信号の
高域成分はf H毎に強いスペクトルをもっている低域
成分と30Hzのオフセットをもって周波数間挿されて
いる。従って隣接トラックからのクロストークは従来方
法と同様に第6図すに示す特性を持つIH形のくし形フ
ィルタで除去することができ、しかもこのくし形フィル
タの低域に折り返された高域成分への影響は殆どない。
The above reproduction operation has been described for the case where there is no crosstalk from adjacent tracks, but if crosstalk is included, the frequency spectrum of the carrier color signal obtained in the reproduction color signal conversion circuit (17) will be As shown in the figure, the crosstalk component has an offset of 1/2 f I+ from the original signal component. However, in this invention, the high frequency component of the color signal is frequency interpolated with a 30 Hz offset from the low frequency component having a strong spectrum for each fH. Therefore, as in the conventional method, crosstalk from adjacent tracks can be removed using an IH-type comb filter having the characteristics shown in Figure 6. Moreover, the high-frequency components folded back into the low frequency range of this comb-shaped filter There is almost no impact on

くし形フィルタ出力信号の周波数スペクトルは第6図C
のようになり、クロストーク成分は除去される。従って
くし形フィルタ出力を上記実施例で説明した色信号補間
回路(41)で処理すれば何等問題なく帯域の伸長がで
きる。
The frequency spectrum of the comb filter output signal is shown in Figure 6C.
The crosstalk component is removed. Therefore, if the comb filter output is processed by the color signal interpolation circuit (41) described in the above embodiment, the band can be expanded without any problem.

以上の実施例において第2のサンプリング回路(32)
(32′)としてサンプリング・保持回路を使用したが
、フィールドメモリ(37) (37’ )にデジタル
信号処理するものを使用する場合は、アナログ・デジタ
ル変換器等で代替することができる。また上記実施例で
は、周波数圧縮処理した色信号を一旦搬送色信号に変調
した後低域変換色信号に変換して記録し、再生低域変換
色信号を搬送色信号に変換後色信号に復調して補間処理
を行なうよう説明したが、色信号から直接記録用低域変
換色信号に、又再生低域変換色信号を直接色信号に変換
するようにしてもよい。
In the above embodiment, the second sampling circuit (32)
Although a sampling/holding circuit is used as (32'), if the field memory (37) (37') is one that processes digital signals, it can be replaced with an analog-to-digital converter or the like. In addition, in the above embodiment, the frequency-compressed color signal is first modulated into a carrier color signal, then converted to a low-pass converted color signal and recorded, and the reproduced low-pass converted color signal is converted to a carrier color signal and then demodulated to a color signal. Although it has been described that the interpolation processing is performed by using the interpolation process, the color signal may be directly converted into a recording low-band conversion color signal, or the reproduction low-band conversion color signal may be directly converted into a color signal.

なお、第1.第2のサンプリング信号発生回路(26)
 (33)を共用とすることも可能である。
In addition, 1. Second sampling signal generation circuit (26)
It is also possible to share (33).

