JPS62124214A - Method for controlling liquid feed rate of nozzle for controlled cooling device - Google Patents

Method for controlling liquid feed rate of nozzle for controlled cooling device

Info

Publication number
JPS62124214A
JPS62124214A JP26430085A JP26430085A JPS62124214A JP S62124214 A JPS62124214 A JP S62124214A JP 26430085 A JP26430085 A JP 26430085A JP 26430085 A JP26430085 A JP 26430085A JP S62124214 A JPS62124214 A JP S62124214A
Authority
JP
Japan
Prior art keywords
valves
water
valve
flow
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26430085A
Other languages
Japanese (ja)
Inventor
Seiji Bando
板東 清次
Sadao Ebata
江端 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26430085A priority Critical patent/JPS62124214A/en
Publication of JPS62124214A publication Critical patent/JPS62124214A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Abstract

PURPOSE:To execute control with good accuracy without using costly apparatus as in the titled method for a controlled cooling device in direct heat treatment of materials after rolling by controlling the liquid feed rate to nozzles by combination of opening and closing of various valves of plural pipes. CONSTITUTION:This cooling device has a water feed source 10, a water feed main pipe 12, a water feed branch pipe 20 and nozzles 22 for ejecting cooling water and controls the flow rate of the cooling water 52 to be supplied to a steel sheet 40A which is a material to be cooled. Respective parallel pipelines 44A-44D for constituting the respective independent flow passages and valves 42A-42D which are respectively provided to said pieplines, have the functions to independently open and close the above-mentioned flow passages and are different in flow passage area from each other are provided between the pipes 12, 20. An opening and closing control device 46 for combining said valves and selectively opening and closing the valves is provided. The water 52 is first supplied from the source 10 via the pipe 12 to the pipelines 44A-44D. The combinations of the valves 42A-42D are selected and the selected valves are opened and closed by the driving signal from the device 46 so that the total sum of the flow rates of the water passing the respective valves is the water feed rate to the nozzles 22.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、制御冷却装置のノズル給液量制御方法に係り
、特に、高温鋼板等を冷却する冷却装置の水苗を調整す
る際に用いるのに好適な、圧延後の材料を直接熱処理す
る制御冷却装置のノズル給液口制御方法の改良に関する
The present invention relates to a method for controlling the amount of liquid supplied to a nozzle of a control cooling device, and in particular, a control method for directly heat-treating rolled material, which is suitable for use when adjusting water seedlings in a cooling device for cooling high-temperature steel plates, etc. This invention relates to an improvement in a method for controlling a nozzle liquid supply port of a cooling device.

【従来の技術】[Conventional technology]

高温鋼板の上下面に高圧水を噴出して冷却し、該鋼板の
熱処理を行うことにより、その硬度並びに引張り強さ等
の材質改善が図れることは、周知の、事実である。又、
近年、圧延直後の鋼板を、オンラインで板厚及び合金成
分等に応じた任意の冷却速度で冷却し、広範囲な材質制
御を可能とする制御冷却技術の発展には、めざましいも
のがある。 ところで、前記のような冷却技術で鋼板を冷却するため
に用いられる水冷装置には、弁の開閉の自動化及び計測
機器の高精度化等の進歩が認められるものの、本質的な
冷却水量の制御方法については、大ぎな進歩が見られず
、例えば第5図に示すような配管系が採用されたものが
多数存在する。 第5図に示す水冷装置は、給水源10から給水主管12
を介して冷却水量を検出する流!ajt14に冷却水を
送る。該流量計14を通過した冷却水は、給水枝管20
に備えられた、流口を調整するための流口調整弁16や
、冷却水を止める制水弁18を順次通過して、ノズルヘ
ッダの冷却水噴出用ノズル22に至り、噴出されて被冷
却材を冷却−する。近年、計測機器の自動化が進lνだ
ため、前記流量調整弁16の作動は、上位のコンピュー
タ及び/又は8系のループコントローラ等の制御装置2
4に前記流量計14の信号をフィードバックし、法↓I
I 61]装置24の指令に基づき、電気的に且つ高精
度に制御される。
It is a well-known fact that material properties such as hardness and tensile strength can be improved by jetting high-pressure water onto the upper and lower surfaces of a high-temperature steel plate to cool it and heat-treating the steel plate. or,
In recent years, there has been remarkable progress in controlled cooling technology that allows a steel plate immediately after rolling to be cooled online at an arbitrary cooling rate depending on the plate thickness, alloy composition, etc., thereby enabling a wide range of material quality control. By the way, although there have been advances in the water cooling equipment used to cool steel sheets using the cooling technology described above, such as automation of valve opening and closing and higher accuracy of measuring instruments, there are still no essential methods for controlling the amount of cooling water. No significant progress has been made in this area, and many systems employ piping systems as shown in FIG. 5, for example. The water cooling system shown in FIG.
Flow to detect the amount of cooling water through! Send cooling water to ajt14. The cooling water that has passed through the flow meter 14 is transferred to a water supply branch pipe 20.
The water passes sequentially through a flow adjustment valve 16 for adjusting the flow port and a water control valve 18 for stopping the cooling water, and reaches the cooling water jetting nozzle 22 of the nozzle header, where it is jetted out to be cooled. Cool the material. In recent years, automation of measuring instruments has progressed, so the operation of the flow rate adjustment valve 16 is controlled by a control device 2 such as a host computer and/or an 8-system loop controller.
4, the signal from the flowmeter 14 is fed back to
I61] is controlled electrically and with high precision based on instructions from the device 24.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

