JPS62124274A - Member for heat exchanger - Google Patents

Member for heat exchanger

Info

Publication number
JPS62124274A
JPS62124274A JP60261277A JP26127785A JPS62124274A JP S62124274 A JPS62124274 A JP S62124274A JP 60261277 A JP60261277 A JP 60261277A JP 26127785 A JP26127785 A JP 26127785A JP S62124274 A JPS62124274 A JP S62124274A
Authority
JP
Japan
Prior art keywords
heat exchanger
aln
coating
coated
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60261277A
Other languages
Japanese (ja)
Inventor
Hideo Hirayama
秀雄 平山
Yuji Nakagawa
雄二 中川
Takashi Kawakubo
隆 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60261277A priority Critical patent/JPS62124274A/en
Publication of JPS62124274A publication Critical patent/JPS62124274A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To extend the life of a heat exchanger and to improve the reliability thereof by coating AlN on the surface of a member for the heat exchanger to be used in hot water thereby improving the corrosion resistance and oxidation resistance thereof. CONSTITUTION:The surface of the member for the heat exchanger to be used in hot water such as light water reactor is coated with AlN to improve the corrosion resistance and oxidation resistance thereof. The above-mentioned AlN has relatively high heat conductivity and minimizes the decrease of the heat exchanging efficiency by the above-mentioned coating. the AlN has a large coefft. of thermal expansion, and is hardly exfoliatable during use; further, the resistance to exfoliation is additionally improved by interposing at least either of TiN or ZeN. The AlN coating is preferably formed by using Al(OC3H8)3 and C as starting soln. by an alkoxide method, coating the coln. on the member surface, then hydrolyzing the coating to form Al2O3 and further heating the coating in a nitrogen atmosphere kept at >=800 deg.C or growing the AlN on the member surface by a CVD method, then heating the same to 800 deg.C.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、原子炉高温ガス炉等の熱水中で使用される熱
交換器において、その4fll造材として、表面にAQ
Nを被覆することによって耐食性を高めた熱交換器用部
材に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a heat exchanger used in hot water such as a nuclear reactor or high-temperature gas reactor.
This invention relates to a heat exchanger member that has improved corrosion resistance by coating with N.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

熱交換器には、現用の軽水炉のような比較的低温(25
0〜320℃)、高速炉のような中温(400〜600
℃)さらに高温ガス炉において考えられているような6
50〜1000℃の高温のものがある。前二者の材料と
しては主として耐食性が重要であるが後者ではそれに加
えて耐熱性が要求される。しかし同じ耐食性といっても
相手の冷却水が水、炭酸ガス、液体金属、ヘリウムと異
なるので、その様相は変化に富む、たとえばヘリウムの
場合はヘリウム自体よりもそれに含まれる微承の不純物
による高温腐食による変質が問題となるやさらにまた。
The heat exchanger has a relatively low temperature (25
0~320℃), medium temperature like fast reactor (400~600℃)
℃) Furthermore, 6 as considered in high temperature gas furnaces.
Some have high temperatures of 50 to 1000°C. Corrosion resistance is primarily important for the former two materials, but heat resistance is additionally required for the latter. However, even if they have the same corrosion resistance, the cooling water used is different from water, carbon dioxide, liquid metal, and helium, so the characteristics vary widely.For example, in the case of helium, the temperature is higher due to the slight impurities contained in it than the helium itself. Even more so when deterioration due to corrosion becomes a problem.

被熱伝達材料に水素を用いるときは材料中の水素透過や
水素化物の生成などの問題もからんでくる。熱交換器材
料として具体的にあげると、水冷却原子炉では、低、中
炭素鋼、各種ステンレス鋼、ニッケル合金などナトリウ
ム冷却高速炉では、2.25%Cr−1%Mailおよ
びその改良鋼(Nbe Tll Ni、add)が用い
られる。これらの材料は、その耐食性、耐熱性をみ込ま
れて、選択されたものであるが、熱交換器の効率寿命、
信頼性等を向上させる為には。
When hydrogen is used as a heat transfer material, there are also problems such as hydrogen permeation through the material and the formation of hydrides. Specifically, heat exchanger materials include low and medium carbon steels, various stainless steels, and nickel alloys for water-cooled nuclear reactors, and 2.25%Cr-1%Mail and its improved steels for sodium-cooled fast reactors. Nbe Tll Ni, add) is used. These materials were selected for their corrosion resistance and heat resistance, but the efficiency life of the heat exchanger,
In order to improve reliability etc.

