JPS62124240A - Manufacture of metallic re - Google Patents

Manufacture of metallic re

Info

Publication number
JPS62124240A
JPS62124240A JP26263085A JP26263085A JPS62124240A JP S62124240 A JPS62124240 A JP S62124240A JP 26263085 A JP26263085 A JP 26263085A JP 26263085 A JP26263085 A JP 26263085A JP S62124240 A JPS62124240 A JP S62124240A
Authority
JP
Japan
Prior art keywords
reduction
temperature
producing metal
gas
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26263085A
Other languages
Japanese (ja)
Inventor
Shuichi Oto
修一 大戸
Yasuo Shiyudo
首藤 安男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP26263085A priority Critical patent/JPS62124240A/en
Publication of JPS62124240A publication Critical patent/JPS62124240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain high-grade rhenium in high efficiency by reducing potassium perrhenate in three stages at prescribed temp. and by subjecting the above to dehydration treatment and drying under prescribe conditions. CONSTITUTION:The potassium perrhenate is subjected to the first reduction at 250-350 deg.C, to the second reduction at 650-750 deg.C, and finally to the third reduction at >=950 deg.C. The resulting reduced substance is washed with water until pH of 6.8-7.5 is reached. The above is dehydrated and then dried at <=200 deg.C.

Description

【発明の詳細な説明】 完」ト以弦1L因!一 本発明は、金属Reの製造法に関する。[Detailed description of the invention] Completed 1L reason! one The present invention relates to a method for producing metal Re.

且匪五皿玉1皿 金属Reを得る方法としては、■過レニウム酸カリウム
を水素で還元するか、あるいは、■過レニウム酸カリウ
ムを一度硫化レニウム(IV)に変えた後、過レニウム
酸アンモニウムとしてから還元する方法等が考えられて
いる。
The method for obtaining metal Re is either by reducing potassium perrhenate with hydrogen, or by converting potassium perrhenate into rhenium (IV) sulfide and then converting it to ammonium perrhenate. Methods are being considered in which the amount is recovered after the amount is recovered.

しかしながら、還元の際どのように還元することが、よ
り揮発ロスなく還元を完全に行い、かつ操業上溶融等を
生じない方法について、何ら開示がなされていない。
However, there is no disclosure of how to perform the reduction in a manner that completely reduces volatilization loss and does not cause melting or the like during operation.

そこで発明者等が、鋭意検討した結果、以下のような発
明をなした。
As a result of intensive study, the inventors made the following invention.

1尻五璽國 即ち本発明は、 (1)過レニウム酸カリを還元し、水浸出した後、脱水
処理後乾燥する金属Reの製造法。
The present invention is as follows: (1) A method for producing metal Re, which involves reducing potassium perrhenate, leaching it with water, dehydrating it, and then drying it.

(2)還元に際し、第1段還元を250〜350℃とし
、第2段還元を650〜750℃とし、ついで第3段還
元を950℃以上で行う(1)記載の金属Reの製造法
(2) The method for producing metal Re according to (1), in which the first stage reduction is carried out at 250 to 350°C, the second stage reduction is carried out at 650 to 750°C, and then the third stage reduction is carried out at 950°C or higher.

(3)乾燥温度を200℃以下で行う(1)記載の金属
Reの製造法。
(3) The method for producing metal Re according to (1), wherein the drying temperature is 200° C. or lower.

(4)が過の際の水洗浄をpH6,8〜7.5になるま
で行う(1)記載の金属Reの製造法。
(4) The method for producing metal Re according to (1), in which washing with water during filtration is carried out until the pH becomes 6.8 to 7.5.

匁朋塑11五l■ 過レニウム酸カリを還元するに際し、還元温度になるま
でに予め炉内の酸素を除いておくことが好ましい。
When reducing potassium perrhenate, it is preferable to remove oxygen from the furnace before the reduction temperature is reached.

例えば、200〜350℃位まで酸素を含まないガス、
例えば、窒素ガス、不活性ガス等で置換しておくことが
好ましい。
For example, a gas that does not contain oxygen up to about 200 to 350 degrees Celsius,
For example, it is preferable to replace the gas with nitrogen gas, inert gas, or the like.

