JPS62124785A - Laser device - Google Patents

Laser device

Info

Publication number
JPS62124785A
JPS62124785A JP60264529A JP26452985A JPS62124785A JP S62124785 A JPS62124785 A JP S62124785A JP 60264529 A JP60264529 A JP 60264529A JP 26452985 A JP26452985 A JP 26452985A JP S62124785 A JPS62124785 A JP S62124785A
Authority
JP
Japan
Prior art keywords
film
laser beam
laser
total
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60264529A
Other languages
Japanese (ja)
Inventor
Kimiharu Yasui
公治 安井
Masaki Kuzumoto
昌樹 葛本
Masaaki Tanaka
正明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60264529A priority Critical patent/JPS62124785A/en
Priority to DE19863639580 priority patent/DE3639580A1/en
Publication of JPS62124785A publication Critical patent/JPS62124785A/en
Priority to US07/377,774 priority patent/US4942588A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain excellent laser beams, keeping high oscillation efficiency, and to prevent the thermal deformation of a partial reflecting mirror by forming a ring-shaped metallic thin-film, the surface of which functions as a total reflec tion surface, onto the surface oppositely faced to a total reflection mirror of the partial reflecting mirror. CONSTITUTION:A ring-shaped metallic thin-film 61, which is shaped onto the surface oppositely faced to a total reflecting mirror 2 of a partial reflecting film 12 formed onto a partial reflecting mirror 1 and the surface thereof serves as a total reflecting surface, is arranged so that the total reflecting mirror 2 and the total reflecting surface are brought to the state of resonance. The metallic thin-film 61 is obtained by shaping gold in thickness of at least 50Angstrom or more by using cluster ion beams. Laser beams, whose end is cut by the thin-film 61, are reflected by the thin-film 61, and one part of laser beams is taken out as laser beams 41 again during reciprocation between laser beams and the total reflecting mirror 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はレーザ装置、とくに高品質レーザビームの取
出しの高効率化及び! ミラーの熱変形防止に関するも
のである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a laser device, particularly to increasing the efficiency of extracting a high-quality laser beam and! This invention relates to preventing thermal deformation of mirrors.

〔従来の技術〕[Conventional technology]

第3図(a)(b)は各々例えば特願昭511−695
32号明細書に示された従来のレーザ装置を示す断面構
成図9及び出射レーザビームの動径方向に対する強度分
布を示す分布図でるり9図においてt(1)は部分反射
ミラー、α2はミラー(11表面に形成された薄膜で9
部分反射膜である。(2)は全反射ミラー。
Figures 3(a) and 3(b) are, for example, Japanese Patent Application No. 511-695.
In the cross-sectional configuration diagram 9 showing the conventional laser device shown in the specification of No. 32 and the distribution diagram showing the intensity distribution in the radial direction of the emitted laser beam, t(1) is a partial reflection mirror, and α2 is a mirror. (The thin film formed on the surface of 9
It is a partially reflective film. (2) is a total reflection mirror.

(3)はレーザ媒質で+CO2レーザを例にとれば放電
により励起されたガスであり・YAGレーザを例にとれ
ばフラッシュラングにエリ励起されたガラスなどである
。(4)はミラー(山(2)からなる光共振器内に発生
したレーザビームI偽りは外部に取出された一出射レー
ザビームであり、 +51fl出射レーザビーム卿の動
径方向の強度分布曲線である。(61はレーザビーム吸
収体からなるアパーチャで、中央部に開口を有する。
(3) is a laser medium, which is a gas excited by electric discharge in the case of a +CO2 laser, and glass excited by a flash run in the case of a YAG laser. (4) is a laser beam generated in an optical resonator consisting of a mirror (mountain (2)), which is a single emitted laser beam taken out to the outside, and is an intensity distribution curve in the radial direction of the +51fl emitted laser beam. (61 is an aperture made of a laser beam absorber and has an opening in the center.

次に動作について説明する。部分反射ミラー(11と全
反射ミラー(2)とからなる光共振器間を往復するレー
ザビームh、レーザ媒質+31に:エリ増幅されレーザ
ビーム(4)となる。
Next, the operation will be explained. A laser beam h that travels back and forth between an optical resonator consisting of a partial reflection mirror (11) and a total reflection mirror (2) is amplified by a laser medium +31 and becomes a laser beam (4).