さらに信頼性の高い材料が望まれている。Even more reliable materials are desired.

〔発明の目的〕[Purpose of the invention]

本発明は熱交換器の寿命、m頼性を向上させるため、表
面をARNで被覆して耐食性耐酸化性を高めた熱交換器
用構成部材の提供を目的とする。
The present invention aims to provide a component for a heat exchanger whose surface is coated with ARN to improve corrosion resistance and oxidation resistance, in order to improve the lifespan and reliability of the heat exchanger.

[発明の概要〕 TINT ZrN+^Q、04. AQNHSxCw 
S、tO,* Tl01w n、c。
[Summary of the invention] TINT ZrN+^Q, 04. AQNHSxCw
S,tO,*Tl01w n,c.

Tic、 5l)N41 Y2O11+ CaO等の多
くのセラミックスは金属よりも絶縁性や耐酸化性に優れ
ている。これを金属、表面に被覆すれば、材料の寿命の
向上が期待できる。しかしながら、どんなセラミックス
でも熱水中で安定であるとは限らず、例えばy、 o、
粉末は250℃の純水中で容易にその一部がYOO旧こ
構造変化し、変質する。
Many ceramics, such as Tic, 5l) N41 Y2O11+ CaO, have better insulation and oxidation resistance than metals. By coating metals and surfaces with this material, it is expected that the life of the material will be improved. However, not all ceramics are stable in hot water; for example, y, o,
A part of the powder easily undergoes a YOO-old structure change and deterioration in pure water at 250°C.

そこで、数多くのセラミックスの原材粉と焼結体ヲ25
0℃内圧100kg/ad(7)、1i1i水中テ、m
有酸sta度を20Ppbから8ppmの範囲でかえな
がら、800時間の浸漬試験を行い、重量変化から、腐
食性を検討した。その結果、Ties tA(t、0.
等の多くの酸化物の他にARN、 Si、N4が熱水中
での耐食性に優れていることが判明した。
Therefore, a large number of ceramic raw material powders and sintered bodies were produced.
0℃ internal pressure 100kg/ad (7), 1i1i water temperature, m
An 800-hour immersion test was conducted while changing the acidic sta in the range of 20 Pppb to 8 ppm, and the corrosivity was examined from the weight change. As a result, Ties tA(t, 0.
In addition to many oxides such as ARN, Si, and N4, it has been found that they have excellent corrosion resistance in hot water.

熱交換器の効率を考慮すると、熱伝導率の低いセラミッ
クスを被覆することはさけるべきである。
Considering the efficiency of the heat exchanger, coating with ceramics having low thermal conductivity should be avoided.

熱交換器の伝熱特性において、例えば内径d。、外径d
い長さQの円管の伝熱量qを考えると。
In the heat transfer characteristics of a heat exchanger, for example, the inner diameter d. , outer diameter d
Considering the amount of heat transfer q in a circular pipe of long length Q.

q=にL (ih−ie) と表わされ被覆すべきセラミックは、その熱伝導率d(
、)があまり小さいものでは不都合であることがわかる
The ceramic to be coated, expressed as L (ih-ie) at q=, has a thermal conductivity d(
, ) is too small, it is found to be inconvenient.

種々のセラミックスの熱伝導率d、を表1に示す。Table 1 shows the thermal conductivity d of various ceramics.

表  1 表1より^0.N、 Ag、0.、 Bed、 ?;j
C,TiN、 ZrN等が比較的d、が大きいことがわ
かりこれらを薄くコーティングする上ではそれ程熱交換
効率を悪化しないと思われる。
Table 1 From Table 1^0. N, Ag, 0. , Bed, ? ;j
It has been found that C, TiN, ZrN, etc. have a relatively large d, and it seems that the heat exchange efficiency will not deteriorate so much when these are thinly coated.

実際に厚さ50wmをコーティングしたものの熱交換効
率はコーティングしない場合と比べて5%以下の差が認
められたにすぎなかった。
In fact, when a coating was applied to a thickness of 50 wm, the difference in heat exchange efficiency was only 5% or less compared to when no coating was applied.