ところで、被冷却材を冷却処理する際に、水琶調整して
広範囲に冷却能力を制御するためには、前記ノズル22
から噴出する水Gを広範囲に制御しなければならない。 従って、必然的に前記流O調整弁16の開度調整範囲並
びに前記流m計14の測定レンジを広いものとしなけれ
ばならない。 この場合において、前記流量計14に関しては、電磁流
ω計あるいは超音波流量計等を使用することにより、広
範囲な流)測定を行うことも可能ではあるが、そのよう
な計器を用いると設備費用が極めて高額となってしまう
という問題がある。 又、前記流位調整弁16に関しては、理論的には弁開度
の調整により連続的且つ広範囲に通過流畠を制御し11
7るとイえられるが、実際には下記の如き問題を有して
いる。しかしながら、従来は、このような問題に対して
、効果的且つ簡便な代替え技術がないまま、冷却水の流
ωの制御を行っているのが実情である。 (1)流ftが少な・い時、即ち流口調整弁14の弁開
度が小ざい時には、弁の一次側と二次側に大きな圧力差
を生じ、このため弁体及び弁直近の配管にキャビテーシ
ョンを生じて弁体の破損や配管の損傷を(nく。 (2)弁の一次側、二次側の圧力差が大きい時は、小さ
な弁開度変更でも流分変化が非常に大きくなり、フィー
ドバック制60 する際にハンチング現象を牛じ易い。 (3)流量を大幅に変えると弁体の変位量が大となり日
間がかかる。 一方、本発明に関連する技術として、例えば特開昭53
−94247で、圧延機ロール冷却液流色制御装置が提
案されている。 これは、金at板を圧延する圧延用ロールのヒートクラ
ウン制御に関わり、開度の選択によりロール軸方向に任
意の流量パターンを形成して段階的にクーラント流口を
制御できる制御弁を設けた冷却液流起制御装五である。 この装置は、圧延ロールのヒートクラウンを制御するた
め、クーラント噴出用ノズルの一次側に設けられた、第
6図に示すような2個の異なる流は特性を有するバルブ
ピストン30A、30Bを組込んだ1個のυJ1211
弁32を選択作動させるか、あるいは、第7図に示すよ
うな制御弁34の開度を調整することにより、前記ノズ
ル22からのクーラント噴出o4i:段階的に制御し、
ロール軸方向におけるクーラント流迅噴出パターンを調
節して、冷部制御するものである。 しかしながら、第6図に示されるような制御弁32のバ
ルブピストン30A、30Bは、その構造が精密である
ため、クーラント中に異物が介在すると円滑に作動せず
、又、それにより圧延作業に重大な支障をきたしてしま
う。又、第7図に示されるような制御弁34も同様に極
めてyi?密な構造をM Tるため、ポペット弁36と
バルブシート38との間に異物が介在づると致命的な作
動不良の原因となってしまう。従って、前記のような極
めて精密でに価な制御弁32.34を良好に作動させる
ためには、クーラントとして使用される流体がゴミや異
物を含まずに極めて清浄であり、且つそれ自身が潤滑性
を有する必要がある。よって、前記冷却液流広制御装置
は、圧延用油もしくはこれに類似する油脂類、あるいは
クーラント専用油等の冷却液のRQ i、lJ御にのみ
しか用いることができず、高温鋼板を熱処理する際用い
られる多聞のスケール、粉塵等を含有する冷却水の流量
制御には適用できない。 又、圧延用ロールを冷却する際のように、ノズル本数が
少なくてすむ場合には、前記した制御弁32.34のよ
うな高(lllな弁の使用も経費の面から許容される場
合もあるが、高温鋼板を制御冷却する際に必要とされる
多数のノズルに、前記のような高価な制御弁を多数使用
ヅると、著しく設備コストを上界させ、実現性に欠ける
という問題点を有していた。
By the way, when cooling the material to be cooled, in order to adjust the cooling capacity over a wide range, it is necessary to use the nozzle 22.
The water G spewing out must be controlled over a wide range. Therefore, the opening adjustment range of the flow O adjustment valve 16 and the measurement range of the flow meter 14 must necessarily be widened. In this case, regarding the flowmeter 14, it is possible to measure a wide range of flow rates by using an electromagnetic ω meter or an ultrasonic flowmeter, but using such a meter increases the equipment cost. The problem is that it becomes extremely expensive. Regarding the flow level adjustment valve 16, theoretically, the flow rate can be controlled continuously and over a wide range by adjusting the valve opening.
7, but in reality it has the following problems. However, in the past, the current situation is that the flow ω of cooling water has been controlled without any effective and simple alternative technology to address such problems. (1) When the flow ft is small, that is, when the opening degree of the flow adjustment valve 14 is small, a large pressure difference occurs between the primary and secondary sides of the valve, which causes the valve body and the piping in the vicinity of the valve to cavitation may occur, causing damage to the valve body and piping. (2) When the pressure difference between the primary and secondary sides of the valve is large, even a small change in the valve opening will result in a very large change in flow rate. Therefore, it is easy to avoid the hunting phenomenon when using the feedback system. (3) If the flow rate is changed significantly, the amount of displacement of the valve body becomes large and it takes a long time. On the other hand, as a technique related to the present invention, for example, 53
-94247, a rolling mill roll coolant flow color control device is proposed. This is related to the heat crown control of rolling rolls that roll gold attenuated plates, and is equipped with a control valve that can control the coolant flow in stages by forming an arbitrary flow rate pattern in the roll axis direction by selecting the opening degree. This is the coolant flow control device. This device incorporates two valve pistons 30A and 30B with different flow characteristics as shown in FIG. 6, which are provided on the primary side of a coolant jet nozzle to control the heat crown of the rolling roll. One υJ1211
By selectively operating the valve 32 or adjusting the opening degree of the control valve 34 as shown in FIG. 7, coolant ejection o4i from the nozzle 22 is controlled in stages,
The cold section is controlled by adjusting the coolant flow rate jet pattern in the roll axis direction. However, since the valve pistons 30A and 30B of the control valve 32 as shown in FIG. 6 have a precise structure, they will not operate smoothly if foreign matter is present in the coolant, and this will cause serious problems in rolling operations. This will cause a lot of trouble. Similarly, the control valve 34 as shown in FIG. 7 is also extremely yi? Since the valve has a dense structure, if a foreign object is inserted between the poppet valve 36 and the valve seat 38, it will cause a fatal malfunction. Therefore, in order to operate the extremely precise and valuable control valves 32 and 34 as described above, it is necessary that the fluid used as the coolant be extremely clean, free of dirt and foreign matter, and that it itself be lubricated. It is necessary to have sex. Therefore, the above-mentioned coolant flow control device can only be used to control the RQ i, lJ of a coolant such as rolling oil or similar oils and fats, or special coolant oil, and cannot be used to heat-treat high-temperature steel plates. It cannot be applied to the flow rate control of cooling water that contains a large amount of scale, dust, etc., which is often used. In addition, when the number of nozzles is small, such as when cooling rolling rolls, the use of expensive valves such as the control valves 32 and 34 described above may be acceptable from a cost perspective. However, if a large number of expensive control valves such as those mentioned above are used for the large number of nozzles required for controlled cooling of high-temperature steel sheets, the problem is that the equipment cost will significantly increase and it will be impractical. It had