7 バー ?ヤ(6)ノ外周表面に達するレーザビーム
は吸収される几めレーザビーム(4)ハ外形を規定さA
、その横モード(レーザビームの動径方向の強度分布)
をガウス形(正規分布型)に制限される。
7 bar? The laser beam that reaches the outer circumferential surface of Y (6) is absorbed.
, its transverse mode (radial intensity distribution of the laser beam)
is restricted to Gaussian shape (normal distribution type).

ミラー(110表面には薄膜α2が形成され、レーザビ
ーム(4)のうち一部を出射レーザビーム0υとり、て
外部にとり出す。第3図(b)に示す曲線(5)はとり
出されたレーザビームの強度分布の断面形状全示す。
A thin film α2 is formed on the surface of the mirror (110), and a part of the laser beam (4) is taken out as an emitted laser beam 0υ and taken out to the outside. The entire cross-sectional shape of the laser beam intensity distribution is shown.

ガウス形レーザビームは集光性能がよく、良品質のレー
ザビームとされ、市販のレーザ装置の大部分にガウス形
レーザビームを発生する。
Gaussian laser beams have good focusing performance and are considered to be high quality laser beams, and most commercially available laser devices generate Gaussian laser beams.

アパーチャ(6)の効果について説明を加える。レーザ
ビームモードのうち外形のもつとも小さいものがガウス
形であるため、ガウス形のレーザビームがぎりぎり通る
径のアパーチャ(6)を光共振器内に挿入すれば、ガウ
ス形以外のレーザビームは光共振器間を往復する間にア
パーチャ(6)に:りはし切りされ、はし切りされたレ
ーザビームはアバ−チャに吸収され大きく減衰し、結果
ガウス形のレーザビームのみが形成される。
An explanation will be added regarding the effect of the aperture (6). Among the laser beam modes, the one with the smallest external shape is Gaussian, so if an aperture (6) with a diameter that allows a Gaussian laser beam to pass through is inserted into the optical resonator, laser beams other than Gaussian will be optically resonant. While reciprocating between the devices, the laser beam is cut into an aperture (6), and the cut laser beam is absorbed by the aperture and greatly attenuated, resulting in only a Gaussian laser beam being formed.

実験結果によれば上でのべたぎりぎりのアパーチャ径(
即ち開口径)φai+ ガウス形レーザビームの@変分
部が中央の強度の1/e VCなる点の半径ωとφa 
= (3,2〜3.4)Xωの関係があることが知られ
ている。
According to the experimental results, the aperture diameter (
That is, the aperture diameter) φai+ The radius ω and φa of the point where the variable part of the Gaussian laser beam is 1/e VC of the central intensity
It is known that there is a relationship of = (3,2-3.4)Xω.

し発明が解決しようとする問題点j 従来のレーザ装置は以上の19に、アパーチャを挿入し
てレーザビームの外形を規制し、ガウス形レーザビーム
を1尋ていた。さてレーザの発振効率を考えると、V−
ザビームとレーザ媒質とが同一の大きさをもっている時
が最高となる。即ちアパーチャを用いない時が最高とな
る。しかし。
Problems to be Solved by the Invention J In the conventional laser device, an aperture is inserted in the above 19 to regulate the outer shape of the laser beam, resulting in a Gaussian laser beam. Now, considering the laser oscillation efficiency, V-
It is best when the beam and the laser medium have the same size. In other words, it is best when no aperture is used. but.

C02レーザにもちいられる放電にエリ励起されたガス
状レーザ媒質、YAGレーザにもちいられるフラッシュ
ランプにエリ励起されたガラス状レーザ媒質をはじめと
してツー股にレーザ媒質は不均質性をふくむため・従来
例の工うにレーザビームにくらべ大きめの励起空間をつ
くり良質な部分をアパーチャによりレーザビームの大き
さを制限して均一なレーザビームをとり出すのが普通で
あった。そのためレーザの発振効率はおのずと制限され
ていた。
Conventional examples include the gaseous laser medium excited by a discharge used in a C02 laser, and the glassy laser medium excited by a flash lamp used in a YAG laser. The conventional method was to create an excitation space larger than the laser beam, and then limit the size of the laser beam using an aperture in a high-quality area to extract a uniform laser beam. Therefore, the oscillation efficiency of lasers has naturally been limited.