つづいて、耐食性が良好であり、かつ熱膨張係数が比較
的大きかったAgN、 Aら03と、熱膨張係数の大き
なTiN、 ZrNなどのセラミックスと金属との接合
性を積層方法や熱膨張係数を基に検討した。
Next, we investigated the bondability between ceramics and metals, such as AgN and A et al. 03, which have good corrosion resistance and a relatively large coefficient of thermal expansion, and TiN and ZrN, which have large coefficients of thermal expansion. Based on the following considerations.

セラミックスの剥離を押えるにはセラミックスをち密に
薄く積層する方が望ましく、また積層するセラミックス
の熱膨張係数が金属の熱膨張係数と近い程、界面応力が
小さく、剥離を防ぐことができる。
In order to suppress the peeling of ceramics, it is preferable to laminate the ceramics densely and thinly, and the closer the thermal expansion coefficient of the laminated ceramics is to that of the metal, the smaller the interfacial stress will be, and the more peeling can be prevented.

熱交換器によく使用される金属として、Fe、 Mo。Metals often used in heat exchangers include Fe and Mo.

Ni、 Crを選びそれらの熱膨膨係数とセラミック神
の熱膨張係数を表2に示す。
Table 2 shows the thermal expansion coefficients of selected Ni and Cr and those of ceramics.

表2 金属およびセラミックスの熱膨張係数Fo   
12.I     TiN     9,3Mo   
 5.I     ZrN     6〜7Ni   
13.3     Si      3.5〜4Cr 
   8.2     Afl、0.   7.3イン
コネル11.OSiC3,l 5US  304 17〜18    Sin、   
 0.5AαN   4〜7 Si、N、    2.5〜3 表2から丁LNやZrNおよびAl!Nが金属の接合性
がよい材料であることが明らかであり、これらを極く薄
く積層すれば剥離は回避できる。そこでCvD@によっ
て10nm〜1100nの範囲で10nmきざみにTi
N、 ZrN、 A4Nを各々N1の表面に成長させ、
これらを600℃の大気中で500時間保持した結果A
QNは90nm以上で表面にて5%程の剥離が認められ
たもののその他は全く剥離はしなかった。従ってAgN
の剥盾を完全に防ぐにはONと金属との間にTiNやZ
rNをはさみ込む構造をとることがよいことが考えられ
、実際にTiN を50nw、AgNを1100n積層
したものに剥離は全く認められなかった。
Table 2 Thermal expansion coefficient Fo of metals and ceramics
12. I TiN 9,3Mo
5. I ZrN 6~7Ni
13.3 Si 3.5~4Cr
8.2 Afl, 0. 7.3 Inconel 11. OSiC3,l 5US 304 17~18 Sin,
0.5AαN 4~7 Si, N, 2.5~3 From Table 2, Ding LN, ZrN and Al! It is clear that N is a material with good metal bonding properties, and peeling can be avoided if these are laminated extremely thinly. Therefore, using CvD@, Ti
Grow N, ZrN, and A4N on the surface of N1,
Results of holding these in the atmosphere at 600℃ for 500 hours A
For QN, peeling of about 5% was observed on the surface at 90 nm or more, but no peeling occurred on other areas. Therefore, AgN
To completely prevent peeling of the metal, place TiN or Z between the ON and the metal.
It is thought that it is better to have a structure in which rN is sandwiched, and in fact, no peeling was observed in a stack of 50 nw of TiN and 1100 n of AgN.

さらに中間層を設定せずにAgNだけをコーテイング材
として使用する場合AffN をち密に薄く積層するた
めアルコキシド法によって積層する方法を試みた。
Furthermore, in the case where only AgN is used as a coating material without setting an intermediate layer, a method of laminating AffN using an alkoxide method was tried in order to layer AffN densely and thinly.

その結果非常にち密に積層されているため特に問題は生
じなかったが、長期運転にも耐え得るようにするために
は、一度積層したものを800℃以上の温度で加熱安定
化すると効果的であることが判明した。
As a result, the layers were very densely laminated, so there were no particular problems, but in order to withstand long-term operation, it is effective to heat and stabilize the laminated layers at a temperature of 800°C or higher. It turns out that there is something.

以上の様な実験的手法によってONがコーティシ ティングしなかった部材の耐食性、耐酸化熱伝導効率を
比較したところ前者の方が良好であることが判明した。
When the corrosion resistance and oxidation resistance heat conduction efficiency of members not coated with ON were compared using the above experimental method, it was found that the former was better.

