JPS62124263A - Heat treatment of aluminum casting - Google Patents
Heat treatment of aluminum castingInfo
- Publication number
- JPS62124263A JPS62124263A JP26332585A JP26332585A JPS62124263A JP S62124263 A JPS62124263 A JP S62124263A JP 26332585 A JP26332585 A JP 26332585A JP 26332585 A JP26332585 A JP 26332585A JP S62124263 A JPS62124263 A JP S62124263A
- Authority
- JP
- Japan
- Prior art keywords
- casting
- heat
- heat treatment
- treatment
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はアルミニウム鋳物の熱処理方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for heat treating aluminum castings.
鋳造用アルミニウム(八り合金は機械部品や構造材等の
製造に広く使用されており、その機械特性を向上させる
ため各種成分の添加や熱処理などの徨々の方法が用いら
れている。Casting aluminum alloys are widely used in the production of mechanical parts and structural materials, and a variety of methods are used to improve their mechanical properties, including the addition of various ingredients and heat treatment.
例えば、アルミニウムー珪素(St)系合金よりなるア
ルミニウム鋳物では、第4図に示す熱処理(JISTb
処理)を行うことによって合金成分元素の固溶、@出状
態を制御するだけでなく共晶Siを球状化させることに
より靭性を向上させることができる。For example, aluminum castings made of aluminum-silicon (St) alloys are subjected to heat treatment (JISTb) as shown in Figure 4.
By performing this treatment, it is possible to not only control the state of solid solution and extraction of the alloy component elements, but also to improve the toughness by making the eutectic Si spheroidal.
しかしながら例えばJISTb処理は、溶体化処理と焼
戻処理を行なうため、熱処理時間が長く、そのため作業
性が悪(、かつエネルギーを多量に消費することからコ
スト的にも不利である。そのため熱処理を行なう現場で
は溶体化処理ぬきの工程が望まれている。溶体化処理を
施さない熱処理としては、JI8Ts、T@処理、焼鈍
処理があげられるが、これの’r、 、 T、処理はい
ずれも処理物の強度あるいは寸法安定性について検討さ
れているもので靭性について着目しているものは見あた
らない。However, for example, JISTb treatment requires solution treatment and tempering treatment, so the heat treatment time is long, resulting in poor workability (and also being disadvantageous in terms of cost as it consumes a large amount of energy. In the field, a process without solution treatment is desired.Heat treatments without solution treatment include JI8Ts, T@ treatment, and annealing treatment, but these 'r, , T, and treatment are all treatments. I have not found any studies that have investigated the strength or dimensional stability of objects that have focused on toughness.
一万、@ (Cu)を含むAJ金合金はTb処理で例え
ば自動車用エンジン部品を作成し熱負荷を受ける環境下
で使用した場合添加成分である溶質元素の析出状態は時
時刻刻と変化する。なかでも中間相が析出した状態では
靭性が低下する。従って焼戻しにより起る脆化は熱負荷
を受ける部品では重要な問題である。10,000, When AJ gold alloy containing @ (Cu) is used in Tb treatment to make, for example, automobile engine parts and used in an environment subject to heat load, the precipitation state of solute elements, which are added components, changes with time. . Among these, toughness decreases in a state where an intermediate phase is precipitated. Therefore, embrittlement caused by tempering is an important problem in parts subjected to heat loads.
本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは熱負荷がかかる便
用環境下でも組織的に安定で寸法安定性が良く、かつ脆
化が生じることなく良好な靭性を有するアルミニウム鋳
物を得るための、溶体化処理を必要とせずコストが低く
簡便な熱処理方法を提供することにある。The present invention is intended to solve the above-mentioned problems in the conventional technology, and its purpose is to have structural stability and good dimensional stability even in a convenient environment where heat load is applied, and to prevent embrittlement. It is an object of the present invention to provide a low-cost and simple heat treatment method that does not require solution treatment, in order to obtain an aluminum casting having good toughness.
すなわち本発明のアルミニウム鋳物の熱処理方法は、珪
素及び銅を含むアルミニウム合金よりなる鋳物材を30
0℃〜400℃に加熱し50分〜5時間保持した後室温
まで冷却することを特命とする。That is, the method for heat treating aluminum castings of the present invention involves heating a casting material made of an aluminum alloy containing silicon and copper to 30%
The special mission is to heat it to 0°C to 400°C, hold it for 50 minutes to 5 hours, and then cool it to room temperature.