また部分反射ミラー(1)はレーザビーム(41e 何
%か吸収するが、レーザビームが中心にパワー1)59
4中し、でいるためν吸収されたレーザビームにより部
分反射ミラー(1)の中心が強く加熱され熱分布を生じ
、熱変形するという問題があった。
In addition, the partially reflecting mirror (1) absorbs the laser beam (41e to a certain extent, but the laser beam has a power of 1 in the center) 59
4, the center of the partially reflecting mirror (1) is strongly heated by the ν-absorbed laser beam, resulting in a thermal distribution and thermal deformation.

この発明は上記のような問題点を解消するためになされ
たもので良質のレーザビームが高い発振効率をたちちつ
つ得られ!かつ部分反射ミラーの熱変形を防ぐことがで
きるレーザ装置を得るCとを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to quickly obtain a high-quality laser beam with high oscillation efficiency! Another object of the present invention is to obtain a laser device that can prevent thermal deformation of a partially reflecting mirror.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーザfitは9部分反射ミラーの、全
反射ミラーと対向する面上に2表面が全反射面となるリ
ング状の金属の薄膜を設けたものである。
The laser fit according to the present invention is a nine-partial reflection mirror in which a ring-shaped metal thin film is provided on the surface facing the total reflection mirror, with two surfaces serving as total reflection surfaces.

〔作用) この発明におけるリング状の金属の薄膜は全反射ミラー
と光共振器を構成し、レーザビームの発振に寄与すると
共に−レーザビームを吸収し部分反射ミラー全体を加熱
して、ミラーに熱分布を生じにくくする。
[Function] The ring-shaped metal thin film in this invention constitutes a total reflection mirror and an optical resonator, and not only contributes to the oscillation of the laser beam, but also absorbs the laser beam and heats the entire partially reflection mirror, thereby imparting heat to the mirror. Make distribution less likely to occur.

〔実施例J 以下會この発明の一実施例を図について説明する。第1
図(a) fb)は各々この発明の一実施例によるレー
ザ装置を示す断面構成図及び出射レーザビームの動径方
向に対する強度分布を示す分布図である。図においてり
第3囚と同一符号のものは同−又は相当部分を示す。
[Embodiment J] An embodiment of the present invention will be described below with reference to the drawings. 1st
Figures (a) and (fb) are a cross-sectional configuration diagram showing a laser device according to an embodiment of the present invention, and a distribution diagram showing the intensity distribution of the emitted laser beam in the radial direction. In the figure, the same reference numerals as the third prisoner indicate the same or corresponding parts.

(61)は部分反射ミラー(1)に設けられている部分
反射膜α2のう全反射ミラー(2)と対向する面上に設
けられ9表面が全反射面となるリング状の金属の薄膜で
、全反射ミラー(2)と上記全反射面とが共振状態とな
るように配置されている。金属の薄膜(61)は例えば
クラスタイオンビームを用いて金を少なくとも501以
上の厚みで形成したものである。
(61) is a ring-shaped metal thin film provided on the surface of the partial reflection film α2 provided on the partial reflection mirror (1) that faces the total reflection mirror (2), and the surface 9 becomes the total reflection surface. , the total reflection mirror (2) and the total reflection surface are arranged so as to be in a resonant state. The metal thin film (61) is made of gold formed using, for example, a cluster ion beam to a thickness of at least 50 mm or more.

次に動作について説明する。部分反射ミラー[11と全
反射ミラー(2)との間を往復するレーザビームはレー
ザ媒質(3)にエリ増幅され−リング状の金属薄膜(6
1)により外形を制限されtガウス形レーザビームとし
て外部に取出される。
Next, the operation will be explained. The laser beam that travels back and forth between the partial reflection mirror [11 and the total reflection mirror (2) is amplified by the laser medium (3) and is emitted by the ring-shaped metal thin film (6).
1), the external shape is limited and the laser beam is extracted to the outside as a Gaussian laser beam.

薄膜(61)にエリはし切りされたレーザビームは。The laser beam is cut into the thin film (61).

薄膜(61)により反射され、全反射ミラー(2)との
間を往復する間にその一部が再びレーザビーム(4υと
して取出される。
It is reflected by the thin film (61), and a part of it is taken out again as a laser beam (4υ) while traveling back and forth between the total reflection mirror (2) and the total reflection mirror (2).