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点に鑑みてなされてものであ
って、高価な機器を用いずに簡便な溝底で流量制御の迅
速化や高精度化が連成でき、又、キャビテーションを防
止して設備寿命の向上を図れる制御冷flI装置のノズ
ル給液晶制御方法を提供することを目的とする。 [問題点を解決するための手段] 本6発明は、圧延後の材料を直接熱処理する制御冷m装
このノズル給液量制御方法において、ノズルに通ずる互
いに独立した複数の並列管路に、互いに流路面積の異な
る開閉弁を備え、合弁を通過する液も)の総和が前記ノ
ズルへの供給液ごとなるように合弁の開閉を行い、冷却
液量の調整を行うことにより、前記目的を連成したもの
である。
The present invention has been made in view of the above-mentioned conventional problems, and it is possible to speed up and increase the accuracy of flow rate control with a simple groove bottom without using expensive equipment, and prevent cavitation. An object of the present invention is to provide a nozzle supply liquid crystal control method for a controlled cooling flI device that can improve equipment life. [Means for Solving the Problems] The sixth invention provides a controlled cooling system for directly heat-treating the material after rolling.In this nozzle liquid supply amount control method, a plurality of mutually independent parallel pipes leading to the nozzle are connected to each other. By opening and closing the joint valve so that the total amount of liquid passing through the joint valve is the same as the liquid supplied to the nozzle, and adjusting the amount of cooling liquid, the above purpose can be achieved. It was completed.