アルミニウム合金よりなる鋳物の靭性は、晶出物の形状
やサイズ、分布等により変化することが仰られているが
、その他に母相中の溶質元素の析出状態にも大きく依存
する。したがって熱処理によって組織的に安定で靭性の
伺られるような析出状態とすることが重要である。俗質
元索を含むアルミニウム合金では、熱処理条件により得
られる溶質元素の析出状態が異なって(る。それに伴な
い材料の靭性も大きく変化する。なかでも中間相が析出
した状態では靭性が著しく低下する。したがって、中間
相の析出による脆化をさけ、かつ熱負荷を受けても組織
的に安定であるためには溶質元素を安定相として析出さ
せることが必要である。It is said that the toughness of castings made of aluminum alloys varies depending on the shape, size, distribution, etc. of crystallized substances, but it also largely depends on the state of precipitation of solute elements in the matrix. Therefore, it is important to create a precipitation state that is structurally stable and exhibits toughness through heat treatment. In aluminum alloys containing coarse elements, the precipitation state of solute elements obtained differs depending on the heat treatment conditions.The toughness of the material changes accordingly.In particular, when the intermediate phase is precipitated, the toughness decreases significantly. Therefore, it is necessary to precipitate the solute element as a stable phase in order to avoid embrittlement due to precipitation of the intermediate phase and to maintain structural stability even under thermal load.
溶質元素としては珪素及び鋼が好ましい。特にアルミニ
ウム母材に対する重量比で珪素4%〜12%、鋼α25
〜4.5%を含むアルミニウム合金よりなる鋳物材を用
いるのがよい。Silicon and steel are preferred as solute elements. In particular, silicon 4% to 12% in weight ratio to aluminum base material, steel α25
It is preferable to use a cast material made of an aluminum alloy containing ~4.5%.
また、処理温度を300℃〜400℃としたのは鋳物時
に過飽和に固溶した溶質元素を安定相として析出するた
めの温度範囲として好ましいからである。すなわち、4
00℃以上に加熱した場合、溶質元素の再固溶が起り、
使用環境下での熱負荷により、組織変化を生じてしまう
恐れがある。また、500℃以下の加熱では、目的とす
る安定相の析出に長時間の加熱を要するため作業効率が
劣る。Further, the processing temperature is set to 300° C. to 400° C. because this is a preferable temperature range for precipitating the solute elements that are supersaturated in solid solution during casting as a stable phase. That is, 4
When heated above 00℃, solute elements re-dissolve,
There is a risk that tissue changes may occur due to heat load in the usage environment. In addition, heating at 500° C. or lower requires heating for a long time to precipitate the desired stable phase, resulting in poor working efficiency.
以下の実施例において本発明を更に詳細に説明する。な
お、本発明は下記実施例に限定されるものではない。The invention will be explained in further detail in the following examples. Note that the present invention is not limited to the following examples.
〔実施例1〕
重量比でSiを6%、Cuを五5%、不純物としてM2
をLL3%、Feを(lL25%含むAC2B合金を7
50℃溶解し、珪砂シェル型に100℃で注湯して約5
0秒で凝固させた鋳物の衝撃曲げ強さと処理温度との関
係を第1図に示す。試験片は鋳肌のままでφ2閤のパノ
ッチ付の110X10X55の形状のものである。衝撃
試験には5に&−mシャルピー**試験機を用いた。本
発明の方法により、300℃から400℃の温度で5時
間加熱した場合、鋳放し材よりも衝撃値は大きくなり、
特に550℃加熱(図中A)では鋳放し材(図中81)
及びT6処理材(B2)の約2倍の値152 ki?−
1%、’が得られた。さらに温度をあげた450℃加熱
(図中C)の衝撃値は鋳放し材よりは高いものの、35
0℃、400℃加熱よりも低下する傾向にあるのが判る
。[Example 1] 6% Si, 55% Cu, and M2 as impurities by weight
AC2B alloy containing 3% LL and 25% Fe (7)
Melt at 50℃ and pour into a silica sand shell mold at 100℃ for about 5 minutes.
Figure 1 shows the relationship between the impact bending strength of a casting solidified in 0 seconds and the treatment temperature. The test piece had a 110×10×55 shape with a 2-diameter pannotch and the cast surface was intact. For the impact test, a &-m Charpy** testing machine was used. When heated at a temperature of 300°C to 400°C for 5 hours using the method of the present invention, the impact value is larger than that of as-cast material,
Especially when heated to 550℃ (A in the figure), the as-cast material (81 in the figure)
and about twice the value of T6 treated material (B2), 152 ki? −
1%,' was obtained. Although the impact value when heated to 450℃ (C in the figure) is higher than that of as-cast material,
It can be seen that the temperature tends to be lower than that of heating at 0°C and 400°C.