その後、還元ガスを吹き込み、還元を行うことが好まし
い、還元は、以下のごとく三段階に渡って行うことが好
ましい。低温での還元温度は、250〜350℃である
。還元の保持時間は、30分〜1時間30分程度である
ことが好ましい。この県合の還元ガスとしては、水素等
を用いる。
Thereafter, it is preferable to perform reduction by blowing in a reducing gas. It is preferable that the reduction is carried out in three stages as described below. The reduction temperature at low temperatures is 250-350°C. The retention time for reduction is preferably about 30 minutes to 1 hour and 30 minutes. Hydrogen or the like is used as the reducing gas in this case.

低温で保持するのは、酸化レニウムが形態によって極め
て低温で揮発すると思われ、ひいては、回収率が悪化す
るためである。
The reason why rhenium oxide is kept at a low temperature is that depending on its form, rhenium oxide is thought to volatilize at extremely low temperatures, which in turn deteriorates the recovery rate.

低温における還元後、中温で保持する。これは、KRe
O4の溶融温度以下で充分に還元することが好ましいか
らである。
After reduction at low temperature, hold at medium temperature. This is KRe
This is because it is preferable to sufficiently reduce the temperature below the melting temperature of O4.

第2段の還元温度は、650〜750℃であることが好
ましい。
The second stage reduction temperature is preferably 650 to 750°C.

650℃以下では、還元が充分に行われず、750℃以
上になると、KReO4の溶融が始まるからである。
This is because at temperatures below 650° C., reduction is not sufficiently performed, and at temperatures above 750° C., KReO4 begins to melt.

上記温度での還元後は、溶融点が、上昇するためその後
第3段目の還元を行っても溶融することはない。
After reduction at the above temperature, the melting point increases, so even if the third stage of reduction is performed thereafter, the material will not melt.

第3段での還元温度は、950℃以上であることが好ま
しい。
The reduction temperature in the third stage is preferably 950°C or higher.

高温で還元されるものを還元するためである。This is to reduce things that can be reduced at high temperatures.

品温で、還元される酸化レニウムがあるからである。 
中温及び高温での保持時間も30分〜1時間30分であ
ることが好ましい。
This is because there is rhenium oxide that is reduced at the product temperature.
The holding time at medium and high temperatures is also preferably 30 minutes to 1 hour and 30 minutes.

また還元ガスとしては、例えば、水素ガス等が用いられ
る。
Further, as the reducing gas, for example, hydrogen gas or the like is used.

高温での還元処理後、窒素ガスその他の酸素を含まない
ガスを用いて炉内を置換し、炉冷することが好ましい。
After the reduction treatment at high temperature, it is preferable to replace the inside of the furnace with nitrogen gas or other oxygen-free gas to cool the furnace.

再酸化を防止し、安価に還元処理が行われるようにする
ためである。
This is to prevent re-oxidation and to perform reduction treatment at low cost.

得られた還元物は、水浸出し、脱水処理後乾燥する。The obtained reduced product is leached with water, dehydrated, and then dried.

水浸出に際しては、水洗浄をpH6,8〜7゜5になる
まで行うことが好ましい、に分を完全に洗浄除去するた
めである。
When leaching with water, it is preferable to wash with water until the pH reaches 6.8 to 7.5, in order to completely wash and remove the liquid.

脱水処理は、濾過等により得られる。脱水処理したもの
は、乾燥される。乾燥温度は、200℃以下で行うこと
が好ましい。
Dehydration treatment is obtained by filtration or the like. The dehydrated material is then dried. The drying temperature is preferably 200°C or lower.

Reの酸化揮発ロスを防止するためである。This is to prevent oxidation and volatilization loss of Re.

吏1立夏來 以」二のように本発明を実施することにより、以下の効
果を有する。
By implementing the present invention as described in Section 2, the following effects can be obtained.

(1)Re品位99%以上の高品位のレニウムが得られ
る。
(1) High-grade rhenium with a Re grade of 99% or higher can be obtained.