【作用】[Effect]

以下、本発明の作用について詳細に説明する。 本発明においては、例えば第1因に示すような冷却水噴
出用ノズル22から被冷部材40に供給する冷却液の品
を制御りる際に、例えば給水源10から送られてくる冷
用水等の冷却液を、例えば給水主室12と給水枝管20
の途中に設けられ、それぞれ独立した複数の管路に尋人
する。該管路には、その途中にそこを流れる冷却液の流
量を制御するための、例えば第1図に示すような4個の
豆いに流路面積が異なる弁42Δ〜42Dが設けられて
おり、前記液冷」材40に供給すべき冷却液量に応じて
、前記各々の弁42A〜42Dを開閉ざけ、前記液冷I
A材40に供給する冷FA’a闇を制御している。 ここで、複数の管路に各々の弁を備え、その弁の開門に
より得られる冷却液量は、該弁の開閉の組合わせにより
段階的に決定される。その組合わUの数Nは、次式(1
)により求めることができる。 ・・・・・・・・・(1) 但し、nは弁の総数、rは制御するため組合わせる弁の
数である。 従って、第1図に示すように弁のanを4とすれば、そ
の組合わせの数は、(1)式より15通り(全ての弁が
閉じられている状態を含めると16通り)の組合わせが
可能である。 以上のように、本発明によれば、高価な流山計や視維な
制御を要する開度調節型の流量制御弁を使用することな
く、一般的な弁を複数備えるだけで、精度の良い流量制
御が簡便且つ効果的に行える。又、前記のような流量制
御弁を用いないため、流量制御に伴なう時間遅れや流量
あるいは弁開度のハンチング現象や設備の損傷を3B 
<キャビテーション等をも生ずることなり、14度の良
い流量制御が極めて迅速に実現することができる。更に
、各々の弁の流路面積(開口面g4)を適宜選択し、弁
の数を増やすことにより、無段階に近い流量制御を広範
囲に且つ高速、高精度に実施することもできる。 (実施例] 以下、本発明に係る制御冷却装置のノズル給液量制御方
法が採用された冷却水足利tII装置の実施例について
詳細に説明する。 この実施例は、前出第1図に示すような構成とされてい
て、前出第5図に示した従来例と同様の、給水源10と
、給水主管12と、給水枝管(冷却水を供給する供給管
)20と、冷却水噴出用ノズル22とを有し、液冷fJ
1祠である鋼板40Aに供給する冷却水52の水ωを制
御する冷却水利制御装置において、更に、前記鋼板40
Aを搬送する搬送ロー538と、前記給水主管12と給
水枝管20の間に設けられ、それぞれ独立した流路を構
成するための各々の並列管路44A〜44Dと、該並列
管路44A〜44Dにそれぞれ備えられ、前記流路を独
立して開閉づる機能を有し、互いに流路面積の異なる弁
42A〜42Dと、該弁42A〜420を組合わせ、選
択して開閉するための開閉制御装置46を備える。 前記冷却水の給水源10には、それを一定加圧源とJる
ために例えば定圧吐出源ポンプを用い、あるいはポンプ
吐出側に減圧弁を設けることができる。 前記各々の弁42A〜42Dは、その各々を減圧機能を
有する間口を有するもの、一定間口面積の開閉機能を有
するもの、あるいは、流路面積の異なる間口を有するも
のとすることができる。具体的には、前記各々の弁42
A〜42Dに、第2図(A)、(B)に示すような空気
圧で動力を得るロータリアクチュエータ47を装着した
、一般的なボールバルブを用いることができる。なお、
第2図(A)、(B)中の48は、弁42A〜42Dの
開閉を行うための弁体、50は所定内径を有し、該弁4
2A〜42Dが開いた場合流体が通過覆る流体通過孔で
ある。 ここで、前記弁42A〜42Dに用いられるボールバル
ブは、前記開閉f、+3111装置46の指令に基づき
閉の状態では、第2図(A>に示すように、流体通過穴
50が流路に直角な方向に向いて流路を塞ぐ。又、前記
弁42A〜42Dが開の状態では、第2図(B)に示す
ように、弁体48がロークリアクチュエータ47によっ
て90°回転し、前記流体通過孔50が流路に平行とな
り、所定の圧力降下を発生して一次側圧力に見合った水
足を二次側へ通過させる。 以下、実施例の作用について説明する。 給水源10から給水主管12を介して並列管路44A〜
44Dに冷却水52を供給する。その際に、各々の弁4
2A〜42Dを開閉υ制御装置46からの駆動信号によ
り組合わせを選択して開閉し、開となった弁から冷却水
を流すことにより、該冷u1水の流jをυ1wJする。 制御された冷却水は1箇所にまとめられて給水枝管20
を流通しW噴出用ノズル22から搬送0−ラ38上の高
温の鋼板40Aに供給される。そして、流量を制御され
、該鋼板40Aは最適に水冷されてi、II 1211
冷却される。 このようにして本実施例に係る冷却水口制御装置は、第
2図(A>に示すような一般的なボールバルブを使用し
て流量制御が行えるため、従来の前出第6図や第7図に
示したような流ffl III御弁のような弁内部に特
殊な構造を有するυIt211弁を必要とせずに、簡易
な構成で且つ安価に冷却水の流量制御を行うことができ
、又、前記冷却水ffl III till装置の保守
、点検あるいは弁の取替えが容易に行える。 ところで、第1図に示す冷却水Jut、II御装置の各
々の弁42A〜42DをrjrL閉して冷却水を制御し
た場合に、冷却水噴出用ノズル22から噴出される冷却
水の流口を実際に測定した結果について、以下説明する
。この場合、各々の弁42A〜42Dの一次側圧力(一
定圧力とする)を41cg/dGとし、各々の弁42A
〜42Dのオリフィス径とそこを流れる冷却水のFt6
iを次に示す第1表のようにした。 第  1  表 又、各々の弁42A〜42Dは、空気圧を利用した、例
えば第2図(A)に示すようなロータリアクチュエータ
(図示せず)により開閉され、又その開閉は制m装四4
6の指令に基づき高速で且つ自動的に行われる。 前記各々の弁42A〜42Dの開閉制御は、第3図に示
すような組合わせのケースA〜Pに基づき行った。する
と、談合々のケースA−Pに対応して、前記冷却水噴出
用ノズル22から噴出される冷却水の流口は、第4図に
示すような値となった。又、前記各ケースA〜Pにおけ
る弁の間口面積の総和から計算される冷却水の流Rの計
算値も、第4図中に示ず。 第4図から、本発明法による流口制御方法が、高速に且
つ高精度に流量調整を行なうことができ、実用的価値が
高いことが理解される。なお、前記測定値は、前記弁4
2A〜42Dの開閉操作から2〜3秒後の瞬時流口を測
定したものであり、時間経過による流R変動は見られな
かった。 なお、+iff記実施例においては、冷却液に冷却水を
用いていたが、冷却液は冷が水に限定されるらのではな
く用途に応じて他の冷却液を用いることができる。 又、前記実施例においては、4つの並列管路44A〜4
4Dに配設されるそれぞれの弁42A〜42Dを用いた
例について説明したが、並列管路の数及び弁の数はこれ
に限定されるものではなく、任意に設コすることができ
る。この場合、弁の数を増やすことにより、無段階に近
い流コ制御を精度良く広範囲に行うことができる。
Hereinafter, the effects of the present invention will be explained in detail. In the present invention, for example, when controlling the amount of cooling liquid supplied from the cooling water spouting nozzle 22 to the member to be cooled 40 as shown in the first factor, for example, cooling water sent from the water supply source 10, etc. For example, the cooling liquid in the main water supply room 12 and the water supply branch pipe 20
It is installed in the middle of the river, and each pipe is connected to a number of independent pipes. The pipe is provided with, for example, four valves 42Δ to 42D having different flow path areas, as shown in FIG. 1, in order to control the flow rate of the coolant flowing therethrough. , the respective valves 42A to 42D are opened and closed according to the amount of cooling liquid to be supplied to the liquid cooling material 40, and the liquid cooling material 40 is opened and closed.
The cold FA'a supplied to the A material 40 is controlled. Here, each of the plurality of pipelines is provided with a valve, and the amount of cooling liquid obtained by opening the valve is determined in stages by the combination of opening and closing of the valve. The number N of the combinations U is calculated by the following formula (1