第2図は第1図と同一組成の鋳物につき衝撃曲げ強さと
加熱時間との関係を示したものである。300℃及び5
50℃での加熱処理では処理時間とともにOfI撃値は
上昇した。一方、400℃では2時間の処理(図中D)
で最大値α54 kg−m/、2”を得た。さらに加熱
時間を5時間と長くしても衝撃値は2時間のものと変わ
らなかった。FIG. 2 shows the relationship between impact bending strength and heating time for castings having the same composition as FIG. 1. 300℃ and 5
In the heat treatment at 50° C., the OfI impact value increased with the treatment time. On the other hand, at 400°C, treatment was carried out for 2 hours (D in the figure).
A maximum value α of 54 kg-m/.2" was obtained. Even when the heating time was further increased to 5 hours, the impact value remained the same as that for 2 hours.
〔実施例2〕
実施例1と同様の組成の合金を同じ手順で溶解し、珪砂
シェル型中で約55秒で凝固させた板状試験片(JIS
7号試験片)を用いて、オートグラフにより引張試験を
行なった。その時の伸びと処理温度との関係を第3図に
示す。本発明の方法により500℃から400℃の温度
で5時間処理した場合、いずれも鋳放し材(図中E1)
およびT6処理材(B2)の伸びよりも大きくなり、特
に350℃(図中F)及び400℃(図中G)処理では
鋳放し材の1.5倍の6%の伸びが得られた。[Example 2] A plate-shaped test piece (JIS
A tensile test was conducted using an autograph using a No. 7 test piece. The relationship between elongation and treatment temperature at that time is shown in FIG. When treated by the method of the present invention at a temperature of 500°C to 400°C for 5 hours, all as-cast materials (E1 in the figure)
The elongation was larger than that of the T6-treated material (B2), and especially when treated at 350°C (F in the figure) and 400°C (G in the figure), an elongation of 6%, which is 1.5 times that of the as-cast material, was obtained.
(発明の効果)
上述のように本発明のアルミニウム鋳物の熱処理方法は
、珪素及び銅を含むアルミニウム合金よりなる鋳物材を
300℃〜400℃で50分〜5時間熱処理するもので
あるため、従来の熱処理方法に比べて熱処理時間が短く
、作業性が向上するとともに溶体化処理を必要とせず、
エネルギー消費量も少なくなりコスト的にも有利である
。(Effects of the Invention) As described above, the method for heat treating aluminum castings of the present invention heat-treats a casting material made of an aluminum alloy containing silicon and copper at 300°C to 400°C for 50 minutes to 5 hours, so it is different from the conventional method. Compared to other heat treatment methods, the heat treatment time is shorter, workability is improved, and no solution treatment is required.
It also reduces energy consumption and is advantageous in terms of cost.
又、本発明の方法によって熱処理したアルミニウム鋳物
は熱処理を行わない鋳放し材及びT6処理材に比べて衝
撃値や伸び等の機械特性が向上する。メ、自動車用エン
ジン等の熱負荷環境下で用いる部品に使用した場合従来
品に比べて組織的に安定であり胞化が少ない。Furthermore, aluminum castings heat-treated by the method of the present invention have improved mechanical properties such as impact value and elongation compared to as-cast materials and T6-treated materials that are not heat-treated. When used in parts used in heat-loaded environments such as automobile engines, it is structurally more stable and less likely to form cells than conventional products.