(2)Kについても、0.1%以下に除去することが可
能である。
(2) K can also be removed to 0.1% or less.

(3)三段階の還元により、安定した操業が可能となり
Reの回収率も高い。
(3) Three-stage reduction enables stable operation and high Re recovery rate.

実施例1 過レニウム酸カリを、還元炉に配置し、250℃までの
昇温中に炉内を窒素ガスで置換し、その後還元用ガスで
あろN2ガスを吹き込み、300℃で60分間保持した
。その後700℃に昇温し60分間保持した後、100
0℃60分保持し還元処理を行った。
Example 1 Potassium perrhenate was placed in a reduction furnace, and while the temperature was rising to 250°C, the inside of the furnace was replaced with nitrogen gas, and then N2 gas, which is a reducing gas, was blown in and held at 300°C for 60 minutes. . After that, the temperature was raised to 700°C and held for 60 minutes, and then heated to 100°C.
Reduction treatment was performed by holding at 0°C for 60 minutes.

この後、N2ガスで炉内を置換しつつ炉冷した。Thereafter, the furnace was cooled while replacing the inside of the furnace with N2 gas.

炉冷後、水浸出しKを除きpHが7になるまで洗浄を行
った。
After cooling the furnace, water leaching K was removed and washing was performed until the pH reached 7.

洗浄後150℃で乾燥を行った。After washing, drying was performed at 150°C.

以上の処理によりレニウムの回収率は、100%であり
、還元率も100%、Kの品位も0.1%以下であり高
品位のReが得られた。
Through the above treatment, the recovery rate of rhenium was 100%, the reduction rate was also 100%, and the grade of K was 0.1% or less, so that high-quality Re was obtained.

比較例1 第1段の還元温度を400℃として、他の条件を同じに
した場合、Reの回収率は、98%と好ましい値でなか
った。
Comparative Example 1 When the first stage reduction temperature was set to 400° C. and other conditions were kept the same, the recovery rate of Re was 98%, which was not a preferable value.

比較例2 第2段の処理温度保持を行わず他の条件を同じにした場
合においては、1000℃においてKHCO3が溶融し
還元処理が不可能であった。
Comparative Example 2 When the second stage treatment temperature was not maintained and other conditions were kept the same, KHCO3 melted at 1000° C., making reduction treatment impossible.

比較例3 乾燥温度を300℃で行い他は同じ条件で行った場合、
Reの回収率が97%と悪い値を示した。
Comparative Example 3 When the drying temperature was 300°C and the other conditions were the same,
The Re recovery rate showed a poor value of 97%.

Claims (4)

【特許請求の範囲】[Claims] (1)過レニウム酸カリを還元し、水浸出した後、脱水
処理後乾燥することを特徴とする金属Reの製造法。
(1) A method for producing metal Re, which comprises reducing potassium perrhenate, leaching it with water, dehydrating it, and then drying it.
(2)還元に際し、第1段還元を250〜350℃とし
、第2段還元を650〜750℃とし、ついで第3段還
元を950℃以上で行うことを特徴とする特許請求の範
囲第1項記載の金属Reの製造法。
(2) In the reduction, the first stage reduction is carried out at 250 to 350°C, the second stage reduction is carried out at 650 to 750°C, and then the third stage reduction is carried out at 950°C or higher. 2. Method for producing metal Re as described in Section 1.
(3)乾燥温度を200℃以下で行うことを特徴とする
特許請求の範囲第1項記載の金属Reの製造法。
(3) The method for producing metal Re according to claim 1, wherein the drying temperature is 200° C. or lower.
(4)ろ過の際の水洗浄をpH6.8〜7.5になるま
で行うことを特徴とする特許請求の範囲第1項記載の金
属Reの製造法。
(4) The method for producing metal Re according to claim 1, characterized in that washing with water during filtration is performed until the pH reaches 6.8 to 7.5.
JP26263085A 1985-11-25 1985-11-25 Manufacture of metallic re Pending JPS62124240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26263085A JPS62124240A (en) 1985-11-25 1985-11-25 Manufacture of metallic re