). (1) However, n is the total number of valves, and r is the number of valves combined for control. Therefore, if an of the valve is 4 as shown in Figure 1, the number of combinations is 15 (16 if you include the state in which all valves are closed) from equation (1). It is possible to match. As described above, according to the present invention, accurate flow rate can be achieved by simply providing a plurality of general valves without using an expensive flow meter or an opening adjustment type flow control valve that requires visual control. Control can be performed easily and effectively. In addition, since a flow rate control valve as mentioned above is not used, there are 3B problems such as time delay associated with flow rate control, hunting phenomenon of flow rate or valve opening, and damage to equipment.
<Cavitation etc. will also occur, and a good flow rate control of 14 degrees can be achieved extremely quickly. Furthermore, by appropriately selecting the flow path area (opening surface g4) of each valve and increasing the number of valves, nearly stepless flow control can be performed over a wide range, at high speed, and with high precision. (Example) Hereinafter, an example of a cooling water Ashikaga tII device in which the nozzle supply amount control method of a controlled cooling device according to the present invention is adopted will be described in detail. This example is shown in FIG. 1 above. It has the same configuration as the conventional example shown in FIG. It has a nozzle 22 for liquid-cooled fJ
In the cooling water utilization control device that controls the water ω of the cooling water 52 supplied to the steel plate 40A, which is one shrine, the steel plate 40
A conveying row 538 for conveying A, each parallel pipe line 44A to 44D provided between the main water supply pipe 12 and the water supply branch pipe 20 to constitute an independent flow path, and the parallel pipe line 44A to An opening/closing control for combining valves 42A to 42D and selectively opening and closing the valves 42A to 420, which are provided in each valve 44D and have a function of independently opening and closing the flow passages, and have different flow passage areas. A device 46 is provided. For the cooling water supply source 10, for example, a constant pressure discharge source pump may be used to provide a constant pressure source, or a pressure reducing valve may be provided on the pump discharge side. Each of the valves 42A to 42D may have an opening with a pressure reducing function, an opening/closing function with a constant opening area, or an opening with a different flow path area. Specifically, each of the valves 42
A general ball valve equipped with a rotary actuator 47 powered by air pressure as shown in FIGS. 2(A) and 2(B) can be used for A to 42D. In addition,
2A and 2B, 48 is a valve body for opening and closing the valves 42A to 42D, and 50 has a predetermined inner diameter;
2A to 42D are fluid passage holes through which fluid passes and covers when opened. Here, when the ball valves used in the valves 42A to 42D are closed based on the opening/closing command from the +3111 device 46, the fluid passage hole 50 is in the flow path as shown in FIG. 2 (A>). When the valves 42A to 42D are open, the valve body 48 is rotated by 90 degrees by the low reactor 47, as shown in FIG. The fluid passage hole 50 is parallel to the flow path, generates a predetermined pressure drop, and allows a foot of water commensurate with the primary side pressure to pass through to the secondary side.The operation of the embodiment will be described below.Water is supplied from the water supply source 10. Parallel pipe line 44A ~ via main pipe 12
Cooling water 52 is supplied to 44D. At that time, each valve 4
2A to 42D are opened and closed by selecting a combination according to a drive signal from the opening/closing υ control device 46, and cooling water is allowed to flow from the opened valve, thereby causing the flow of the cold u1 water j to be υ1wJ. The controlled cooling water is collected in one place and sent to the water supply branch pipe 20.
is supplied from the W jetting nozzle 22 to the high-temperature steel plate 40A on the conveyor roller 38. Then, the flow rate is controlled, and the steel plate 40A is optimally water cooled.
cooled down. In this way, the cooling water port control device according to this embodiment can control the flow rate using a general ball valve as shown in FIG. It is possible to control the flow rate of cooling water with a simple configuration and at low cost without requiring a υIt211 valve with a special structure inside the valve like the flow ffl III control valve shown in the figure. Maintenance, inspection, or valve replacement of the cooling water ffl III till device can be easily performed. By the way, the cooling water can be controlled by closing each of the valves 42A to 42D of the cooling water Jut and II control devices shown in FIG. In this case, the results of actually measuring the flow of cooling water spouted from the cooling water jetting nozzle 22 will be explained below.In this case, the primary side pressure of each valve 42A to 42D (assumed to be a constant pressure) is 41cg/dG, and each valve 42A