[発明の効果] 以上のようにこの発明によれば、色信号の高域成分を1
/2 f fのオフセットをもって低域側へ折り返し、
低域成分と周波数インターリーブするよう構成し、色信
号記録処理回路1色信号再生処理回路及びテープ・ヘッ
ド系にて処理され記録され再生される色信号の周波数帯
域を狭くでき実質的に色信号が広帯域化するので、フィ
ルタ等の狭帯域化による画質の低化が防止でき、FM輝
度信号との干渉も少なくなり、ダビング時における周波
数特性の劣化も著しく改善できる等の効果を有している
。なお従来のくし形フィルタによるクロストークの除去
が可能であるという効果をも有している。
[Effects of the Invention] As described above, according to the present invention, the high frequency component of the color signal is
/2 f Fold back to the low frequency side with an offset of f,
It is configured to frequency interleave with the low frequency component, and the frequency band of the color signal processed, recorded and played back by the color signal recording processing circuit, the color signal reproduction processing circuit and the tape head system can be narrowed, and the color signal can be substantially reduced. Since the band is widened, it is possible to prevent deterioration in image quality due to the narrow band of a filter, etc., and there is also less interference with the FM luminance signal, and the deterioration of frequency characteristics during dubbing can be significantly improved. Note that it also has the effect of being able to remove crosstalk caused by the conventional comb filter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック線図、第2
図、第3図、第4図、第5図及び第6図はこの実施例の
動作説明図、第7図は従来のVTRの色信号処理回路を
示すブロック線図、第8図はくし形フィルタの一例を示
すブロック線図、第9図は従来回路の動作説明図、第1
0図は従来回路の記録ビデオ信号の周波数スペクトルを
示す図である。 図において、(9)はテープ・ヘッド系、(16)は色
信号記録処理回路、(17)は色信号再生処理回路、(
19)は第1の色信号復調器、(20) (20’ )
は第1のサンプリング回路、(26)は第1のサンプリ
ング信号発生回路、 (27)(27’)は低域フィル
タ、(28)は第1の搬送色信号変調器(記録色信号出
力回路)、(30)は色信号周波数圧縮回路、(31)
は第2の色信号復調器(再生色信号入力回路)、 (3
2) (32’ )は第2のサンプリング回路、(33
)は第2のサンプリング信号発生回路、(37) (3
7’ )はフィールドメモリ、(38)(38′)は切
換えスイッチ、(39)は第2の搬送色信号変調器であ
る。 図中同一符号は同−或は相当部分を示す。
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG.
3, 4, 5, and 6 are explanatory diagrams of the operation of this embodiment. FIG. 7 is a block diagram showing a conventional VTR color signal processing circuit. FIG. 8 is a comb filter. FIG. 9 is a block diagram showing an example of the operation of the conventional circuit.
FIG. 0 is a diagram showing a frequency spectrum of a recorded video signal of a conventional circuit. In the figure, (9) is a tape head system, (16) is a color signal recording processing circuit, (17) is a color signal reproduction processing circuit, (
19) is the first color signal demodulator, (20) (20')
is the first sampling circuit, (26) is the first sampling signal generation circuit, (27) (27') is the low-pass filter, and (28) is the first carrier color signal modulator (recording color signal output circuit). , (30) is a color signal frequency compression circuit, (31)
is the second color signal demodulator (regenerated color signal input circuit), (3
2) (32') is the second sampling circuit, (33')
) is the second sampling signal generation circuit, (37) (3
7') is a field memory, (38) (38') is a changeover switch, and (39) is a second carrier color signal modulator. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)入力信号を記録用低域変換色信号に変換する色信
号記録処理回路と、再生低域変換色信号を所望の出力信
号に変換する色信号再生処理回路を備えたビデオテープ
レコーダの色信号処理回路において、入力搬送色信号を
色信号に復調する色信号復調器、この色信号の最高周波
数より高くそれの2倍よりは低い水平走査周波数の整数
倍の周波数をもち、かつ一フィールド毎に位相が1/2
周期ずれるサンプリング信号を発生する第1のサンプリ
ング信号発生回路、この回路からのサンプリング信号発
生回路をもって上記復調色信号をサンプリングする第1
のサンプリング回路、この回路によりサンプリングされ
た信号から上記サンプリング信号周波数の1/2以上の
周波数信号を阻止する低域フィルタ及びこのフィルタか
らの出力信号を直接又は所望の信号に変換して上記色信
号記録処理回路に上記入力信号として印加する記録色信
号出力回路を備えた色信号周波数圧縮回路と、上記色信
号再生処理回路からの出力信号を色信号として入力する
再生色信号入力回路、上記第1のサンプリング信号発生
回路と同じサンプリング信号を発生する第2のサンプリ
ング信号発生回路、上記再生色信号入力回路からの色信
号を上記第2のサンプリン握信号発生回路からのサンプ
リング信号でサンプリングする第2のサンプリング回路
、このサンプリング回路でサンプリングされた信号を1
フィールド遅延させるフィールドメモリ、上記第2のサ
ンプリング回路からの信号と上記フィールドメモリから
の1フィールド遅延された信号とを、上記第2のサンプ
リング発生回路からのサンプリング信号と同一周期で切
換え出力する切換えスイッチ、及びこの回路からの信号
を搬送色信号に変調する搬送色信号変調器を備えた色信
号補間回路とを設けたことを特徴とするビデオテープレ
コーダの色信号処理回路。
(1) Color of a video tape recorder equipped with a color signal recording processing circuit that converts an input signal into a low-band conversion color signal for recording, and a color signal reproduction processing circuit that converts the playback low-band conversion color signal into a desired output signal. In the signal processing circuit, a color signal demodulator demodulates an input carrier color signal into a color signal, which has a frequency that is an integer multiple of a horizontal scanning frequency that is higher than the highest frequency of this color signal and lower than twice it, and is used for each field. The phase is 1/2