第2図は、この発明の一実施例によるレーザ装置の発振
特性を従来のものと比較して示す特性図であり、C02
レーザを用い、第1因に示す構成のレーザ装置(直線A
)l第3図に示す構成(従来例)のレーザ装置(直線B
)l及び第4図に示す構成(従来例)のレーザ装置(直
、vjic)における発掘特性である。なお、第4 S
 (al (b)は各々従来のレーザ装置を示す断面構
成図及び出射レーザビームの動径方向に対する強度分布
を示す分布図であり、アパーチャ(6)がない場合を示
している、第2図においてν横軸は放電電力、縦軸はレ
ーザ出力を示す。各別には得られたレーザビーム強度分
布も並記した。また、各別におけるレーザ媒質(3)は
放電にエリ励起された直径17mxのガス媒質であり−
そのガス組成比は02;H2:He=8:4(1)52
  である。また用いるアパーチャ(6)又は薄膜(6
1)の開口径は12真翼である。
FIG. 2 is a characteristic diagram showing the oscillation characteristics of a laser device according to an embodiment of the present invention in comparison with a conventional one.
A laser device using a laser and having the configuration shown in the first factor (straight line A
) l Laser device with the configuration (conventional example) shown in Fig. 3 (straight line B
)1 and the excavation characteristics of the laser device (direct, vjic) having the configuration (conventional example) shown in FIG. In addition, the 4th S
(al (b) is a cross-sectional configuration diagram showing a conventional laser device and a distribution diagram showing the intensity distribution in the radial direction of the emitted laser beam, respectively, and shows the case without the aperture (6). νThe horizontal axis shows the discharge power, and the vertical axis shows the laser output.The obtained laser beam intensity distribution is also shown in each case.In addition, the laser medium (3) in each case is a 17 mx diameter laser medium excited by the discharge. It is a gas medium.
The gas composition ratio is 02; H2:He=8:4(1)52
It is. Also used is the aperture (6) or thin film (6).
The opening diameter of 1) is 12 blades.

第2図からν従来例では良質のガウス形レーザビームを
得るためにアパーチャを挿入すると発振効率が著しく悪
くなることがわかる。−万、この発明によるものは曾高
い発振効率をたもったまま。
From FIG. 2, it can be seen that in the ν conventional example, when an aperture is inserted to obtain a high-quality Gaussian laser beam, the oscillation efficiency deteriorates significantly. - The device according to this invention maintains extremely high oscillation efficiency.

ガウス形レーザビームに近いものが得られている。A beam close to a Gaussian laser beam was obtained.

また部分反射ミラーfi+の熱変形について考えると・
 リング状の金属薄膜(61)は数%(C02レーザビ
ームを例にとれば1%程度)のレーザビームを吸収する
が、レーザビームが部分反射ミラー(1)の中央部を透
過することによっても数チレーザビームが吸収されるた
め2部分反射ミラー(1)全体が加熱され、熱分布が生
じにくいという効果がある。
Also, considering the thermal deformation of the partially reflective mirror fi+...
The ring-shaped thin metal film (61) absorbs several percent of the laser beam (approximately 1% in the case of a C02 laser beam), but the laser beam also absorbs light when it passes through the center of the partially reflecting mirror (1). Since several laser beams are absorbed, the entire two-part reflection mirror (1) is heated, which has the effect of making it difficult for heat distribution to occur.

なおり上記実施例では金属の薄膜(61)t”部分反射
膜α2の上に形成したが、直接1部分反射ミラー(11
上に形成してもよい。また2部分反射ミラー(1)を基
盤となる材料の透過率でそのまま適用する場合は部分反
射膜(Izが不要になることはいうまでもない。
In the above embodiment, the metal thin film (61) was formed on the t'' partial reflection film α2, but it was formed directly on the partial reflection mirror (11).
It may be formed on top. Furthermore, it goes without saying that when the two-partial reflection mirror (1) is applied as is with the transmittance of the base material, the partial reflection film (Iz) is not required.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば2部分反射ミラーの全反
射ミラーと対向する面上に1表面が全反射面となるリン
グ状の金属の薄膜を設けたので。
As described above, according to the present invention, a ring-shaped metal thin film, one surface of which is a total reflection surface, is provided on the surface of the two-part reflection mirror that faces the total reflection mirror.