~42D orifice diameter and cooling water flowing through it Ft6
i was set as shown in Table 1 below. Table 1 Also, each of the valves 42A to 42D is opened and closed by a rotary actuator (not shown) using air pressure, for example, as shown in FIG.
This is done quickly and automatically based on the command No. 6. The opening/closing control of each of the valves 42A to 42D was performed based on the combinations of cases A to P as shown in FIG. Then, corresponding to cases A-P of bid rigging, the flow opening of the cooling water jetted from the cooling water jetting nozzle 22 had a value as shown in FIG. 4. Also, the calculated value of the cooling water flow R calculated from the sum of the valve opening areas in each of the cases A to P is not shown in FIG. From FIG. 4, it is understood that the flow port control method according to the present invention can adjust the flow rate at high speed and with high precision, and has high practical value. Note that the measured value is based on the value of the valve 4.
The instantaneous flow ports were measured 2 to 3 seconds after the opening/closing operations of 2A to 42D, and no fluctuation in flow R over time was observed. In addition, in the embodiment described above, cooling water was used as the cooling liquid, but the cooling liquid is not limited to water, and other cooling liquids can be used depending on the purpose. Further, in the embodiment, four parallel pipe lines 44A to 4
Although an example using the respective valves 42A to 42D disposed in 4D has been described, the number of parallel pipes and the number of valves are not limited to this, and can be arbitrarily provided. In this case, by increasing the number of valves, almost stepless flow control can be performed over a wide range with high precision.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、高価な流畠計や複
雑な制御を要する開度副面型の流Gυ制御弁を使用する
ことなく、一般的な弁を複数備えるだけで、精度の良い
制御が筒便且つ効果的に行える。又、前記のような流口
fi制御弁を用いないため、流R制御に伴なう時間遅れ
や流量あるいは弁開度のハンチング、更には設備の損傷
の原因となるキャビテーション等を生ずることなく、精
度の良い流口制御を極めて迅速に実現することが可能と
なる。更に、各々の弁の流路面積(間口面Fx”s )
を適宜選択し、弁の数を増やすことにより、無段階に近
い流量制御を広範囲に、且つ高速、高精度に実施するこ
とができる等の優れた効果を有する。
As explained above, according to the present invention, accuracy can be improved by simply providing a plurality of general valves without using an expensive flow gauge or a flow Gυ control valve of the opening side surface type that requires complicated control. Good control can be performed conveniently and effectively. In addition, since the flow inlet fi control valve as described above is not used, there is no time delay or hunting in the flow rate or valve opening accompanying flow R control, and there is no cavitation that can cause equipment damage. It becomes possible to realize highly accurate flow port control extremely quickly. Furthermore, the flow path area of each valve (frontage surface Fx”s)
By appropriately selecting the number of valves and increasing the number of valves, there are excellent effects such as nearly stepless flow rate control being able to be performed over a wide range, at high speed, and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る制御冷III装首のノズル給液
a制御方法が採用された冷却水良制御装首の実施例の構
成を示す、一部所面図を含む管路図、第2図(A>は、
前記実施例に用いられる弁の開状態を示す要部断面図、
同図(B)は、同じく、開状態を示す要部断面図、第3
図は、前記実施例の作用を説明するための、弁の組合わ
せの一例を示すね図、第4図は、同じく、前記弁の組合
わせと流量の実測値及び計算値の関係の一例を示す線図
、第5図は、従来の冷却水511JI m装置の構成を
示す管路図、第6図は、従来の冷却液量の制御弁の一例
の構成を示寸断面図、第7図は、同じく、他の例の構成
を示す断面図である。 10・・・給水源、 12・・・給水主管、 20・・・給水枝管、 22・・・冷却水噴出用ノズル、 40・・・被冷却材、 40A・・・鋼板、 42A〜42D・・・弁、 44A〜44D・・・並列管路、 46・・・開閉制御装置、 52・・・冷却水。
FIG. 1 is a pipe diagram including a partial top view showing the configuration of an embodiment of a cooling water well-controlled head in which the nozzle supply liquid a control method of the controlled cooling III neck according to the present invention is adopted; Figure 2 (A> is
A sectional view of the main part showing the open state of the valve used in the embodiment,
The same figure (B) is also a sectional view of the main part showing the open state,
The figure shows an example of a combination of valves for explaining the operation of the embodiment, and FIG. FIG. 5 is a pipe diagram showing the configuration of a conventional cooling water 511JI m device, FIG. 6 is a sectional view showing the configuration of an example of a conventional cooling liquid amount control valve, and FIG. 2 is a cross-sectional view showing the configuration of another example. DESCRIPTION OF SYMBOLS 10... Water supply source, 12... Water supply main pipe, 20... Water supply branch pipe, 22... Cooling water jet nozzle, 40... Material to be cooled, 40A... Steel plate, 42A to 42D. ...Valve, 44A-44D...Parallel pipe line, 46...Opening/closing control device, 52...Cooling water.