第1図は本発明の方法に用いる鋳造用アルミニウム合金
鋳物材の鋳放し材およびT6処理材と本発明の方法を用
いた熱処理材の加熱温度と(1撃曲げ強さとの関係を示
すグラフであり、図中人は350℃に加熱処理した鋳物
材、B1は鋳放し材、B2はT6処理材、Cは450℃
に加熱処理した鋳物材、
第2図は本発明の方法に用いる鋳造用アルミニウム合金
鋳物材の徨々の加熱温度における加熱時間と衝撃曲げ強
さとの関係を示すグラフであり、図中りは400℃で2
時間熱処理した鋳物材、
第3図は第1図に示すものと同一組成のアルミニウム合
金の加熱温度と引張試験における伸びとの関係を示すグ
ラフであり、図中E1は鋳放し材、B2はT6処理材、
Fは350℃に加熱処理した鋳物材、Gは400℃に加
熱処理した鋳物材、
第4図は鋳造用アルミニウム合金の従来の熱処理方法の
一例の加熱時間と加熱温度との関係を示すグラフである
。
特許出願人 株式会社豊田中央研究所
牙3図
;l fi (@C)
牙4図
時開(hr )Figure 1 is a graph showing the relationship between heating temperature and (1-stroke bending strength) of as-cast aluminum alloy casting materials used in the method of the present invention, T6-treated materials, and heat-treated materials using the method of the present invention. In the figure, people are cast metals heat treated to 350℃, B1 is as-cast material, B2 is T6 treated material, C is 450℃
Fig. 2 is a graph showing the relationship between the heating time and the impact bending strength at various heating temperatures of the aluminum alloy casting material for casting used in the method of the present invention. ℃2
Fig. 3 is a graph showing the relationship between heating temperature and elongation in a tensile test of an aluminum alloy having the same composition as that shown in Fig. 1, in which E1 is an as-cast material and B2 is a T6 treated materials,
F is a casting material heat-treated to 350°C, G is a casting material heat-treated to 400°C, and Figure 4 is a graph showing the relationship between heating time and heating temperature for an example of a conventional heat treatment method for aluminum alloys for casting. be. Patent applicant Toyota Central Research Institute Co., Ltd. Fang 3 figure; l fi (@C) Fang 4 figure time opening (hr)
Claims (2)
材を300℃〜400℃に加熱し30分〜5時間保持し
た後室温まで冷却することを特徴とするアルミニウム鋳
物の熱処理方法。(1) A method for heat treating aluminum castings, which comprises heating a casting material made of an aluminum alloy containing silicon and copper to 300°C to 400°C, holding it for 30 minutes to 5 hours, and then cooling it to room temperature.
銅0.25%〜4.5%を含むことを特徴とする特許請
求の範囲第1項記載の方法。(2) Aluminum alloy contains 4% to 12% silicon by weight,
A method according to claim 1, characterized in that it contains 0.25% to 4.5% copper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26332585A JPS62124263A (en) | 1985-11-22 | 1985-11-22 | Heat treatment of aluminum casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26332585A JPS62124263A (en) | 1985-11-22 | 1985-11-22 | Heat treatment of aluminum casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62124263A true JPS62124263A (en) | 1987-06-05 |
Family
ID=17387903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26332585A Pending JPS62124263A (en) | 1985-11-22 | 1985-11-22 | Heat treatment of aluminum casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62124263A (en) |
-
1985
- 1985-11-22 JP JP26332585A patent/JPS62124263A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4618382A (en) | Superplastic aluminium alloy sheets | |
Wang et al. | Microstructural evolution of 6061 alloy during isothermal heat treatment | |
US7883590B1 (en) | Heat treatable L12 aluminum alloys | |
JP2010018875A (en) | High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member | |
JPH02190434A (en) | Aluminum alloy product having improved combination on strength, toughness and corrosion | |
JPS63286557A (en) | Production of article from al base alloy | |
US7204893B2 (en) | Copper base alloy casting, and methods for producing casting and forging employing copper base alloy casting | |
JPS63235454A (en) | Prodution of flat rolled product of aluminum base alloy | |
JPH1112674A (en) | Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy | |
PL203780B1 (en) | Aluminium alloy with increased resistance and low quench sensitivity | |
US4585494A (en) | Beta copper base alloy adapted to be formed as a semi-solid metal slurry and a process for making same | |
JP4093221B2 (en) | Aluminum alloy for casting, aluminum alloy casting and method for producing the same | |
JPH01225756A (en) | Manufacture of high-strength al-mg-si alloy member | |
JP5575028B2 (en) | High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method | |
JPS62124263A (en) | Heat treatment of aluminum casting | |
Alza | A critical review of age treatment hardening mechanisms in aluminum alloys | |
JPH07258784A (en) | Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging | |
CN113755727A (en) | Heat-resistant aluminum-based composite material and preparation method thereof | |
US5911948A (en) | Machinable lean beryllium-nickel alloys containing copper for golf clubs and the like | |
JP2002275567A (en) | PRECIPITATION-HARDENING Al ALLOY, AND METHOD OF HEAT TREATMENT FOR PRECIPITATION-HARDENING ALLOY | |
JPS6283453A (en) | Manufacture of aluminum alloy ingot for extrusion | |
JPH0588302B2 (en) | ||
JP3334246B2 (en) | Method for producing TiAl-based thermostat forged alloy | |
JPS633020B2 (en) | ||
JPH03183750A (en) | Production of superplastic aluminum alloy having high strength |