良品質のレーザビームがアパーチャを挿入する前と同等
の高い発振効率で得られると共に9部分反射ミラーの熱
変形を防ぐことができる効果がある。
A high-quality laser beam can be obtained with high oscillation efficiency equivalent to that before inserting the aperture, and thermal deformation of the nine partial reflection mirrors can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al(b)は各々この発明の一実施例によるレ
ーザ装置を示す断面構成図及び出射レーザビームの動径
方向の強度分布を示す分布図、第2図はこの発明の一実
施例によるレーザ装置の発振特性を従来のものと比較し
て示す特性図を並びに第3図第4図(a)+ (b)は
各々従来のレーザ装置を示す断面構成図及び出射レーザ
ビームの動径方向の強度分布を示す分布図である。 (1)・・・部分反射ミラー1(2)・・・全反射ミラ
ー、  (6i)・・・薄膜。 なお2図中シ同−符号は同−又は相当部分を示す。
FIG. 1 (al and b) is a cross-sectional configuration diagram showing a laser device according to an embodiment of the present invention and a distribution diagram showing the intensity distribution of the emitted laser beam in the radial direction, and FIG. 2 is an embodiment of the present invention. Fig. 3 and Fig. 4 (a) + (b) are cross-sectional diagrams showing the oscillation characteristics of the conventional laser device and the radius vector of the emitted laser beam, respectively. It is a distribution diagram showing the intensity distribution in the direction. (1)... Partial reflection mirror 1 (2)... Total reflection mirror, (6i)... Thin film. Note that the same symbols in the two figures are the same. or a corresponding portion.

Claims (2)

【特許請求の範囲】[Claims] (1)全反射ミラーと部分反射ミラーとからなる光共振
器を用いたレーザ装置において、上記部分反射ミラーの
、上記全反射ミラーと対向する面上に、表面が全反射面
となるリング状の金属の薄膜を設けたことを特徴とする
レーザ装置。
(1) In a laser device using an optical resonator consisting of a total reflection mirror and a partial reflection mirror, a ring-shaped surface whose surface is a total reflection surface is provided on the surface of the partial reflection mirror that faces the total reflection mirror. A laser device characterized by being provided with a thin metal film.
(2)金属の薄膜はクラスタイオンビームを用いて形成
された特許請求の範囲第1項記載のレーザ装置。
(2) The laser device according to claim 1, wherein the metal thin film is formed using a cluster ion beam.
JP60264529A 1985-11-20 1985-11-25 Laser device Pending JPS62124785A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60264529A JPS62124785A (en) 1985-11-25 1985-11-25 Laser device
DE19863639580 DE3639580A1 (en) 1985-11-20 1986-11-20 LASER ARRANGEMENT
US07/377,774 US4942588A (en) 1985-11-20 1989-07-10 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264529A JPS62124785A (en) 1985-11-25 1985-11-25 Laser device

Publications (1)

Publication Number Publication Date
JPS62124785A true JPS62124785A (en) 1987-06-06

Family

ID=17404522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264529A Pending JPS62124785A (en) 1985-11-20 1985-11-25 Laser device

Country Status (1)

Country Link
JP (1) JPS62124785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256075A (en) * 1989-05-31 1993-10-26 The Furukawa Electric Co., Ltd. Connector device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256075A (en) * 1989-05-31 1993-10-26 The Furukawa Electric Co., Ltd. Connector device

Similar Documents

Publication Publication Date Title
US4942588A (en) Laser device
JPH07106665A (en) Solid state laser unit
JPS62124785A (en) Laser device
JPH10303480A (en) Solid laser oscillator
CN105552696A (en) Laser oscillator
JP2906867B2 (en) Laser diode pumped solid-state laser wavelength converter
JPS62124786A (en) Laser device
JPH09260750A (en) Laser resonator
JPS62124788A (en) Laser device
JPS62124787A (en) Laser device
JPH0569963U (en) Solid-state laser medium and solid-state laser device using the same
JPH11177165A (en) Light excitation method for solid state laser
JPS59145585A (en) Laser oscillator
JPS5879785A (en) Gas laser oscillator
JP2597499B2 (en) Laser device
JPH0637368A (en) Laser and beam expander
JPH03257979A (en) Laser oscillator
JPH0799358A (en) Solid state-laser system
JPH09260752A (en) Laser and laser processing apparatus
JPH0563260A (en) Laser device
JP2546145B2 (en) Lamp pumped TEMoo mode solid state laser device
JP2865057B2 (en) Laser diode pumped solid-state laser oscillator.
JPH10294511A (en) Solid-state laser resonator
JPS63222482A (en) Laser resonator
JPH0575186A (en) Laser equipment