Claims (1)

【特許請求の範囲】[Claims] (1)圧延後の材料を直接熱処理する制御冷却装置のノ
ズル給液量制御方法において、 ノズルに通ずる互いに独立した複数の並列管路に、互い
に流路面積の異なる開閉弁を備え、各弁を通過する液量
の総和が前記ノズルへの供給液量となるように各弁の開
閉を行い、冷却液量の調整を行うことを特徴とする制御
冷却装置のノズル給液量制御方法。
(1) In a nozzle liquid supply amount control method for a control cooling device that directly heat-treats rolled material, a plurality of mutually independent parallel pipes leading to the nozzle are equipped with on-off valves having different flow path areas, and each valve is A method for controlling the amount of liquid supplied to a nozzle of a control cooling device, characterized in that the amount of cooling liquid is adjusted by opening and closing each valve so that the total amount of liquid passing through the nozzle becomes the amount of liquid supplied to the nozzle.
JP26430085A 1985-11-25 1985-11-25 Method for controlling liquid feed rate of nozzle for controlled cooling device Pending JPS62124214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26430085A JPS62124214A (en) 1985-11-25 1985-11-25 Method for controlling liquid feed rate of nozzle for controlled cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26430085A JPS62124214A (en) 1985-11-25 1985-11-25 Method for controlling liquid feed rate of nozzle for controlled cooling device