(発明の実施例〕 次に本発明の効果を確認するため、軽水炉用熱交換器と
同材質層の二重管式熱交換器を試作し、管の一部を本発
明のAQN被覆管に代えて、従来材との比較試験を行な
った。
(Example of the invention) Next, in order to confirm the effects of the present invention, a double-tube heat exchanger made of the same material layer as a light water reactor heat exchanger was prototyped, and a part of the tube was replaced with the AQN cladding of the present invention. Instead, we conducted a comparative test with conventional materials.

内径15mm、外径30mm、長さ7.2mのの5US
31(i製のシ 二重管の一部AQN被覆管に代えた。AgN管の作成は
次の通りである。
5US with an inner diameter of 15 mm, an outer diameter of 30 mm, and a length of 7.2 m.
31 (Part of the double-walled tube manufactured by I was replaced with an AQN clad tube. The AgN tube was made as follows.

平均粒径0.15m(7)高純度Al2N粒体をCVD
法によって5US316!lの二重管の内管外面と内面
の両側に厚さ0.1tmづつ均一に積層■させ、これを
Arガス雰囲気中、500℃に24時間保持して代替管
とした。これを2重管の一部に溶接した。
Average particle size 0.15m (7) CVD of high purity Al2N particles
By law 5 US 316! A double layer of 0.1 tm thick was uniformly laminated on both sides of the inner and outer surfaces of a double tube (1) to a thickness of 0.1 tm, and this was maintained at 500° C. for 24 hours in an Ar gas atmosphere to obtain a substitute tube. This was welded to a part of the double pipe.

以上の配管系において、内管■に200℃の純水を外管
■に25℃の純水を毎分流io、sgの速さで500時
間の試験を行い、内管の腐食状況を観察した。
In the above piping system, a test was conducted for 500 hours by flowing pure water at 200°C into the inner pipe ■ and pure water at 25°C into the outer pipe ■ at a rate of io, sg per minute, and the corrosion status of the inner pipe was observed. .

この結果Al2Nが被覆されている代替管においては腐
食増減が全く認められなかっ、た、これに対し。
As a result, no increase or decrease in corrosion was observed in the alternative pipe coated with Al2N.

表面になんの処理を施していない5O8316鋼の管で
はその表面にo、slmの酸化層が認められ、腐食生成
物は(Fe、 Cr、 Nj、)、0.であることが判
明した。
In 5O8316 steel pipes without any surface treatment, an oxidation layer of o, slm was observed on the surface, and the corrosion products were (Fe, Cr, Nj,), 0. It turned out to be.

さらに1代替管による熱交換効率の変化を調べようと外
管を流れる水の温度変化の速さをモニターしたところ代
替管を使用した場合、初期の10時間では2%の効率の
低下が認められたがその後の5時間の間で、従来管の場
合と同程度となり15時間以降はむしろ代替管の方が効
率が良いことが判明した。
Furthermore, in order to investigate the change in heat exchange efficiency due to one alternative tube, we monitored the speed of temperature change of the water flowing through the outer tube, and found that when the alternative tube was used, the efficiency decreased by 2% in the first 10 hours. However, during the subsequent 5 hours, the efficiency was comparable to that of the conventional tube, and after 15 hours, it was found that the alternative tube was actually more efficient.

この理由は、従来管表面に酸化層が生成して熱効率が非
常に速い速度で低下していくためであると推定される。
The reason for this is presumed to be that an oxidized layer is formed on the surface of conventional tubes, causing the thermal efficiency to drop at a very rapid rate.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係わる熱交換器用りさらに
長時間の使用にも、その熱交換効率の低代理人 弁理士
 則 近 憲 佑 同    竹 花 喜久男
As explained above, the heat exchanger according to the present invention has a low heat exchange efficiency even when used for a long time.

Claims (6)