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26263085A JPS62124240A (en) 1985-11-25 1985-11-25 Manufacture of metallic re

Publications (1)

Publication Number Publication Date
JPS62124240A true JPS62124240A (en) 1987-06-05

Family

ID=17378458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26263085A Pending JPS62124240A (en) 1985-11-25 1985-11-25 Manufacture of metallic re

Country Status (1)

Country Link
JP (1) JPS62124240A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129201A (en) * 2012-12-28 2014-07-10 Pan Pacific Copper Co Ltd Manufacturing method of perrhenic acid aqueous solution from rhenium sulfide
US20150107414A1 (en) * 2012-12-28 2015-04-23 Pan Pacific Copper Co., Ltd. Method for producing aqueous solution of perrhenic acid from rhenium sulfide
JP2016013940A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution and potassium perrhenate obtained by using the same, and method for producing ammonium perrhenate and rhenium metal
JP2016013941A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing rhenium sulfide, method for producing aqueous perrhenic acid solution, method for producing potassium perrhenate, method for producing ammonium perrhenate, and method for producing rhenium metal
JP2016013939A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution from crude rhenium sulfide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129201A (en) * 2012-12-28 2014-07-10 Pan Pacific Copper Co Ltd Manufacturing method of perrhenic acid aqueous solution from rhenium sulfide
US20150107414A1 (en) * 2012-12-28 2015-04-23 Pan Pacific Copper Co., Ltd. Method for producing aqueous solution of perrhenic acid from rhenium sulfide
US9624561B2 (en) 2012-12-28 2017-04-18 Pan Pacific Copper Co., Ltd. Method for producing aqueous solution of perrhenic acid from rhenium sulfide
US9631259B2 (en) * 2012-12-28 2017-04-25 Pan Pacific Copper Co., Ltd. Method for producing aqueous solution of perrhenic acid from rhenium sulfide
JP2016013940A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution and potassium perrhenate obtained by using the same, and method for producing ammonium perrhenate and rhenium metal
JP2016013941A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing rhenium sulfide, method for producing aqueous perrhenic acid solution, method for producing potassium perrhenate, method for producing ammonium perrhenate, and method for producing rhenium metal
JP2016013939A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution from crude rhenium sulfide

Similar Documents

Publication Publication Date Title
US4294811A (en) Process for manufacturing Si useful for semiconductor components from quartz sand
CN108383163B (en) Method for preparing high-purity molybdenum trioxide by roasting molybdenite concentrate in one step
JPS62124240A (en) Manufacture of metallic re
US3149946A (en) Method of improving the infrared transmittance of high silica glass
CN109628995B (en) Method for improving yield of polycrystalline silicon purified by alloy method by utilizing gradient heat preservation
JP4963271B2 (en) Silicon melting method and silicon purification method
US1814720A (en) Preparation of ductile vanadium
US2901342A (en) Purification of indium
CN110723751B (en) Method for preparing molybdenum trioxide by using waste molybdenum disilicide coating
JPH0133540B2 (en)
JPS62146227A (en) Production of metallic rhenium
CN113059154A (en) Preparation method of metallic beryllium bead and metallic beryllium ingot
JPS6473028A (en) Recovering method for high purity tantalum from scrap tantalum
US2407752A (en) Process of separating hard constituents from sintered hard metals
US2636817A (en) Method of decreasing dross formation in the melting of zinc
KR102531089B1 (en) High-quality ferro-titanium casting technology using titanium scrap
JPS59219446A (en) Production of fe-ti alloy for occluding hydrogen
US1821407A (en) Process of decarburizing iron or steel or their alloys
US1760367A (en) Ductile chromium and method of producing the same
JPH10130011A (en) Removing method of boron from metal silicon
US2913315A (en) Tungsten carbide purification
KR102520636B1 (en) Casting of ferro-titanium using continuous melting technology
KR20220066452A (en) Casting of ferro-titanium using continuous melting technology through temperature control
JPH0222425A (en) Method for reclaiming alloy containing rare earth element
JPH0270028A (en) Manufacture of ta or nb