Publications (1)

Publication Number Publication Date
JPS62124214A true JPS62124214A (en) 1987-06-05

Family

ID=17401257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26430085A Pending JPS62124214A (en) 1985-11-25 1985-11-25 Method for controlling liquid feed rate of nozzle for controlled cooling device

Country Status (1)

Country Link
JP (1) JPS62124214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207593A (en) * 2004-01-22 2005-08-04 Gat G Fuer Antriebstechnik Mbh Sliding ring fixing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207593A (en) * 2004-01-22 2005-08-04 Gat G Fuer Antriebstechnik Mbh Sliding ring fixing device

Similar Documents

Publication Publication Date Title
CN101983108B (en) For the method and apparatus of controlled cooling
KR20040007746A (en) Method and nozzle arrangement for a variable-width lubrication of the rolling nip of a rolling stand
JP6493562B2 (en) Hot-rolled steel sheet cooling apparatus and hot-rolled steel sheet cooling method
US4738400A (en) Spray bar assembly
CN110087802A (en) A kind of thin strip continuous casting strip steel cooling body and its cooling means
JPS62124214A (en) Method for controlling liquid feed rate of nozzle for controlled cooling device
WO2014167138A1 (en) Method and device for enhanced strip cooling in the cold rolling mill
EP2964405A1 (en) Cooling device&amp;method
JPH02503531A (en) Coolant flow control
JP7406093B2 (en) Cooling device and method for hot-rolled steel sheets
JP2000001719A (en) Device for cooling high temperature steel plate
JP2023093419A (en) Method for cooling long product by using apparatus for cooling long product
JP5741165B2 (en) Thermal steel sheet bottom surface cooling device
JPS6043209B2 (en) steel plate cooling system
RU2410177C2 (en) Device and method to cool down hot steel sheet
JPWO2020059577A1 (en) Hot-rolled steel sheet cooling device and hot-rolled steel sheet cooling method
JPS6020090B2 (en) Cooling water injection device for plate materials
JP3498953B2 (en) Curtain wall cooling equipment
JPH08155527A (en) Cooler for hot rolled metallic strip
RU2790138C1 (en) Cooling of flat rolled material without leakage of upper beam
JP2719219B2 (en) H-section flange cooling system
US3721518A (en) Method for sealing and cooling the component parts associated with the moving and stationary members of walking beam furnaces
SU1411069A1 (en) Arrangement for cooling sheets on roll-table
JPH08112604A (en) Cooling device for roll in rolling mill
JPS6293021A (en) Cooling apparatus for hot rolling steel material