【特許請求の範囲】[Claims] (1)AlNを表面にコーティングしたことを特徴とす
る熱交換器用部材。
(1) A heat exchanger member whose surface is coated with AlN.
(2)熱交換器用部材は熱水中で使用されることを特徴
とする特許請求の範囲第1項記載の熱交換器用部材。
(2) The heat exchanger member according to claim 1, wherein the heat exchanger member is used in hot water.
(3)熱水中で使用される熱交換器用部材表面はあらか
じめTiN,ZrNのうち少なくともいずれか一方で被
覆され、さらにこの被覆層の上をAlNで被覆すること
を特徴とする特許請求の範囲第1項記載の熱交換器用部
材。
(3) Claims characterized in that the surface of a heat exchanger member used in hot water is coated in advance with at least one of TiN and ZrN, and the coating layer is further coated with AlN. The heat exchanger member according to item 1.
(4)アルコキシド法によってAlNを表面にコーティ
ングすることを特徴とする特許請求の範囲第1項の熱交
換器用部材。
(4) The heat exchanger member according to claim 1, wherein the surface is coated with AlN by an alkoxide method.
(5)アルコキシド法は、出発溶液をAl(OC_3H
_8)_3及びCとし、これを部材表面に塗布し、さら
に水と接触させて加水分解反応を誘起することによって
表面層をAl_2O_3し、さらに乾燥後、800℃以
上の温度の窒素雰囲気中で加熱することを特徴とする特
許請求の範囲第4項記載の熱交換器用部材。
(5) In the alkoxide method, the starting solution is Al(OC_3H
_8) _3 and C, applied to the surface of the member, brought into contact with water to induce a hydrolysis reaction to make the surface layer Al_2O_3, and after drying, heated in a nitrogen atmosphere at a temperature of 800°C or higher. A heat exchanger member according to claim 4, characterized in that:
(6)CVD法によってAlNを部材表面に成長させ、
該部材を800℃以上の温度で加熱することによって耐
酸化性を高めた特許請求の範囲第1項記載の熱交換器用
部材。
(6) Growing AlN on the surface of the member by CVD method,
The member for a heat exchanger according to claim 1, wherein the member is heated to a temperature of 800° C. or higher to improve oxidation resistance.
JP60261277A 1985-11-22 1985-11-22 Member for heat exchanger Pending JPS62124274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60261277A JPS62124274A (en) 1985-11-22 1985-11-22 Member for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60261277A JPS62124274A (en) 1985-11-22 1985-11-22 Member for heat exchanger

Publications (1)

Publication Number Publication Date
JPS62124274A true JPS62124274A (en) 1987-06-05

Family

ID=17359581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60261277A Pending JPS62124274A (en) 1985-11-22 1985-11-22 Member for heat exchanger

Country Status (1)

Country Link
JP (1) JPS62124274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285996A (en) * 2005-09-22 2008-11-27 Ti Group Automotive Systems Llc Fuel supply module
JP2009209841A (en) * 2008-03-05 2009-09-17 Denso Corp Pump module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285996A (en) * 2005-09-22 2008-11-27 Ti Group Automotive Systems Llc Fuel supply module
JP2009209841A (en) * 2008-03-05 2009-09-17 Denso Corp Pump module

Similar Documents

Publication Publication Date Title
JP5460101B2 (en) High temperature conductive member
TW201119785A (en) Iron-chromium based brazing filler metal
JPH0471978B2 (en)
JPS6237077B2 (en)
CA2355436A1 (en) Surface on a stainless steel matrix
JP2005504176A5 (en)
KR102261029B1 (en) Nickel-based super alloy for diffusion bonding and method for diffusion bonding using the same
US4043945A (en) Method of producing thin layer methanation reaction catalyst
JP5118057B2 (en) Metal tube
Reddy et al. Evaluating candidate materials for balance of plant components in SOFC: Oxidation and Cr evaporation properties
EP0348575A2 (en) Catalyst carriers and a process for producing the same
JPS62124274A (en) Member for heat exchanger
JPH0660386B2 (en) Metal semi-finished product and manufacturing method thereof
KR20020060689A (en) Steel pipe with composite material coating and method for manufacturing the same
JPH028336A (en) Carbon deposition-resistant two-layer pipe
WO1994017911A1 (en) Metallic honeycomb for use as catalyst and process for producing the same
CN112263895B (en) Palladium/palladium alloy membrane purifier and using method thereof
US20230235924A1 (en) Solar Collection Energy Storage and Energy Conversion or Chemical Conversion System
US5851318A (en) High temperature forgeable alloy
JPH02121784A (en) Manufacture of clad pipe
Crum et al. Characterization of corrosion resistant materials in low and high temperature HF environments
KR20110130930A (en) Method for diffusion bonding of nickel-based alloys
JP3222391B2 (en) Cladded steel tubes for boilers and heat exchangers
JPS59107970A (en) Heat resistant ceramic material
JPH0339461A (en) Surface treated steel tube excellent in corrosion resistance and heat transfer efficiency and its production