a first sampling signal generation circuit that generates a sampling signal with a period shift; a first sampling signal generation circuit that samples the demodulated color signal using the sampling signal generation circuit from this circuit;
a sampling circuit, a low-pass filter that blocks signals with a frequency of 1/2 or more of the sampling signal frequency from the signal sampled by this circuit, and an output signal from this filter that is directly or converted into a desired signal to output the color signal. a color signal frequency compression circuit including a recording color signal output circuit that applies the input signal to the recording processing circuit; a reproduction color signal input circuit that inputs the output signal from the color signal reproduction processing circuit as the color signal; a second sampling signal generation circuit that generates the same sampling signal as the sampling signal generation circuit; and a second sampling signal generation circuit that samples the color signal from the reproduced color signal input circuit with the sampling signal from the second sampling signal generation circuit. Sampling circuit, the signal sampled by this sampling circuit is
a field memory for field delay; a changeover switch for switching and outputting the signal from the second sampling circuit and the signal delayed by one field from the field memory at the same cycle as the sampling signal from the second sampling generation circuit; , and a color signal interpolation circuit having a carrier color signal modulator that modulates a signal from this circuit into a carrier color signal.
(2)上記色信号記録処理回路は、入力信号を低域変換
色信号に変換するとともに、記録テープの隣り合うトラ
ックに記録される低域変換色信号を、それの周波数スペ
クトルが互にライン周波数の1/2のオフセットをもつ
よう処理する回路であり、上記色信号再生処理回路は、
再生低域変換色信号を出力信号に変換後水平走査周波数
間隔で阻止域をもち隣接トラックからのクロストーク成
分を除去するくし形フィルタを備えた回路である特許請
求の範囲第1項記載のビデオテープレコーダの色信号処
理回路。
(2) The color signal recording processing circuit converts the input signal into a low-frequency converted color signal, and also converts the low-frequency converted color signals recorded on adjacent tracks of the recording tape so that their frequency spectra are at the line frequency. The color signal reproduction processing circuit is a circuit that performs processing to have an offset of 1/2 of
The video according to claim 1, which is a circuit comprising a comb filter having a stop band at horizontal scanning frequency intervals and removing crosstalk components from adjacent tracks after converting the reproduced low frequency conversion color signal into an output signal. Color signal processing circuit for tape recorder.
(3)上記色信号記録処理回路の入力信号及び上記色信
号再生処理回路の出力信号は搬送色信号であり、上記色
信号周波数圧縮回路の記録色信号出力回路は上記低域フ
ィルタ出力信号を上記記録色信号変換回路の入力信号で
ある搬送色信号に変調する搬送色信号変調器であり、上
記色信号補間回路の再生色信号入力回路は、上記再生色
信号変換回路から搬送色信号を色信号に復調する色信号
復調器である特許請求の範囲第1又は第2項記載のビデ
オテープレコーダの色信号処理回路。
(3) The input signal of the color signal recording processing circuit and the output signal of the color signal reproduction processing circuit are carrier color signals, and the recording color signal output circuit of the color signal frequency compression circuit converts the low-pass filter output signal into the carrier color signal. This is a carrier color signal modulator that modulates the carrier color signal into a carrier color signal that is an input signal of the recording color signal conversion circuit, and the reproduction color signal input circuit of the color signal interpolation circuit converts the carrier color signal from the reproduction color signal conversion circuit into a color signal. 3. A color signal processing circuit for a video tape recorder according to claim 1, which is a color signal demodulator for demodulating a color signal.
(4)上記第1のサンプリング信号発生回路と第2のサ
ンプリング信号発生回路とを1個の回路で共用した特許
請求の範囲第1、第2又は第3項記載のビデオテープレ
コーダの色信号処理回路。
(4) Color signal processing in a video tape recorder according to claim 1, 2 or 3, in which the first sampling signal generation circuit and the second sampling signal generation circuit are shared by one circuit. circuit.
JP60266701A 1985-11-25 1985-11-25 Chrominance signal processing circuit for video tape recorder Granted JPS62125793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60266701A JPS62125793A (en) 1985-11-25 1985-11-25 Chrominance signal processing circuit for video tape recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266701A JPS62125793A (en) 1985-11-25 1985-11-25 Chrominance signal processing circuit for video tape recorder

Publications (2)

Publication Number Publication Date
JPS62125793A true JPS62125793A (en) 1987-06-08
JPH0528960B2 JPH0528960B2 (en) 1993-04-27

Family

ID=17434480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266701A Granted JPS62125793A (en) 1985-11-25 1985-11-25 Chrominance signal processing circuit for video tape recorder

Country Status (1)

Country Link
JP (1) JPS62125793A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101791A (en) * 1987-10-14 1989-04-19 Matsushita Electric Ind Co Ltd Video signal recording device
JPH03108986A (en) * 1989-09-22 1991-05-09 Matsushita Electric Ind Co Ltd Device and method for recording color video signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101791A (en) * 1987-10-14 1989-04-19 Matsushita Electric Ind Co Ltd Video signal recording device
JPH03108986A (en) * 1989-09-22 1991-05-09 Matsushita Electric Ind Co Ltd Device and method for recording color video signal

Also Published As

Publication number Publication date
JPH0528960B2 (en) 1993-04-27

Similar Documents

Publication Publication Date Title
US5063457A (en) Wide-band video signal recording apparatus by using frequency interleave
JPS645516B2 (en)
JPS59186492A (en) Recording and reproducing device of color video signal
JP2753224B2 (en) Video signal recording and playback device
US5077616A (en) Video recorder with increased bandwidth recording
JPS62125793A (en) Chrominance signal processing circuit for video tape recorder
US5822490A (en) Apparatus and method for color-under chroma channel encoded with a high frequency luminance signal
JPH0588039B2 (en)
JPS62230190A (en) Video signal recording device and record reproducing device
JPS5832835B2 (en) Carrier signal forming circuit with line offset
JP3075040B2 (en) Color signal processing device
JPS60111591A (en) Recording and reproducing method of color video signal
JP2641633B2 (en) Color signal processing device
JPS61172273A (en) Fm demodulating circuit
JPS585633B2 (en) Kirokusaretakara Video Shingouno Saisei Souchi
KR880000412Y1 (en) Recording apparatus of colour picture signal
JPS602836B2 (en) SECAM color television signal recording method
JPS5853834B2 (en) Color video signal recording/reproducing method and device
JPH0795615A (en) Digital chroma signal processing method
JPH03219792A (en) Video signal recording and reproducing device
JPH05207513A (en) Recorder for color video signal
JPS63269877A (en) Video signal recorder
JPH01233984A (en) Transmission system for video signal
JPH0137078B2 (en)
GB2252005A (en) Video signal processing for recording and playback systems